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ABSTRACT

Intestinal microorganisms interact with various immune cells and are involved in gut 
homeostasis and immune regulation. Although many studies have discussed the roles of 
the microorganisms themselves, interest in the effector function of their metabolites is 
increasing. The metabolic processes of these molecules provide important clues to the 
existence and function of gut microbes. The interrelationship between metabolites and T 
lymphocytes in particular plays a significant role in adaptive immune functions. Our current 
review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and 
polyamines. We collated the findings of several studies on the transformation and production 
of these metabolites by gut microbes and explained their immunological roles. Specifically, 
we summarized the reports on changes in mucosal immune homeostasis represented by the 
Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was 
also analyzed through latest studies. Thus, this review highlights microbial metabolites as 
the hidden treasure having potential diagnostic markers and therapeutic targets through a 
comprehensive understanding of the gut-immune interaction.
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INTRODUCTION

Many microorganisms inhabit the intestine, and their critical role in maintaining immune 
homeostasis is well established. Microbial dysbiosis and associated alterations in 
microbiome-derived metabolites are often associated with dysregulated immune responses 
(1). Microbial metabolites are mainly synthesized or transformed by a complex network 
of interactions between dietary components and the host microbiota. The nutritional 
components consumed largely shape the intestinal niche and regulate the immune response 
via various microbial metabolites. Hence, improving current understanding regarding the 
synthesis of metabolites and their effects on the adaptive immune compartment, especially 
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on the function and differentiation of T cells (known to be widely distributed in the intestinal 
tract), can be highly beneficial for developing better therapeutics. In this review, we 
specifically discussed 3 categories of metabolites: 1) those produced by the gut microbiota 
from dietary components, 2) those produced by the host and modified by the gut bacteria, 
and 3) those synthesized de novo by the gut bacteria. We analyzed the latest research trends by 
selecting short-chain fatty acids (SCFAs), bile acids (BAs), and polyamines as representative 
metabolites of each group. We reviewed the representative metabolites and described the 
role of the microbiota in their synthesis. We then discussed the roles of these molecules in 
immune regulation, focusing on the function of the Tregs/Th17 cells. Finally, we summarized 
our perspective along with known facts regarding how these metabolites promote diseases by 
triggering changes such as that in the Tregs/Th17 balance. A comprehensive understanding of 
the gut bacteria-immune connection through bacterial derivatives is critical for finding novel 
drug targets and therapeutics against immunological disorders.

GUT MICROBIOTA-DERIVED METABOLITES

SCFAs
SCFAs are fatty acids with fewer than 6 carbon atoms. They are mainly produced through 
bacterial fermentation of dietary fibers in the colon and primarily constitute acetate, 
propionate, and butyrate. The conversion of dietary fibers to SCFAs involves several 
reactions mediated by various microbial enzymes (Fig. 1). Hence, the abundance of SCFAs 
is highly influenced by the host diet and gut microbiota composition (2). A growing body 
of evidence shows that SCFAs play an important role in health and onset of disease (3). 
Although production and absorption of SCFAs mainly proceed in gut, their systemic 
circulation makes it not only important to maintain intestinal homeostasis but also regulate 
various physiological processes of the host. These include energy expenditure, adipocyte 
metabolism, and especially immunological homeostasis (4-6). SCFAs regulate various 
immunological diseases, such as allergies, colitis, type 1 diabetes, cirrhosis, pathological 
bone loss, and even preeclampsia, by enhancing Tregs function, regulating the Tregs/Th17 
balance, and inducing the migration of Tregs into pathological sites (7-11).

Role of the microbiota in SCFA metabolism
Anaerobic bacteria in colon mediate starch to SCFA conversion through specific enzymes, 
making them resistant to digestion and absorption in the small intestine (12). Acetate, 
a major SCFA, is produced by most enteric bacteria (including Akkermansia muciniphila, 
Bacteroides spp., Bifidobacterium spp., Prevotella spp., Ruminococcus spp., Blautia hydrogenotrophica, 
Clostridium spp., and Streptococcus spp.) from pyruvate using acetyl-CoA. The process takes 
place via the Wood-Ljungdahl pathway, which involves reduction of CO2 to formate or CO 
(13). Propionate is synthesized through 3 different pathways: the succinate, acrylate, and 
propanediol pathways, which require distinct microbes. The succinate pathway is activated 
by Bacteroides spp., Phascolarctobacterium succinatutens, Dialister spp., Veillonella spp., Megasphaera 
elsdenii, and Coprococcus catus. The propanediol pathway involves Salmonella spp., Roseburia 
inulinivorans, and Ruminococcus obeum (14). The synthesis of butyrate involves the fusion of 2 
molecules of acetyl-CoA, followed by reduction to butyryl-CoA, which is finally converted 
to butyrate via 2 different pathways mediated by different types of gut microbiota: 1) the 
phosphotransacetylase/butyrate kinase route utilized by Coprococcus comes and Coprococcus 
eutactus, and 2) the butyryl-CoA:acetate CoA-transferase route utilized by Anaerostipes spp., C. 
catus, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii, and Roseburia spp. (2).
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BA metabolites
BA, a component of bile, produced by hepatocytes through the oxidation of cholesterol in 
the liver, acts as a detergent and supports the digestion of lipid components from food in 
the intestine (15). In humans, BAs are categorized into 2 groups: primary and secondary 
(Fig. 1). Primary BAs consist of cholic acid (CA) and chenodeoxycholic acid (CDCA). In the 
classical pathway, 7α-hydroxylase (CYP7A1) is involved in production of primary BA, while in 
the alternative pathway, 27-hydroxylase (CYP27A1) takes part in producing primary BA from 
cholesterol (16). Mice produce α-muricholic acid (MCA) and β-MCA—primary BAs exclusive to 
them— from CDCA and ursodeoxycholic acid (UDCA) using the CYP2C70 (17). Primary BAs are 
conjugated with the amino acid glycine or taurine in the liver by amino acid N-acetyltransferase, 
and the liver secretes approximately 200−600 mg BAs per day in humans (18). The secreted BAs 
are stored in the gallbladder and passed through the duodenum after meals. Approximately 
95% of the secreted BAs are reabsorbed in the terminal ileum and re-enter the liver via the 
enterohepatic circulation. About 15% of the conjugated BAs not reabsorbed in the terminal 
ileum enter the colon, where they are subjected to microbiota-mediated deconjugation and 
biotransformation into secondary BAs (19). This “gateway reaction” is carried out by bile 
salt hydrolase produced by the gut bacteria (20). Deconjugated CAs and CDCAs are further 
transformed into secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), 
respectively, by 7α-dehydroxylase. These BAs are involved in various physiological and 
pathological reactions, such as metabolism, inflammation, and immunity.

