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Abstract 

Bac kgr ound: Children’s motor development is a crucial tool for assessing developmental levels, identifying developmental disorders 
earl y, and taking appr opriate action. Although the Kor ean Dev elopmental Scr eening Test for Infants and Children (K-DST) can accu- 
rately assess childhood development, its dependence on parental surveys rather than reliable, professional observation limits it. This 
study constructed a dataset based on a skeleton of recordings of K-DST behaviors in children aged between 20 and 71 months, with 

and without developmental disorders. The dataset was validated using a child behavior artificial intelligence (AI) learning model to 
highlight its possibilities. 

Results: The 339 participating children were divided into 3 groups by age. We collected videos of 4 beha viors b y age group from 3 
different angles and extracted skeletons from them. The raw data were used to annotate labels for each image, denoting whether 
eac h c hild performed the behavior pr operl y. Behaviors wer e selected fr om the K-DST’s gr oss motor section. The n umber of ima ges 
collected differed by age group. The original dataset underwent additional processing to improve its quality . Finally , we confirmed that 
our dataset can be used in the AI model with 93.94%, 87.50%, and 96.31% test accuracy for the 3 a ge gr oups in an action recognition 

model. Additionally, the models trained with data including multiple views showed the best performance. 

Conclusion: Ours is the first pub licl y av aila b le dataset that constitutes skeleton-based action r ecognition in y oung c hildren accord- 
ing to the standardized criteria (K-DST). This dataset will ena b le the dev elopment of v arious models for dev elopmental tests and 

screenings. 

Ke yw ords: skeleton-based action r ecognition, childr en motor development, AI model 

 

s  

b  

a
 

i  

o  

d  

o  

c  

f  

m  

w  

a  

N  

A  

a  

d  
Bac kgr ound 

Motor de v elopment is essential for c hildr en’s physical str ength,
movement, and identification of developmental difficulties. Mo- 
tor de v elopment and contr ol begin de v eloping after birth and 

pr ogr ess as c hildr en gr ow. Typicall y, c hildr en de v elop certain mo- 
tor skills at a specific age; ho w ever, every child does not reach 

milestones at the same time [ 1 ]. Children with neurological prob- 
lems, de v elopmental delays, or disabilities may have difficulty 
with certain motor skills. Evaluating motor development can be 
a tool to assess a child’s degree of development. Since a common 

clinical symptom of de v elopmental milestones is not acquiring 
the de v elopmental tec hnology suitable for one’s a ge, using sim- 
ple e v aluations to scr een infants and toddlers with de v elopmen- 
tal problems early on [ 2 ] would be useful for planning appropri- 
ate tr eatment, r ehabilitation, and education and improving prog- 
noses. Additionall y, earl y detection of de v elopmental pr oblems is 
crucial because delays can negativ el y affect a c hild’s r eadiness to 
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tart sc hool. Furthermor e, it can cause issues with self-confidence
ecause it is associated with the child’s later ac hie v ements, suc h
s literacy [ 3–5 ]. 

As a health examination project for infants and toddlers was
mplemented in South Korea in November 2007, the Korean Devel-
pmental Screening Test for Infants and Children (K-DST) [ 6 ] was
e v eloped to compr ehensiv el y determine the possibility of de v el-
pmental disorders as well as normal de v elopment. It e v aluates
 hildr en’s behavior, including a wide age range for preschool in-
ants under the age of 6 (4 months to 71 months), and deals with

or e compr ehensiv e de v elopmental ar eas. Although the K-DST
as de v eloped specificall y for Kor ean c hildr en, it is used glob-
lly because it is based on international standards such as the
ational Health Screening Program for Infants and Children [ 7 ].
mong se v er al de v elopmental assessment tools suc h as the Ages
nd Sta ges Questionnair e [ 8 , 9 ], Bayley Mental De v elopment In-
ex [ 10 ], Bayley Scales of Infant De v elopment, Wec hsler Pr esc hool
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nd Primary Scale of Intelligence, and Peabody De v elopmental
otor Scales [ 11 ], the K-DST was selected because it can be as-

essed without money and has age-specific behaviors to assess
otor de v elopment. In addition, r ecent K-DST—based r esearc h

as demonstrated through national cohorts that the K-DST is a
obust assessment of child development [ 7 ]. 

