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ABSTRACT

Background: Numerous studies have shown the effect of particulate matter exposure on 
brain imaging markers. However, little evidence exists about whether the effect differs by 
the level of low-grade chronic systemic inflammation. We investigated whether the level 
of c-reactive protein (CRP, a marker of systemic inflammation) modifies the associations 
of particulate matter exposures with brain cortical gray matter thickness and white matter 
hyperintensities (WMH).
Methods: We conducted a cross-sectional study of baseline data from a prospective cohort 
study including adults with no dementia or stroke. Long-term concentrations of particulate 
matter ≤ 10 µm in diameter (PM10) and ≤ 2.5 µm (PM2.5) at each participant’s home address 
were estimated. Global cortical thickness (n = 874) and WMH volumes (n = 397) were 
estimated from brain magnetic resonance images. We built linear and logistic regression 
models for cortical thickness and WMH volumes (higher versus lower than median), 
respectively. Significance of difference in the association between the CRP group (higher 
versus lower than median) was expressed as P for interaction.
Results: Particulate matter exposures were significantly associated with a reduced global 
cortical thickness only in the higher CRP group among men (P for interaction = 0.015 
for PM10 and 0.006 for PM2.5). A 10 μg/m3 increase in PM10 was associated with the 
higher volumes of total WMH (odds ratio, 1.78; 95% confidence interval, 1.07–2.97) and 
periventricular WMH (2.00; 1.20–3.33). A 1 μg/m3 increase in PM2.5 was associated with the 
higher volume of periventricular WMH (odds ratio, 1.66; 95% confidence interval, 1.08–2.56). 
These associations did not significantly differ by the level of high sensitivity CRP.
Conclusion: Particulate matter exposures were associated with a reduced global cortical 
thickness in men with a high level of chronic inflammation. Men with a high level of chronic 
inflammation may be susceptible to cortical atrophy attributable to particulate matter exposures.
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INTRODUCTION

Epidemiological studies have suggested particulate matter as an environmental risk factor 
for accelerated cognitive decline1 and dementia,2 which may be attributed to brain cortical 
atrophy and/or cerebral small-vessel disease. A growing body of studies have demonstrated 
the effects of particulate matter exposures on brain imaging markers such as white matter 
hyperintensities (WMH),3,4 cortical volume,5-7 and cortical thickness.8,9

It is now established that chronic systemic inflammation plays a key role in the neurotoxicity 
of particulate matter,10 but there is scarce evidence on whether chronic systemic 
inflammation modifies the effect of particulate matter exposure on brain imaging markers. 
A study demonstrated that higher long-chain omega-3 polyunsaturated fatty acid (which has 
anti-inflammatory properties) attenuated the effect of particulate matter exposure on total 
white matter volume.11 This finding is important because chronic systemic inflammation has 
a potential to be a target in preventing the neurotoxicity of particulate matter exposure.

C-reactive protein (CRP), an acute-phase protein, is a marker of chronic low-grade systemic 
inflammation.12,13 Some studies have demonstrated that individuals with higher CRP level 
are at a greater risk of a decline in heart rate variability (as a proxy for dysfunction of the 
autonomic nervous system) associated with particulate matter exposure, as compared with 
those with lower CRP level.14,15 This is aligned with that the key mechanism behind the 
cardiovascular effect of particulate matter is chronic inflammation,16 which is also one of 
the mechanisms behind the neurotoxic effect of particulate matter.10 However, no study so 
far has focused on CRP as an effect modifier of the association between particulate matter 
exposure and the central nervous system.

Hence, the present study aimed to investigate whether CRP level modifies the effects of 
particulate matter exposures on brain imaging markers (cortical thickness and WMH).