Role of the microbiota in BA metabolism
Microbiota plays a pivotal role in the conversion of primary BAs to secondary BAs in 
intestine. These secondary BAs recirculate to liver and regulate the synthesis of primary BAs 
by inhibiting transcription of enzymes like CYP7A1, CYP8B1 (21,22). Although deconjugated 
BAs, mainly DCA, are considered toxic to some susceptible microbiota (as they can disrupt 
the bacterial membrane), certain microbes are resistant to BA toxicity and are involved 
in their metabolism (20). As mentioned, bile salt hydrolase, which deconjugates primary 
BAs, is produced by bacteria, including Lactobacillus, Bifidobacterium, Enterococcus, Clostridium 
spp., and Bacteroides spp. (20). The subsequent BA metabolism is also mediated mainly 
by the gut microbiota. For instance, the oxidation and epimerization of hydroxyl groups 
(C3, C7, and C12) along with 7α/7β-dehydroxylation by the gut microbiota are major steps 
in BA metabolism. 7α- and 7β-hydroxysteroid dehydrogenases (7α/β-HSDHs) are the key 
enzymes involved in BA epimerization, which decreases the toxicity of CDCA. Clostridium 
absonum has both 7α- and 7β-HSDHs and converts CDCA to UDCA (23). Dehydroxylation of 
primary BA by 7α/7β-dehydroxylase is an essential step in the production of secondary BA. 
In Clostridium scindens, the BA-inducible operon contains 8 genes involved in 7α-dehydroxylase 
synthesis (24). 3α-dehydrogenation mediated by 3α-HSDH is an important step in the 
7α-hydroxylation pathway. Clostridium perfringens, Peptostreptococcus productus, and Eggerthella lenta 
are typical bacteria producing 3α-HSDH (25). Furthermore, the Actinobacteria and Firmicutes 
phyla enable LCA to 3-oxoLCA conversion via the action of 3α-HSDH (26). 3-oxoLCA can 
be further converted to isoalloLCA by the Bacteroidetes spp. (27). Multiple microorganisms 
act synergistically to generate BA metabolites, and bio-transformed BAs influence the 
gut bacterial pool. For example, Aguirre et al. (28) demonstrated that 7α-dehydroxylated 
secondary BAs inhibit Clostridium difficile and showed possibility of biomarkers for C. difficile-
resistant bowel environment. This complex relationship between the microbiota and BAs 
shapes the homeostatic balance in gut microenvironment (29).
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Polyamines
Polyamines are cationic aliphatic amines that are multifunctional and ubiquitous, present 
in eukaryotic as well as prokaryotic organisms. Owing to their ionic characteristics, they 
interact with nucleic acids, ATP, acidic phospholipids, and specific types of proteins (30). 
Putrescine, spermidine, and spermine are the 3 major polyamines produced by mammalian 
cells. Polyamines play a crucial role in many fundamental biological functions, such as gene 
regulation, stress resistance, cell growth, survival, proliferation, and differentiation in health 
and disease (31-33). Intracellular polyamine levels are tightly regulated by various biosynthetic 
and salvage mechanisms (30). Putrescine can be synthesized from ornithine via ornithine 
decarboxylase (ODC) or alternatively from arginine via arginine decarboxylase to produce 
the intermediate agmatine, which is then converted to putrescine. Putrescine is converted 
into higher polyamines, such as spermidine and spermine, which are organic compounds 
composed of repeating amino groups, through a process called aminopropylation. 
The addition of aminopropyl groups to putrescine is catalyzed by spermidine synthase 
and spermine synthase in the presence of the aminopropyl donor decarboxylated 
S-adenosylmethionine (30,34).