Meanwhile, the majority of existing action recognition
atabases have been designed for adults . T here ha ve been
an y studies r elated to c hildr en’s action cognition—suc h as an

nfant action database including 18 actions extracted from In-
ta gr am and YouTube [ 12 ], action recognition including 7 actions
n r ed, gr een, and blue (RGB) for c hildr en a ged 6 to 11 years[ 13 ],
nd sk eleton-dri v en action r ecognition including 6 actions for
2 c hildr en a ged 6 to 9 years [ 14 ]—but there is no dataset that
an be used publicly since they are all individual studies with
inimal datasets or involve privacy issues. 
Concerning the use of artificial intelligence (AI), various stud-

es hav e e v aluated c hildr en’s motor functions—e v aluation of cog-
ition with physical movements [ 15 , 16 ], detection of machine

earning–based fine motor skills [ 17 ], and e v aluation of deep
earning–based c hildr en’s gr oss motor skills [ 18 ]—but they wer e
ll AI-based, model-oriented studies. Contr astingl y, this study fo-
used on presenting a dataset of children’s gross motor skills for
ac h a ge gr oup. 

This study de v eloped a new dataset for motor development in
oung c hildr en, fr om toddlers to c hildr en, using the K-DST. Al-
hough m ultivie w r ecordings in pr e vious studies [ 19–21 ] hav e at-
empted to enhance the explanatory po w er with more data from
he combinations of anatomical feature locations from various
ngles, this method was selected for the following 3 additional
easons: (i) to consider the characteristics of children who are free
o move and are not easy to control, (ii) to confirm the assumption
hat there may be a specific angle that captures a specific behavior
ell, and (iii) to confirm the assumption that the combination of
ata from certain angles can improve data learning performance
esults . T his dataset can be used as an essential resource for the
e v elopment of AI algorithms to determine c hildr en’s behavior
nd e v aluate their de v elopment. 

ethods 

articipants 

ll experiments were performed in accordance with the ethical
rinciples of the Declaration of Helsinki. This study was a ppr ov ed
y the Institutional Re vie w Board (IRB) of Se v er ance Hospital, Yon-
ei University College of Medicine, and the requirement for in-
ormed consent w as w ai ved (IRB n umber: 4–2021-0845). All care-
iv ers pr ovided written informed consent for data collection and
ubsequent analyses. All efforts were made to minimize the chil-
ren’s discomfort. The participants were children aged between 20
nd 71 months from all over the country and were recruited from
a ycare centers , kindergartens , primary hospitals (pediatrics and
dolescent medicine), and Internet communities . T hey were di-
ided into 3 a ge gr oups: 20 to 35 months (group A), 36 to 53 months
group B), and 54 to 71 months (group C). The total participants
ncluded 399 c hildr en, with a sex ratio of 53/47 (male/female). Ta-
le 1 provides detailed information and sex ratios of the partici-
ants. 

ype of behavior 
ur dataset was collected based on the K-DST—a tool created for

he accurate examination of developmental delays [ 22 ] and health
anagement of infants and children by reflecting the character-
stics of Korean infants and c hildr en. It is intended for infants and
 hildr en between 4 and 71 months and includes 48 items for each
 ge gr oup. 

Among these 48 items, core tasks were selected for each age
r oup thr ough consultations with 3 pediatricians and 15 c hild de-
elopment experts based on the literature review, such as pre-
ious motor de v elopment guidelines [ 23 , 24 ]. The principal cri-
eria for selecting core tasks were (i) developmental milestones,
ii) physical and cognitive abilities, and (iii) behaviors that mea-
ur e v arious motor skills of each age group. First, developmen-
al milestones were identified based on a 2010 study published
n Pediatrics in Review [ 24 ]. Second, a ge-a ppr opriate physical and
ognitiv e abilities wer e consider ed. Simple tasks wer e selected for
ounger c hildr en with limited coor dination, while coor dination-
ased tasks were adopted for older c hildr en. Third, v arious gr oss
otor functions were evaluated by examining the total muscle

unction through various mo vements in volving the whole body,
pper body, or lo w er body. The r epr esentativ e motor de v elop-
ent behaviors for each age group were selected to evaluate

 hildr en’s gr oss motor skills at that a ge. Twelv e motor de v elop-
ent tasks were defined, with 4 tasks representing each age group