METHODS

Study participants
This cross-sectional study was embedded in a multi-center community-based cohort study, 
the Environmental Pollution-Induced Neurological EFfects (EPINEF) study. Fifty-year-old 
or older adults dwelling in four cities (Seoul, Incheon, Wonju, and Pyeongchang) in the 
Republic of Korea were recruited via local advertisements. The survey centers were located 
in Seoul, Incheon, and Wonju (covering Pyeongchang as well). All participants did not 
report any history of dementia, movement disorder, or stroke. We used a standardized 
survey protocol, which consisted of questionnaires, anthropometric and blood pressure 
measurements, blood tests (with ≥ 12-hour fasting blood samples), and the Mini-Mental State 
Examination (MMSE). Further details of the survey protocol were described elsewhere.17 A 
total of 1,711 individuals signed up to participate in the EPINEF study during the baseline 
survey period between August 2014 and March 2017. According to their enrollment order, 
participants were asked to undergo brain 3 Tesla magnetic resonance imaging (MRI) scans 
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(n = 998). After excluding those with missing values, data from 874 participants were used 
in this study. These study participants had significantly higher education levels and PM 
concentrations compared with those who did not undergo brain MRI scans, but mean age 
and MMSE score did not significantly differ (Supplementary Table 1).

Particulate matter exposures
We used national prediction data constructed by universal kriging modelling of particulate 
matter regulatory monitoring data between 2001 and 2016, using 322 geographic variables 
(classified as demographic characteristics, land use, physical geography, transportation 
facilities, emissions, vegetation, altitude, and traffic variables).18 The universal kriging model 
was composed of mean component (including summary predictors estimated by partial least 
squares of 322 geographic variables) and variance component (considering spatial correlation, 
spatial variability, and nonspatial variability). These prediction data were linked to the survey 
data on the basis of each participant’s residential address. The median duration of residence 
was 15 years. The level of exposure to particulate matter ≤ 10 µm in diameter (PM10) was 
defined as a five-year average concentration of PM10 prior to the year of enrollment. The level of 
exposure to particulate matter ≤ 2.5 µm in diameter (PM2.5) was defined as a one-year average 
concentration of PM2.5 in 2015 (due to the availability of data from 2015).

Brain cortical thickness and WMHs
All survey centers obtained brain 3D-T1-magnetization-prepared rapid gradient-echo images 
as per a standardized MRI protocol. The FreeSurfer version 6.0 pipeline (http://surfer.nmr.
mgh.harvard.edu/) was used to estimate cortical thicknesses (unit: mm) in the following 
predefined cortical areas: frontal, temporal, parietal, occipital, cingulate, and insular lobes. 
We calculated a global cortical thickness by averaging these six regional cortical thicknesses 
for each participant. Intracranial volume (unit: mm3) was measured using the same method. 
The survey centers in Incheon and Wonju additionally collected T2-weighted fluid-attenuated 
inversion recovery images, from which total, periventricular, and deep WMH volumes (unit: 
mm3) were calculated using an automated method as previously described.19-21

High sensitivity CRP
The level of high sensitivity CRP (hs-CRP, unit: mg/L) was obtained by immunoturbidimetric 
assay. Individuals with a markedly high level of hs-CRP (> 10 mg/L) were excluded from the 
analysis (n = 18 in men; n = 8 in women) in order to rule out the impact of possible acute 
infection at the time of blood sampling.22 Because there was no standard cutoff level of hs-
CRP indicating a high risk of brain cortical atrophy, participants were categorized as those 
with higher and lower than median (0.69 mg/L in men and women combined; 0.69 mg/L in 
men; 0.68 mg/L in women) hs-CRP levels.