Role of the microbiota in polyamine metabolism
Gut microbiota is the primary contributor of polyamine production in the intestine (35). 
This is a complicated process involving amino acid precursors as well as other intermediates, 
processed via various biosynthetic and degradation mechanisms along with specific transport 
systems (36). Sugiyama et al. (37) reported the role of dominant human-gut bacteria in 
producing polyamine from novel polyamine biosynthetic proteins and transporters. Another 
study has identified arginine decarboxylation as the dominant pathway for polyamine 
biosynthesis among common human gut microbiota species (38). Enterococcus faecalis, 
a prominent gut microorganism, metabolizes agmatine to putrescine via the agmatine 
deaminase pathway and has developed pH resistance to colonize the intestinal niche (39). 
Numerous bacteria can synthesize spermidine despite lacking orthologs of the polyamine 
biosynthetic enzymes, i.e., S-adenosyl-methionine decarboxylase and spermidine synthase. 
One example is Campylobacter jejuni, a human gut microbe that synthesizes spermidine 
via an alternative carboxyspermidine pathway (40). An isotope-labeling study suggested 
that multiple bacterial species produce putrescine through various cellular intermediates 
and enzymatic pathways (41). A novel hybrid system that monitors putrescine production 
demonstrated synergism between Bifidobacterium spp., E. faecalis, and Escherichia coli, both 
in vitro and in vivo (42). The synergistic supplementation of arginine with Bifidobacterium 
animalis subsp. lactis LKM512 in mice increased polyamine putrescine levels. Moreover, it 
enhanced the expression of polyamine biosynthetic genes, such as those encoding arginine 
decarboxylase, agmatinase, agmatine deiminase, and N-carbamoyl-putrescine amidase (43). 
Another study also reported that the administration of LKM512 in Crj:CD-1 mice increased 
longevity by augmenting intestinal polyamine levels (44). Further, B. animalis subsp. lactis 
and arginine significantly increased polyamine concentration in the feces and serum (45). 
Metagenomic analysis of ovariectomized mice by Chevalier et al. (46) suggested that exposure 
to warmth increased the abundance of polyamine-producing genera, A. muciniphila, Bacteroides, 
and Alitsipes, and reduced the expansion of polyamine-degrading genera, Muribaculaceae and 
Lachnospirae. This is correlated with higher polyamine levels in the feces and cecum. A recent 
study involving the transplantation of Parabacteroides distasonis to mice reversed triptolide-
induced testicular dysfunction by increasing spermine and putrescine levels in the testis and 
cecum through the upregulation of HSP70s (47). Dietary supplementation with guar gum 
enhances the proliferation of Bifidobacteria, and its associated synthesis of putrescine and 
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spermidine in the cecum (48). Similarly, pectin-fed gnotobiotic rats produce putrescine and 
spermidine, mediated by Bacteroides thetaiotaomicron and Fusobacterium varium (49). In addition, 
research has shown that changes in polyamine levels, such as increased spermidine, can 
also impact the composition and function of the gut microbiome in obese mice. Spermidine 
exerts a microbiota-dependent anti-obesity effect through expanding Lachnospiraceae 
NK4A136, resulting in improved gut barrier function (50).

Effect of metabolites on immune regulation
SCFAs are involved in the regulation of various immune cells (Fig. 2). At mucosal sites, 
microbe-associated molecular patterns are sensed and recognized by pattern recognition 
receptors such as TLRs on innate immune cells. SCFAs promote the production of pro-
inflammatory cytokines, including IL-1β, IL-6, and TNF-α, by activating NF-κB as part of 
the TLR response in epithelial cells (51). In addition, a recent study showed that butyrate 
enhances the antimicrobial function of macrophages by inhibiting histone deacetylase 3 
(HDAC3) activity, which modulates the metabolic states of macrophages and increases innate 
lymphoid cell 3 (ILC3)-mediated host defense as well as antimicrobial peptide production 
(52). In adaptive immunity, although SCFAs were initially recognized as immune-suppressive 
molecules that promote Tregs generation (53-55), the immunomodulatory properties of 
SCFAs are not only skewed toward tolerance but also toward boosting immunity against 
various types of microbes. This includes extracellular as well as intracellular bacteria, viruses, 
parasites and fungal infection (56-58). SCFAs have an impact on the development and 
function of both CD4+ and CD8+ T lymphocytes, however the processes differ significantly. 
In vitro treatment of CTLs and chimeric antigen receptor T cells with butyrate elevated the 
production of effector molecules, such as CD25, IFN-γ, and TNF-α together. Moreover, 
it significantly enhanced their anti-tumor activity in syngeneic murine melanoma and 
pancreatic cancer models by increasing mTOR and inhibiting class I HDAC activities (59). 
Furthermore, SCFAs upregulate IL-22 production in ILCs via G-protein coupled receptor 41 
(GPR41) and inhibit HDACs, which mediate the upregulation of aryl hydrocarbon receptor 
and hypoxia-inducible factor-1α (HIF-1α). Finally, SCFA-mediated upregulation of HIF-1α and 
changes in the IL22 promoter locus enhance IL-22 production through ILCs and CD4+ T cells 
(60). Butyrate and propionate are sufficient to dampen antibody production by modulating 
essential steps in the intrinsic function of B cells. These include class-switch recombination, 
somatic hypermutation, and plasma cell differentiation by inhibiting HDAC3, indicating the 
potential immunomodulatory role of SCFAs in B cell function. However, further studies are 
necessary to elucidate their mode of action (61).