Table 2 ). 
Based on the liter atur e r e vie w, 18 pediatricians and ex-

erts discussed r epr esentativ e behaviors for each age group
nd selected specific actions as measurements of behavioral
e v elopment. 

xperimental setup and data acquisition 

 articipants wer e asked to perform 4 behaviors at least 5 to 10
imes, and the behaviors were video recorded using RGB cameras.
he number of trials for each behavior depended on the child’s
ondition and cooper ation. Eac h behavior was recorded simulta-
eously using 3 cameras (Fig. 1 A). The distance and angle of the
ameras depended on the child’s age group, the details of which
re described in Fig. 1 B. All videos were recorded using a SONY
SC-RX100 with a resolution of 1,920 × 1,080 at 30 fps. Fig. 1 C
hows a portion of the videos recorded from 3 angles for behavior
 of child B010. It represents a snapshot of a group B child’s video
or behavior 1 (standing on 1 foot for more than 3 seconds with-
ut holding onto an ything): vie w 1 (fr ont), vie w 2 (right), and view
 (left). To measure the behavior of all children, the distance from
he camera for each age group was defined differently based on
he child with the maximum height in each age group. 

nnotation of behavior 
t the labeling stage, the criteria for evaluating child develop-
ent were determined based on the opinions of 12 pediatricians

nd c hild de v elopment experts (Table 3 ). Two e v aluation pr ocesses
ere conducted based on these developmental evaluation crite-

ia. In the first stage, 15 child development experts with board-
ertified behavior analyst certificates or equivalent experience
onducted an e v aluation. At this stage , beha viors were divided
nto 0 (bad), 1 (good), and 2 (perfect), according to each child’s
erformance of the beha vior. T his e v aluation method utilized a
-point scale, which is a modification of the 4-point scale used in
he K-DST. The former regards 0 (not able to do at all) and 1 (not
ble to do it) on the 4-point scale as 1 score (0), 2 (able to do it) as
, and 3 (can do it well) as 2. Two or more experts simultaneously
 v aluated eac h c hild’s behavior to incr ease the r eliability of the
 v aluation r esults. In the second sta ge, pediatricians conducted
n ov er all r e vie w based on the e v aluation r esults of the first sta ge.



Child Motor De v elopment Dataset: AI Assessment | 3 

Table 1: Distribution of participants by age groups 

Total ( n = 399) 
Group A (20–35 

months, n = 136) 
Group B (36–53 

months, n = 106) 
Group C (54–71 

months, n = 157) 

Sex, n (%) 
Male 213 (53) 68 (50) 57 (54) 88 (56) 
Female 186 (47) 68 (50) 49 (46) 69 (44) 

Table 2: Four core motor development tasks for the 3 age groups based on the K-DST 

Group ID Action description 

Group A 1–1 Place his/her feet together and climb up the stairs one by one without 
holding onto the railing. 

1–2 Place his/her feet together and go down the stairs one by one without 
holding onto anything. 

1–3 Raise his/her arms and throw the ball over his/her head while standing. 
1–4 Stand on one foot for a second without holding onto anything. 

Group B 2–1 Stand on one foot for more than three seconds without holding onto 
anything. 

2–2 Hop 2–3 steps on one foot. 
2–3 Put his/her feet together and make a big jump. 
2–4 Receive a big ball using both his/her arms and chest. 

Group C 3–1 Stop a rolling ball with his/her feet. 
3–2 Bounce a ball on the floor once. 
3–3 J ump o v er a r ope tied high below his/her knees. 
3–4 Jump rope once. 