Statistical analysis
To investigate whether the associations between PM and brain imaging markers differs by 
the level of hs-CRP, we first created the higher (≥ median) and lower (< median) hs-CRP 
groups out of the entire study population. We then performed linear regression analyses to 
estimate the effects of PM10 (per 10 µg/m3 increment) and PM2.5 (per 1 µg/m3 increment) 
on a global cortical thickness in the entire study population as well as in each of the two 
hs-CRP groups. We also estimated the effects of PM10 (per 10 µg/m3 increment) and PM2.5 
(per 1 µg/m3 increment) on total, periventricular, and deep WMH volumes. To account 
for highly skewed distribution of the WMH data, each of the three WMH volumes was 
dichotomized as higher (≥ median) and lower (< median) values. We performed logistic 
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regression analyses in the entire study population, as well as in each of the two hs-CRP 
groups. Given that chronic systemic inflammation is strongly related to cardiometabolic 
health,23,24 we a priori selected the following covariates: demographics (age, sex, years of 
education), history of cardiometabolic disease (hypertension, diabetes mellitus, and angina 
or myocardial infarction), cardiometabolic risk behaviors (smoking status [never, former, 
or current smoker], alcohol consumption [currently drinking or not], and engagement in 
vigorous exercise [yes or no]), and cardiometabolic risk biomarkers (systolic blood pressure, 
diastolic blood pressure, fasting blood glucose level, and total cholesterol level). Survey year 
and intracranial volume were also adjusted for in line with our previous study.8 Significance 
of the hs-CRP group difference was tested and expressed as p for interaction.25 A significant 
difference between the hs-CRP groups means that the level of hs-CRP is an effect modifier in 
the association between PM and a brain imaging marker. Taking possible sex differences in 
brain imaging markers into account,26 sex-stratified analyses were additionally conducted.

All statistical analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC, USA). 
Two-sided P < 0.05 was set as statistical significance.

Ethics statement
All participants provided written informed consent. The study was approved by the Yonsei 
University Health System Institutional Review Board (approval No. 4-2014-0359).

RESULTS

Gray matter cortical thickness
A total of 874 participants (392 men and 482 women) were included in the analyses of global 
cortical thickness (Table 1). Overall, the mean (standard deviation) value of age was 67.5 (6.4) 
years, and that of MMSE score was 27.3 (2.6). The mean (standard deviation) value of global 
cortical thickness was 2.45 (0.08) mm. Characteristics of the participants by the level of hs-
CRP are shown in Supplementary Table 2. None of the associations of PM10 (β = −0.003; 95% 
confidence interval [CI], −0.014 to 0.008) and PM2.5 (β = 0.002; 95% CI, −0.005 to 0.009) 
with global cortical thickness was statistically significant in the entire study population, as 
well as both in the higher (≥ 0.69 mg/L) and lower (< 0.69 mg/L) hs-CRP groups (Table 2). 
Among men, the higher hs-CRP group had significantly reduced global cortical thicknesses 
associated with PM10 (β = −0.039; 95% CI, −0.063 to −0.016; P for interaction = 0.015) and 
PM2.5 (β = −0.023; 95% CI, −0.040 to −0.006; P for interaction = 0.006). Among women, 
none of the differences in the associations between the higher and lower hs-CRP groups was 
statistically significant.

WMHs
A total of 397 participants (169 men and 228 women) were included in the regression analyses 
of WMH (Table 1). Overall, the mean (standard deviation) value of age was 65.8 (6.1) years, 
and that of MMSE score was 28.0 (1.9). The median (25–75%) value of total WMH volume was 
2,123 (1,239–4,052) mm3. Characteristics of the participants by the level of hs-CRP are shown 
in Supplementary Table 3. A 10 μg/m3 increase in PM10 was significantly associated with 
higher volumes of total WMH (odds ratio [OR], 1.78; 95% CI, 1.07–2.97) and periventricular 
WMH (2.00; 1.20–3.33) (Fig. 1). A 1 μg/m3 increase in PM2.5 was significantly associated with 
the higher (than median) volume of periventricular WMH (OR, 1.66; 95% CI, 1.08–2.56). 
These associations did not significantly differ between the lower and higher hs-CRP groups 
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(Table 3). After stratification by sex, none of the associations of PM10 and PM2.5 with total, 
periventricular, and deep WMH volumes significantly differed between the lower and higher 
hs-CRP groups.
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Table 1. Characteristics of study participants
Variables Overall sample (with cortical thickness data) Subsample with WMH data

Total (N = 874) Men (n = 392) Women (n = 482) Total (N = 397) Men (n = 169) Women (n = 228)
Age, yr 67.5 (6.4) 68.3 (6.7) 66.8 (6.2) 65.8 (6.1) 67.3 (5.8) 64.7 (6.0)
Education level, yr 9.7 (4.3) 10.6 (4.3) 8.9 (4.2) 9.2 (4.3) 10.3 (4.3) 8.5 (4.0)
Smoking, No. (%)