BAs modulate the host immune system via multiple mechanisms (Fig. 2). Firstly, 
their toxicity directly affects cellular and microbial viability (62), depending on their 
concentration, hydrophobicity, and conjugation status (63,64). Notably, taurine-conjugated 
BA is more hydrophilic and less toxic than glycine-conjugated BA (65). Secondly, nuclear 
and transmembrane BA receptors are the principal mediators of immune regulation by 
BAs (66). Although the nuclear farnesoid X receptor (FXR) was initially considered as an 
orphan receptor, a line of studies has shown it to be specific for BAs, including CDCA, 
CA, LCA, and DCA, for the modulation of many biological functions (67-69). FXR is also 
distributed across diverse tissues, such as the liver, intestine, and adrenal glands, and is 
known to be highly expressed in innate immune cells to regulate inflammation in murine 
colitis (70). Pregnane X receptor (PXR) is another orphan nuclear BA receptor for catatoxic 
compounds (71). PXR is activated by secondary BAs, such as LCA and DCA, to act as a 
cellular LCA sensor for the homeostatic concentration of toxic BAs at the transcriptional 
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level (72). G protein-coupled bile acid receptor 1 (GPBAR1), also known as Takeda G-protein 
receptor 5 (TGR5), is a representative surface BA receptor expressed in intestine, liver, 
gallbladder, and adipose tissue (73), involved in immune regulation (74), BA homeostasis 
(75), energy expenditure, and glucose metabolism (76). Sphingosine-1-phosphate receptor 
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Figure 2. Metabolite-mediated expansion of Treg and Th17 cells in the intestinal niche is depicted. SCFAs, converted from dietary fiber, pass from gut epithelium to 
laminal propria through passive diffusion and via transporters (SLC16a1, SLC5a8). Naïve T cells capture SCFAs through GPR43, which mediates inhibition of HDAC6/9 
and the subsequent acetylation of the foxp3 promoter region, finally differentiating into Tregs. SCFAs also induce Th17 cell differentiation in inflammatory conditions 
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and finally induces RORγt expression. IsoalloLCA promotes production of mitoROS and induces the acetylation of CNS3 region of FOXP3 promoter, resulting in the 
upregulation of FOXP3 transcription. IsoDCA acts on FXR on DC to repress pro-inflammatory activity and upregulate anti-inflammatory transcription factors like 
SOCS1 and IkBα which increases Tregs differentiation. The 3-oxoLCA directly interacts with RORγt to interfere in its transcriptional activity, resulting in the inhibition 
of Th17 cell differentiation. The polyamine spermidine directs the autophagy-mediated differentiation of Treg cells, thereby establishing a regulatory environment in 
the gut. Spermidine induces IDO1-dependent immunosuppressive phenotype in DCs and thus can promote the expansion of Treg cells. Spermine exhibits an anti-
inflammatory effect by means of macrophage-mediated IL-10 production and suppression of IL-12 and IFN-γ production. 
SLC16a1, monocarboxylate transporter 1; SLC5a8, sodium-coupled monocarboxylate transporter 1; RORγt, RAR-related orphan receptor gamma; SOCS1, 
suppressor of cytokine signaling 1; CNS3, conserved non-coding sequence 3; Atg5, autophagy protein 5; IDO1, indoleamine 2,3-dioxygenase 1.



2, a transmembrane receptor for conjugated BA, is a well-known BA receptor involved 
in various biological functions (77). BAs directly modulate immune response via these 
receptors (70). Conventionally, FXR is mainly expressed in the liver as well as intestine 
and is known to regulate the metabolism of BAs, glucose, and lipids. Recently, FXR has 
been shown to be expressed in various cell types and implicated in the progress of several 
inflammatory diseases including inflammatory bowel disease (IBD) (78,79). Gadaleta et al. 
(80) reported that the FXR agonist, INT-747, alleviates symptoms of dextran sodium sulfate 
(DSS)-induced colitis (weight loss, rectal bleeding, and change in colon length) and protects 
against DSS-induced intestinal barrier permeability in mouse. Moreover, treatment with 
INT-747 significantly reduced the production of IFN-γ, IL-17, and TNF-α by human PBMCs 
and lamina propria mononuclear cells, stimulated by LPS and antibodies (anti-CD2, anti-
CD28) respectively, from patients with IBD. In rodent hepatitis model, Mencarelli et al. (81) 
demonstrated that FXR acts directly on NKT cells in the liver and reduces production of 
osteopontin, an immunoregulatory cytokine, resulting in the attenuation of liver injury by 
hepatitis. GPBAR1 responds to various BAs, irrespective of the conjugation status, but mainly 
binds to deconjugated secondary BA. GPBAR1 is expressed in most tissues, including the 
intestine, liver, and biliary tract. Analogous to other BA receptors, GPBAR1 is also observed 
in various immune cells, such as monocytes, macrophages, DCs, and NK cells (70,81). Tauro-
lithocholic acid (TLCA), a GPBAR1 agonist, promotes macrophage activation to encourage 
biliary epithelial cell proliferation following a liver injury (82). Additionally, macrophages 
can be reprogrammed from pro-inflammatory to anti-inflammatory phenotypes by TLCA 
(83). GPBAR1 also functions as a gatekeeper for liver NKT cell activation to suppress the 
differentiation of NKT cell into a type I NKT cell in murine immune-mediated hepatitis (84). 
Furthermore, GPBAR1 is critical for maintaining the integrity of intestinal barriers together 
with the suppression of M1-like macrophage and enhancement of M2-like macrophage in 
murine colitis (85,86). DCA is known to attenuate NF-κB-related pro-inflammatory cytokines 
in dendritic cells (DCs) to mitigate murine autoimmune uveitis (87). In the hepatic system, 
BAs inhibit LPS-induced cytokine expression in Kupffer cells via GPBAR1-cAMP dependent 
pathways, indicating their protective role in murine cholestatic liver disease (88). Recent 
studies have elucidated the pivotal roles of BAs in the development and function of T 
cells. BAs, specifically CDCA, DCA, and α-MCA, inhibit T-cell activation by perturbing the 
intracellular calcium concentration, eventually leading to deactivation of the NFAT signaling 
pathway in murine hepatitis B virus infection (89). Similarly, LCA inhibits Th1 cell activation 
via vitamin D receptor (VDR) signaling (90). Oral supplementation of BAs ameliorated IL-23-
mediated psoriasiform dermatitis by inhibiting IL-17A production by T cells and decreasing 
CCL20 dependent chemo-trafficking of T cells in skin lesions (91). As BAs are directly 
secreted into the intestinal lumen, they show profound effects on the mucosal immune 
system. Recent studies have observed that BA metabolites produced by specific microbiota 
are involved in mucosal immunity via modulation of the Tregs/Th17 balance (26,92-94).

Polyamines play a critical role in bacterial pathogenicity and biofilm formation (95). 
Batrachochytrium dendrobatidis, a pathogenic fungus that causes chytridiomycosis, uses 
spermidine and other polyamines to evade host immune surveillance (96). A recent study 
showed that polyamines facilitate the cellular attachment of coronaviruses and aid in viral 
replication, which is curbed upon the administration of DFMO, a polyamine synthesis 
inhibitor (97). Besides their role in microbial pathogenicity, polyamines also exhibit versatile 
roles in the activation of the immune response (Fig. 2). ODC in macrophages tempered 
antimicrobial M1 macrophage responses during Helicobacter pylori and Citrobacter rodentium 
infections in mice (98). Spermidine treatment improved the CD8+ T cell response of aged 
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mice to influenza vaccination and infection by mediating autophagy (99). The administration 
of multi-strain probiotics to dogs with IBD and colonic polyposis resulted in potential 
anti-proliferative and anti-inflammatory effects, accompanied by an increase in putrescine, 
spermine, and ODC levels (100). In the central nervous system (CNS), ODC expressing 
neurons play a key role in the recruitment of immune cells to the CNS (101). The addition of 
spermine to LPS-stimulated human PBMCs resulted in post-transcriptional and polyamine 
oxidase-independent suppression of the synthesis of pro-inflammatory cytokines TNF-α, 
IL-1, IL-6, MIP-1α, and MIP-1β (102). Spermine supplementation alleviated the inflammatory 
response by inducing IgM and anti-inflammatory cytokines (IL-10, TGF-β) but reducing pro-
inflammatory cytokines (TNF-α, IL-1β, and IFN-γ) in piglets (103). Spermine administration 
also protected mice against the development of carrageenan-induced acute edema (102) 
and lethal sepsis by attenuating HMGB1-induced inflammatory markers (104). Spermidine 
supplementation established metabolic dormancy in IFN-DCs and reduced the production of 
pro-inflammatory cytokines in vitro and in vivo. The anti-inflammatory effects of spermidine 
are mediated by FOXO3 in DCs (105). In macrophages, the polyamine-eIF5A-hypusine axis 
controls OXPHOS-dependent alternative activation by modulating mitochondrial oxidative 
phosphorylation but not aerobic glycolysis-dependent classical activation (106). Spermidine-
treated RAW 267.4 cells, belonging to a well-known macrophage cell line, decrease the 
production of  TNF-α and IL-1β. The anti-inflammatory effects of spermidine were confirmed 
by the significant decrease in inflammation-associated migration of neutrophils and 
macrophages in zebrafish larvae (107). Furthermore, spermidine reverses B cell senescence 
caused by aging. B cells from aged mice exhibit loss of the hypusinated EIF5A-TFEB-autophagy 
axis due to reduced spermidine levels, which can be restored by exogenous supplementation 
(108). Thus, polyamines have versatile roles in the immune system in health and disease.