Never smoker 575 (65.8) 106 (27.0) 469 (97.3) 266 (67.0) 45 (26.6) 221 (96.9)
Former smoker 240 (27.5) 231 (58.9) 9 (1.9) 100 (25.2) 96 (56.8) 4 (1.8)
Current smoker 59 (6.8) 55 (14.0) 4 (0.8) 31 (7.8) 28 (16.6) 3 (1.3)

Alcohol consumption, No. (%) 353 (40.4) 228 (58.2) 125 (25.9) 145 (36.5) 94 (55.6) 51 (22.4)
Vigorous exercise, No. (%) 207 (23.7) 116 (29.6) 91 (18.9) 120 (30.2) 62 (36.7) 58 (25.4)
History of hypertension, No. (%) 280 (32.0) 104 (26.5) 176 (36.5) 129 (32.5) 56 (33.1) 73 (32.0)
History of diabetes mellitus, No. (%) 158 (18.1) 82 (20.9) 76 (15.8) 71 (17.9) 37 (21.9) 34 (14.9)
History of angina or myocardial 
infarction, No. (%)

80 (9.2) 35 (8.9) 45 (9.3) 38 (9.6) 19 (11.2) 19 (8.3)

Systolic blood pressure, mmHg 128.6 (14.3) 129.3 (13.3) 128.1 (15.1) 128.6 (13.2) 130.4 (12.1) 127.3 (13.8)
Diastolic blood pressure, mmHg 75.3 (9.1) 75.8 (8.7) 74.8 (9.5) 75.0 (9.4) 75.9 (8.9) 74.3 (9.8)
Fasting blood glucose, mg/dL 99.5 (21.6) 102.2 (21.3) 97.3 (21.6) 98.2 (20.2) 99.3 (21.6) 97.4 (19.0)
Total cholesterol, mg/dL 182.9 (37.0) 176.0 (38.7) 188.4 (34.6) 183.5 (37.6) 176.6 (37.5) 188.7 (36.9)
Survey year, No. (%)

1st (Aug 2014–Mar 2015) 108 (12.4) 44 (11.2) 64 (13.3) 0 (0.0) 0 (0.0) 0 (0.0)
2nd (Apr 2015–Mar 2016) 363 (41.5) 189 (48.2) 174 (36.1) 139 (35.0) 55 (32.5) 84 (36.8)
3rd (Apr 2016–Mar 2017) 403 (46.1) 159 (40.6) 244 (50.6) 258 (65.0) 114 (67.5) 144 (63.2)

Intracranial volume (1,000 mm3) 1,526.5 (169.1) 1,630.2 (147.4) 1,442.2 (135.4) 1,544.1 (171.8) 1,657 (150.6) 1,460.4 (134.8)
PM10 (µg/m3) 50.8 (4.9) 50.7 (4.8) 50.8 (5.0) 50.2 (5.7) 50.4 (5.9) 50.1 (5.6)
PM2.5 (µg/m3) 26.0 (0.7) 25.9 (0.7) 26.0 (0.7) 26.0 (0.6) 26.0 (0.6) 26.0 (0.6)
Hs-CRP, mg/L, median (25%–75%) 0.69 (0.38–1.36)0.69 (0.40–1.36) 0.68 (0.36–1.39) 0.63 (0.36–1.32) 0.65 (0.37–1.38) 0.58 (0.33–1.24)
Brain MRI markers
Global cortical thickness, mm 2.45 (0.08) 2.43 (0.09) 2.46 (0.08)
Total WMH volume, mm3 2,123 (1,239–4,052) 2,699 (1,676–4,647) 1,648 (983–3,203)
Periventricular WMH volume, mm3 1,824 (1,106–3,798) 2,435 (1,463–4,119) 1,465 (912–2,932)
Deep WMH volume, mm3 156 (46–398) 200 (67–445) 135 (33–347)
Values are expressed as mean (standard deviation), unless otherwise is specified. Participants with cortical thickness data included those with WMH data.
WMH = white matter hyperintensity, PM10 = particulate matter 10 µm or less in diameter, PM2.5 = particulate matter 2.5 µm or less in diameter, hs-CRP = high 
sensitivity C-reactive protein.