Role of metabolites in Tregs/Th17 cell-mediated immune regulation
The reciprocal regulation between Tregs and Th17 cells is crucial for maintaining host 
immune homeostasis, and this regulation is achieved through microbial metabolite-immune 
interaction (109). In colonic lumen, SCFAs are mainly transported into the lamina propria 
through passive diffusion or transporters, such as sodium-coupled monocarboxylate 
transporter 1 and monocarboxylate transporter 1. These are expressed mainly in the apical 
and basolateral membranes of colonocytes (110,111). In lamina propria, the SCFAs interact 
with their receptors, including GPR41, GPR43, and GPR109A (112). Although GRP41 and 
GPR43 are activated by all SCFAs, GPR109A is selectively activated by butyrate (113). SCFAs 
are expressed in various tissues and cell types, including adipose tissue, intestinal epithelial 
cells, and immune cells, indicating their immune-modulatory roles (114). Although there 
is still no detailed molecular mechanism of their immune-modulatory function, a line 
of studies has reported that SCFAs can modulate colonic Treg cells via GPR43, which 
mediates the inhibition of HDACs. This in turn loosens the intronic CNS region of the 
Foxp3 locus leading to the upregulation of Foxp3 expression and Tregs differentiation in the 
colon (53-55). Furthermore, we have recently observed that probiotics-derived propionate 
in gut heightens not only the proportion but also effector function of Tregs during skin 
allergies (115). The physiological roles of SCFAs as HDAC inhibitors were demonstrated by 
supplementing the diet of germ-free mice with acetate, butyrate, and propionate, which 
increased histone acetylation leading to transcriptome changes in various tissues (116). At 
molecular level, the potential mechanism by which SCFAs inhibit HDAC activity involves 
competitive inhibition of the substrate from binding to the catalytic site of HDACs (117). 
A pioneering study regarding the effect of SCFAs on the polarization of CD4+ T cells has 
demonstrated that SCFAs affect the differentiation of not only Tregs but also Th17 cells 
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(118). Interestingly, SCFAs do not act as Tregs cell inducers in certain Th polarization 
culture conditions with distinct cytokine milieu, but boost the polarization of CD4+ T cells, 
especially into Th1/17 cells (118). Cancer patients undergoing anti-CTLA4 treatments showed 
a correlation between the worst clinical outcomes and high blood butyrate levels and Tregs 
cell proportion, in which butyrate indirectly dampens T cell-mediated anti-tumor immunity 
by inhibiting the anti-CTLA4-mediated upregulation of CD80/86 on DCs (119). Furthermore, 
HDAC inhibition by SCFAs leads to the generation of Th1, Th17, and IL-10-producing T cells 
through the acetylation of the p70 S6 kinase and phosphorylation of rS6, which is a crucial 
component of the mTOR pathway. In summary, SCFAs modulate T cell homeostasis by 
balancing effector and Tregs, depending on the immunological milieu.

Several recent studies have shown specific effects of BA metabolites on Tregs differentiation 
(27,92-94). IsoalloLCA increases the differentiation of Tregs through the production of 
mitochondrial ROS (mitoROS), which leads to increased expression of FOXP3 and Tregs 
differentiation independent of the microbiome composition (93). At the molecular level, 
isoalloLCA activates the nuclear hormone receptor NR4A1 to facilitate a permissive chromatin 
structure in the promoter region of the transcription factor FOXP3 (27). Together with 
isoalloLCA, isoDCA after microbial epimerization diminishes immunostimulatory properties 
of DCs via FXR. This promotes Foxp3 induction and Tregs differentiation in CNS1-dependent 
manner, indicating isoDCA-induced extrathymic differentiation of RAR-related orphan 
receptor gamma (RORγt)+ Tregs cell (94). The 3-oxoLCA directly interacts with RORγt, which is 
a key Th17 cell-promoting transcription factor, to inhibit Th17 cell differentiation. Treatment of 
3-oxoLCA ameliorated the severity of murine acute enteritis mouse model (93).

A recent study showed that polyamine metabolism is a central determinant in the regulation 
of the helper T cell differentiation. T cell-specific depletion of ODC or deoxyhypusine 
hydroxylase promotes widespread epigenetic remodeling driven by alterations in 
histone acetylation and a re-wired tricarboxylic acid cycle. This leads to severe intestinal 
inflammation, implicating polyamine metabolism in the maintenance of Th lineage fidelity 
(120). Furthermore, polyamine metabolism is a decisive factor in Th17 pathogenicity, which 
is associated with arginine and downstream polyamine metabolism. Briefly, chemical and 
genetic perturbation of polyamine metabolism induces the transcriptome/epigenome of Th17 
cell to move toward a Treg-like state, so as to inhibit Th17 but promote Treg differentiation 
(121). Along with pro-inflammatory function, polyamines can evoke an immune regulatory 
environment. Polyamines trigger an IDO1-dependent immunosuppressive property in DCs by 
activating IDO1-phosphorylating Src kinase (122). Spermidine potentiates the differentiation 
of both murine and human naïve CD4+ T cells toward regulatory phenotypes and controls 
inflammation in the murine colitis model in an Atg5-dependent manner. This indicates the 
pivotal role of autophagy in immune regulation by spermidine (123).

Effect of microbial metabolites on diseases and clinical applications
Numerous bodies of evidence show that SCFAs play an important role in the maintenance 
of health as well as the development of disease (Table 1). Using multi-omics with a multi-
organ model of ulcerative colitis ex vivo, Trapecar et al. (124) showed the paradoxical roles of 
microbiota-derived SCFAs in modulating the immune system. The SCFAs mitigated innate 
inflammation in the absence of CD4+ T cells but exacerbated CD4+ T cell-mediated acute 
inflammation through metabolic reprograming, leading to gut-barrier disruption and hepatic 
injury. Another multiomics-based study on patients with non-alcoholic fatty liver disease 
(NAFLD)-related cirrhosis, with or without hepatocellular carcinoma (HCC), revealed that 
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the higher SCFA-producing bacteria in NAFLD-HCC patients elicit the expansion of Tregs 
cells and attenuation of CD8+ T cells compared to those in healthy controls (125). In a murine 
model of experimental autoimmune prostatitis (EAP), supplementation with propionate 
lowered the susceptibility to EAP induction and corrected the Th17/Tregs cell imbalance 
independent of the gut microbiome (126). Thus, SCFAs have shown their potent immune-
regulatory functions not only in mucosal but also systemic immune system where they 
mainly modulate the Th17/Tregs cell balance.

Although there are plenty of pre-clinical studies regarding effects of SCFAs on immunological 
disorder, clinical trials of SCFAs on counterparts still need to be done. Representatively, 
clinical studies evaluating effects of SCFAs mixture on IBD patients showed improved clinical 
outcome in SCFAs-treated patients compared to placebo (127,128). Molecularly, SCFAs 
treatment inhibits nuclear translocation of NF-κB and macrophage and LPS-induced cytokine 
expression of lamina propria and peripheral blood macrophage (129).
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Table 1. List of the metabolites and their impacts under various disease conditions
Type of metabolite Receptors/Molecular targets Relevance to disease Reference
SCFA - Increased in NAFLD-HCC patients compared to NAFLD only 

patients
(125)

Decreased in IBD patients (127,128)
Decreased in type 1 diabetes patients (162)
Decreased in allergic infants (163)

BA
Primary

CA FXR, GGPBAR1, chimeric antigen 
receptor

Relatively increased in IBD, accelerate LN metastasis of tumor 
(taurine conjugated)

(138,164)

CDCA FXR, GPBAR1, PXR, vascular 
endothelial growth factor

Relative increased in IBD patients, liver cancer, ameliorates 
Alzheimer’s disease

(164,165)

Secondary
DCA FXR, PXR, VDR, TGR5 Decreased in IBD patients, uveitis (suppressive), accelerate LN 

metastasis of tumor (taurine conjugated)
(138,164,166)

LCA FXR, PXR, VDR, TGR5 Decreased in IBD patients, psoriasis (suppressive), uveitis 
(suppressive), increased in coronary disease, breast cancer 
(suppressive)

(91,164,166-
168)

UDCA FXR, GPBAR1 NAFLD (improve disease status) (169-172)
Derivatives of 2nd BA

3-oxoLCA PXR, VDR, RORγt Decreased in IBD patients (26,93)
IsoalloLCA NR4A1 Decreased in IBD patients (27)
IsoDCA FXR Unknown (94)
IsoLCA RORγt Decreased in IBD patients (26)

Polyamines
Spermine - Increased level exerts anti-obesity effect (50)
Spermidine and other polyamines - Pathogenic fungus uses the metabolites to evade host immune 

surveillance in chytridiomycosis
(96)

Putrescine, spermidine, ODC - Increase in levels associated with anti-inflammation with IBD and 
colonic polyposis

(100)

Spermine - Protect development of carrageenan-induced acute edema and 
lethal sepsis

(102,104)

Spermidine Atg5-dependent manner Controls inflammation in the murine colitis (123)
Spermidine AMPK, HIF-1α Induces autophagy-mediated M2 polarization and ameliorate 

murine IBD
(148)

L-arginine Arg1 Protection from colitis (149)
Spermidine Antioxidant activity Alleviated the severity of murine EAE (150)
Spermidine Arg1 Reverses EAE progression (151)
Spermidine, spermine, N1-
acetylspermidine, N1-acetylcadaverine

- Reduced plasma levels in SLE (152)

Urinary polyamine, putrescine - Elevated levels to the activity and progression of RA (154,155)



Primary BAs are steroidal chemicals generated in the liver from cholesterol and released 
into the gut lumen after a meal, where they aid in the absorption of dietary fatty acids 
and vitamins (25). Once in the GI tract, these molecules are chemically transformed by 
the resident microbiota to generate a family of metabolites known as secondary BAs 
(25). Numerous studies have revealed that both primary and secondary BAs affect host 
physiopathology in health and disease (27,130-135) (Table 1). In murine psoriatic dermatitis, 
oral or intravenous administration of LCA ameliorated the symptoms of psoriasiform 
dermatitis by inhibiting IL-17a production and RORγt transcription in CD3+ T cells cultured 
with IL-23 via FXR and GPBAR1 (91). Uveitis, commonly accompanied by autoimmune 
diseases, such as Behçet’s disease, is also related to BA metabolites. Using metagenomic 
analysis, a specific dysbiosis disease was identified in the stools of patients with Behçet’s 
disease, which is capable of exaggerating experimental autoimmune uveitis (EAU) in 
murine models (136). Treatment with DCA and LCA mitigates murine EAU by inhibiting the 
activation of CD11c+ MHCII+ DCs, which repress the induction of Th1 and Th17 cells through 
TGR5 signaling (87). BAs are considered a double-edged sword in tumor progression and 
immunity. In a mouse cancer model, both tauro-β-MCA (T-βMCA) and CDCA upregulated 
CXCL16 expression in liver sinusoidal endothelial cells to accumulate CXCR6+ NKT cells in 
the liver, resulting in the inhibition of liver metastasis (137). However, BAs can also promote 
cancer progression by acting directly on tumor cells. Using comparative transcriptomics 
and metabolomics of primary and lymph node (LN)-metastatic tumors in mice, the specific 
accumulation of several bioactive BAs was observed in metastatic LNs. These BAs activate 
yes-associated protein in tumor cells via the nuclear VDR to intensify FAO signaling pathways 
leading to LN metastasis (138). In addition, natural FXR antagonists, T-βMCA and DCA, 
promote cancer stem cell proliferation together with the accumulation of DNA damage 
in Lgr5-expressing cancer stem cells, resulting in the progression of murine colorectal 
cancer (139). In summary, BAs play a pathophysiological role in various diseases. Thus, 
understanding their mode of action is important in order to uncover novel diagnostics and 
therapeutics for immune disorders, such as severe inflammatory diseases, autoimmune 
diseases, and cancer.