Table 2. Associations between particulate matter exposures and global cortical thickness, stratified by the level of hs-CRP
Variables Lower (< median) hs-CRP Higher (≥ median) hs-CRP P for interaction

β 95% CI P value β 95% CI P value
Total

PM10 0.002 −0.013, 0.016 0.836 −0.008 −0.024, 0.008 0.355 0.412
PM2.5 0.009 −0.001, 0.019 0.073 −0.005 −0.016, 0.005 0.303 0.046

Men
PM10 0.003 −0.022, 0.027 0.841 −0.039 −0.063, −0.016 0.001 0.015
PM2.5 0.009 −0.007, 0.025 0.267 −0.023 −0.040, −0.006 0.008 0.006

Women
PM10 0.001 −0.018, 0.020 0.942 0.018 −0.004, 0.039 0.118 0.254
PM2.5 0.009 −0.004, 0.022 0.187 0.005 −0.008, 0.018 0.412 0.721

Beta coefficients (per a 10 µg/m3 increment in PM10 or a 1 µg/m3 increment in PM2.5) were estimated from generalized linear models, adjusting for age, sex 
(in the total model only), years of education, smoking status, alcohol consumption, vigorous exercise, hypertension, diabetes mellitus, angina or myocardial 
infarction, systolic blood pressure, diastolic blood pressure, fasting blood glucose level, total cholesterol level, survey year, and intracranial volume.
hs-CRP = high-sensitivity c-reactive protein, CI = confidence interval, PM10 = particulate matter 10 µm or less in diameter, PM2.5 = particulate matter 2.5 µm or 
less in diameter.



DISCUSSION

The present study is the first study to investigate whether the level of hs-CRP modifies the 
effects of particulate matter exposures on global cortical thickness and WMH volumes on 
brain MRI. One of the main findings was that PM10 and PM2.5 exposures were significantly 
associated with a reduced global cortical thickness in men with the higher level of hs-CRP, 
but not in men with the lower (than median) level of hs-CRP. The difference between 
these two hs-CRP groups was statistically significant. Another main finding was that 
particulate matter exposures were significantly associated with higher volumes of total and 
periventricular WMH, with no evidence of effect modification by the level of hs-CRP.

Evidence on the modifying role of chronic systemic inflammation in the neurotoxicity of 
particulate matter is scarce in human studies. A recent epidemiological study demonstrated 
that a high level of long-chain omega-3 polyunsaturated fatty acid (reducing oxidative stress 
and systemic inflammation) attenuated the adverse effect of PM2.5 on white matter volume.11 
While this previous study only included women, our study involved both sexes and did not 
observe significant effect modification by hs-CRP among women. Although the previous 
study and ours cannot be directly compared because a high level of long-chain omega-3 
polyunsaturated fatty acid does not necessarily mean a low level of systemic inflammation, 
the discrepancy is likely to be attributed to different characteristics of study populations 
(e.g., relatively low levels of hs-CRP in Asian populations).27 Regarding the sex difference 
in the effect modification by hs-CRP in our study, it can be argued that smoking status may 
have contributed to the significant effect modification by hs-CRP among men only (because 
97% of women were never smokers). However, in our additional analyses constraint to 
never smokers, we found similar results to the overall analyses (Supplementary Table 4). 
Moreover, the sex difference we observed is supported by animal studies, suggesting that 
less expression of the enzyme paraoxonase 2 (which has anti-inflammatory properties) 
may lead to a greater level of lipid peroxidation and inflammation in response to air 
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Fig. 1. Associations between particulate matter exposures and white matter hyperintensity volumes. Odds ratios 
of having the higher (≥ median) volume of WMH (per a 10 µg/m3 increment in PM10 or a 1 µg/m3 increment in 
PM2.5) were estimated from logistic regression models, adjusting for age, sex, years of education, smoking 
status, alcohol consumption, vigorous exercise, hypertension, diabetes mellitus, angina or myocardial infarction, 
systolic blood pressure, diastolic blood pressure, fasting blood glucose level, total cholesterol level, survey year, 
and intracranial volume. 
WMH = white matter hyperintensities, PM10 = particulate matter 10 µm or less in diameter, PM2.5 = particulate 
matter 2.5 µm or less in diameter.