There are several clinical trials to use BAs in various disease, including liver and non-liver 
diseases regardless of its effect on immune system (13,140-144). UDCA was used in patients 
with primary sclerosing cholangitis (PSC) and improved liver function test in serum. But 
it didn’t increase the survival rate and several serious adverse effects were reported (145). 
Mousa et al. (146) reported that BA profile score can be used as a biomarker to predict hepatic 
decompensation in PSC patients. Obeticholic acid, a semisynthetic derivative of CDCA, is 
an agonist of both FXR and GPBAR1. Initially, it was tried in primary biliary cholangitis for 
treatment and biomarkers for disease progression (147). Nowadays, it is also being attempted 
for use in non-alcoholic steatohepatitis (143).

Polyamines are essential for cell growth and proliferation as well as tissue regeneration. 
Increasing evidence indicates the pivotal role of these molecules in the physiopathogenesis of 
multiple diseases (Table 1). For instance, spermidine induces AMPK-, HIF-1α-, and autophagy-
mediated M2 polarization, and spermidine-treated macrophages ameliorate murine IBD 
(148). Arginase 1 alters the microbiome and augments the degree of inflammation in IBD 
patients. A murine colitis model with Arg1 knockout mice, partially mimicking human IBD 
patients, showed necessity of L-arginine for protection from colitis, indicating L-arginine 
metabolism as a potential target for treatment of IBD (149). Furthermore, oral administration 
of spermidine effectively alleviated the severity of murine EAE, especially EAE-induced 

Gut Microbial Metabolites on Host Immune Homeostasis

https://doi.org/10.4110/in.2023.23.e6 12/24https://immunenetwork.org



optic neuritis, through its antioxidant activity (150). Spermidine also induces the inhibitory 
macrophages expressing arginase-1 (but not IL-1β, IL-12, and CD80), which reverses EAE 
progression in an Arg1-dependent manner (151). Patients with systemic lupus erythematosus 
(SLE) have specific alterations in the polyamine catabolism in serum, showing reduced plasma 
levels of spermidine, spermine, N1-acetylspermidine, and N1-acetylcadaverine but elevated 
cadaverine levels, which is associated with disease activity (152). This suggests that changes 
in polyamine patterns can act as potential biomarkers for assessing disease activity in SLE 
(152). Spermine can inhibit the binding of SLE-related anti-DNA antibodies in plasma to calf 
thymus DNA in a dose-dependent manner and can also displace the antibodies in preformed 
immune complexes (153). Elevated urinary polyamine levels can be linked to the activity and 
progression of rheumatoid arthritis (RA) (154). Higher putrescine levels are observed in the 
synovial fluid of RA patients compared to that of healthy controls (155). Daily supplementation 
of spermine significantly ameliorated cartilage and bone destruction in the synovial joints of 
rats with collagen-induced arthritis (156). Furthermore, the enhanced expression of polyamine-
modulated factor 1-binding protein 1 and spermidine/spermine N1-acetyltransferase promotes 
the catabolism and recycling of polyamines. This leads to global DNA hypomethylation in 
the synovial fibroblasts of RA patients (157), indicating the polyamine recycling pathway as 
part of a novel epigenetic therapy for RA (158). Chemical inhibition of polyamine pathways 
has shown immune-modulatory function in various inflammatory disorders. For instance, 
methylthioadenosine, a spermine synthase inhibitor, ameliorates murine experimental 
autoimmune encephalomyelitis (EAE) by suppressing the production of IFN-γ, TNF-α, and 
inducible nitric oxide synthase but increasing the production of IL-10 in a dose-dependent 
manner (159,160). Simultaneous ablation of de novo synthesis and the salvage pathway by AMXT 
1501 and DFMO confers protection against the development of EAE, which is substantiated 
by the reduction of IL-17+ CD4+ T cells mainly via arginine in the CNS (161). The complex 
integration of multiple mechanisms dictates the immune stimulatory or regulatory roles of the 
polyamines under homeostatic and pathological conditions.

CONCLUDING REMARKS

Gut microbiota intercommunicates with the mucosal immune system primarily through 
its metabolites to maintain immunological homeostasis. Among the various microbial 
metabolites, accumulating evidence has specially focused on the immune-modulatory 
function of SCFAs, BAs, and polyamines. The activities of SCFA and BA metabolites are 
mainly mediated through various receptors. However, polyamines, which are produced 
extracellularly and transported into cells, regulate the metabolic pathways in versatile 
immune populations to impact the host’s health and disease status. These interactions 
may allow immune cells to integrate the nutritional supplementation from tissues with the 
optimal programing of their metabolic status. The benefits of targeting Tregs/Th17 balance 
can be ambiguous. Nonetheless, understanding the role of metabolomes, particularly 
in controlling Tregs or Th17 cell activity, is critical for regulating physiopathology in 
homeostatic and inflammatory circumstances through microbial metabolites. Understanding 
immune modulation via microbial metabolites can be important in this regard. In fact, 
specific metabolites and/or metabolic signatures could be utilized as biomarkers as well as 
potential therapeutic targets for developing innovative therapies against various intractable 
immune disorders. These include allergies, autoimmune diseases, and cancers. Thus, our 
review highlights the need for more research to decode the microbial metabolite-immune 
interactions and their physiopathological outcomes at a systematic level.
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