pollution exposures in the male (versus female) brain.28,29 The possible susceptibility to the 
neurotoxicity of particulate matter in men warrants further studies in humans and animals.

This study demonstrated that particulate matter exposures were associated with gray matter 
atrophy in men with the higher level of hs-CRP (a marker of systemic inflammation), but 
not in those with the lower level. In vitro and in vivo studies have indicated that systemic 
inflammation can deteriorate blood-brain barrier integrity,30,31 which can be damaged by 
particulate matter exposures as well.32 Given that blood-brain barrier disruption contributes 
to neurodegeneration,33 our findings indicate that particulate matter exposures may induce 
gray matter neurodegeneration under systemic inflammatory conditions. It is also reasonable 
to suggest that chronic systemic inflammation may increase susceptibility to gray matter 
atrophy attributable to particulate matter exposures, particularly in men.

The relationship between exposure to particulate matter and WMH has been investigated 
in only a few studies. A study including the elderly without dementia or stroke showed no 

7/11

Particulate Matter, Chronic Inflammation, and the Brain

https://doi.org/10.3346/jkms.2023.38.e159https://jkms.org

Table 3. Associations between particulate matter exposures and white matter hyperintensity volumes, stratified 
by the level of hs-CRP
Variables Lower (< median) hs-CRP,  

OR (95% CI)
Higher (≥ median) hs-CRP,  

OR (95% CI)
P for interaction

Total
Total WMH

PM10 2.22 (0.98–5.02) 1.54 (0.74–3.22) 0.516
PM2.5 1.48 (0.74–2.97) 1.49 (0.82–2.72) 0.989

Periventricular WMH
PM10 2.77 (1.22–6.31) 1.64 (0.79–3.4) 0.351
PM2.5 1.74 (0.86–3.54) 1.71 (0.94–3.13) 0.969

Deep WMH
PM10 0.77 (0.38–1.55) 1.05 (0.55–2.02) 0.522
PM2.5 1.23 (0.67–2.24) 0.96 (0.55–1.65) 0.545

Men
Total WMH

PM10 1.99 (0.47–8.39) 1.26 (0.45–3.57) 0.616
PM2.5 1.42 (0.4–5.01) 1.29 (0.49–3.45) 0.908

Periventricular WMH
PM10 1.98 (0.43–9.13) 1.14 (0.41–3.19) 0.558
PM2.5 1.18 (0.31–4.47) 1.21 (0.47–3.16) 0.971

Deep WMH
PM10 2.74 (0.74–10.15) 0.73 (0.28–1.88) 0.108
PM2.5 1.89 (0.6–5.93) 1 (0.41–2.42) 0.389

Women
Total WMH

PM10 1.51 (0.52–4.39) 0.99 (0.3–3.21) 0.599
PM2.5 1.72 (0.71–4.19) 1.95 (0.8–4.77) 0.844

Periventricular WMH
PM10 2.26 (0.77–6.68) 1.1 (0.34–3.58) 0.378
PM2.5 1.76 (0.72–4.29) 2.05 (0.83–5.05) 0.812

Deep WMH
PM10 0.3 (0.1–0.88) 1.03 (0.39–2.7) 0.095
PM2.5 0.88 (0.39–2.02) 0.89 (0.44–1.82) 0.989

ORs of having the higher (≥ median) volume of WMH (per a 10 µg/m3 increment in PM10 or a 1 µg/m3 increment 
in PM2.5) were estimated from logistic regression models, adjusting for age, sex, years of education, smoking 
status, alcohol consumption, vigorous exercise, hypertension, diabetes mellitus, angina or myocardial infarction, 
systolic blood pressure, diastolic blood pressure, fasting blood glucose level, total cholesterol level, survey year, 
and intracranial volume.
Hs-CRP = high-sensitivity c-reactive protein, OR = odds ratio, CI = confidence interval, WMH = white matter 
hyperintensity, PM10 = particulate matter 10 µm or less in diameter, PM2.5 = particulate matter 2.5 µm or less in 
diameter.



significant association between PM2.5 and a WMH volume.3 A study of individuals with mild 
cognitive impairment or early dementia found that an increase in PM2.5 was associated with 
a lower WMH volume.4 A recent analysis of UK Biobank demonstrated that the association 
between PM2.5 and a WMH volume was statistically significant in individuals participating in 
vigorous physical activity, but not in the entire cohort.34 The present study adds more granular 
data to the existing evidence by distinguishing periventricular WMH and deep (subcortical) 
WMH, which may involve different cerebrovascular pathologies. Studies have shown that 
periventricular WMH are related to hemodynamic changes (e.g., reduced cerebral blood flow 
and cerebrovascular reactivity),35,36 whereas deep WMH are indicative of long-term ischemic 
lesions.37 A study also exhibited divergent predictors for periventricular WMH (age and 
arterial pressure) and deep WMH (body mass index).38 In the present study, particulate matter 
exposures were positively associated with WMH in the periventricular area, but not in the deep 
area. This regional difference may be the clue to the absence of effect modification by chronic 
systemic inflammation in the association between particulate matter and WMH. Small-
vessel disease is categorized as cerebral amyloid angiopathy and hypertensive arteriopathy. 
Evidence suggests that cerebral amyloid angiopathy (in the cortical region) is related to 
systemic inflammation, whereas hypertensive arteriopathy (frequently in the periventricular 
area) is more strongly associated with vascular inflammation than systemic inflammation.39 
Although we did not address cerebral amyloid angiopathy and vascular inflammation, our 
findings at least imply that particulate matter exposures, regardless of the status of systemic 
inflammation, might accelerate vascular aging and induce hemodynamic changes or 
hypertensive arteriopathy in the brain vasculature. Further, considering that clinical studies 
have shown that periventricular WMH (but not deep WMH) is associated with reduced 
executive function and speed processing,40-42 periventricular WMH might partly explain 
cognitive impairment associated with particulate matter exposures.

There are several limitations to be acknowledged. First, because hs-CRP is a non-specific 
marker of inflammation, the level of hs-CRP might not necessarily reflect the chronic 
status of systemic inflammation. To address this issue, individuals with hs-CRP > 10 mg/L 
(indicating acute infection or inflammation) were excluded. Second, the prediction data 
of PM2.5 concentrations used in the present study was one-year average concentrations of 
PM2.5 in 2015, due to the unavailability of nationwide air quality monitoring data before 
2015. This means that we considered variation in PM2.5 concentrations only by geographical 
location for one year while disregarding temporal variations in PM2.5 concentrations. 
Third, the sex-stratified analyses for WMH yielded null findings possibly due to insufficient 
statistical power. Thus, it may be premature to conclude that chronic inflammation does 
not modify the association between particulate matter exposures and WMH among men 
and women, respectively. Future studies with larger sample size are required. Last, there 
could be unmeasured confounders. For example, this study did not consider apolipoprotein 
ε genotype, which is closely linked to the risk of the development and progression of 
Alzheimer’s disease.43 In healthy individuals, the apolipoprotein ε4 allele has been reported 
to affect brain morphology, but some studies did not observe this linkage.44

In summary, the present study showed that men with a high level of chronic inflammation 
exhibited brain cortical thinning associated with particulate matter exposures. This suggests 
that men with a high level of chronic inflammation may be susceptible to brain structural 
changes attributable to particulate matter exposures. Particulate matter exposures were also 
associated with a greater volume of WMH, but we found no evidence of effect modification by 
the level of chronic inflammation.
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