Figure 1: Experimental setup and data acquisition for video-based child behavior data. (A) Setting up an environment for documenting child behavior. 
(B) Camera angle and distance between child and camera according to age group. (C) Snapshot examples of a child’s behavior video for group B 
behavior 1 (stand on 1 foot for more than 3 seconds without holding onto anything): view 1 (front), view 2 (right), and view 3 (left). 
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If the results of the first evaluation stage for child behavior as- 
sessment did not match, a consensus was reached through dis- 
cussion between experts, and the first e v aluation was conducted 

a gain. The e v aluation was conducted in 2 sta ges for 3 r easons.
irst, the opinions of pediatricians and child development experts 
er e consider ed. Second, the assessments wer e double-c hec ked

o increase their accurac y. Thir d, the pediatricians’ role in the fi-
al stage was more confirmatory. 
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Table 3: Labeling criteria for child behavior 

Group Behavior ID Labeling criteria 

Group A A01 Go up the stairs 0 (bad): He/she cannot climb up the stairs. 
1 (good): He/she can climb up the stairs but pauses a little. 
2 (perfect): He/she can climb up the stairs without difficulty. 

A02 Go down the stairs 0 (bad): He/she cannot go down the stairs. 
1 (good): He/she can go down the stairs but pauses a little. 
2 (perfect): He/she can go down the stairs without difficulty. 

A03 Throw the ball 0 (bad): He/she cannot throw the ball over his/her head. 
1 (good): He/she can throw the ball over his/her head but staggers. 
2 (perfect): He/she can throw the ball over his/her head while standing straight. 

A04 Stand on one foot 0 (bad): He/she cannot stand on one foot e v en for a moment. 
1 (good): He/she can stand on one foot for a second but staggers. 
2 (perfect): He/she can stand on one foot for a second without staggering. 

Group B B01 Stand on one foot 0 (bad): He/she cannot stand on one foot e v en for a moment. 
1 (good): He/she can stand on one foot for more than three seconds but staggers. 
2 (perfect): He/she can stand on one foot for more than three seconds without staggering. 

B02 Hop 2–3 steps 0 (bad): He/she cannot hop e v en once. 
1 (good): He/she can hop 2–3 steps but pauses a little. 
2 (perfect): He/she can hop 2–3 steps without difficulty. 

B03 Long jump 0 (bad): He/she cannot jump with his/her feet together. 
1 (good): He/she can jump with his/her feet together. 
2 (perfect): He/she can jump a long distance with his/her feet together. 

B04 Receive the ball 0 (bad): He/she cannot r eceiv e a ball. 
1 (good): He/she can r eceiv e a ball using both arms and chest but staggers after receiving it. 
2 (perfect): He/she can r eceiv e a ball using both arms and chest without staggering. 

Group C C01 Stop the rolling ball 0 (bad): He/she cannot stop a rolling ball with his/her foot. 
1 (good): He/she can stop a rolling ball with his/her foot. 
2 (perfect): He/she can stop a rolling ball with his/her sole. 

C02 Bounce the ball 0 (bad): He/she cannot bounce the ball on the floor at all. 
1 (good): He/she can bounce the ball on the floor once. 
2 (perfect): He/she can bounce the ball on the floor once stably. 

C03 Jump over the rope 0 (bad): He/she cannot jump over the rope tied below his/her knee level. 
1 (good): He/she can jump over the rope with a little hesitation. 
2 (perfect): He/she can jump over the rope without hesitation. 

C04 Jump rope 0 (bad): He/she cannot jump rope even once. 
1 (good): He/she can jump rope with a little hesitation. 
2 (perfect): He/she can jump rope without hesitation. 
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reprocessing of children’s behavior 
 he OpenP ose algorithm [ 25 ] was used to obtain human skeletal
ata from the RGB videos . OpenP ose is a pose-estimation algo-
ithm that extracts joint coordinates from RGB videos in 3 chan-
els (x coordinates, y coordinates, and confidence scores). The
ODY_25 format (Fig. 2 ) was used to obtain 25 joint coordinates
er frame. Additional postprocessing was performed on the raw
keletons. First, ther e wer e missing joints in the outputs from the
penPose algorithm; ther efor e, the nec k joint was set as the cor e

oint, and skeletons missing this core joint were removed because
hey were unreliable. 

Second, although OpenPose detects multiple people in a single
rame, the n th person at frame t and the n th person at time t − 1

ay not be the same because they are simply listed without ob-
ect identification. To solve this problem, skeletons were aligned
ased on the core joint (neck) [ 14 ]. Assuming that there is a neck
oordinate for person 1 in frame t , the Euclidean distance from the
eck coordinates of all people in the pr e vious fr ame is calculated
nd connected to the closest person. Finally, the original coordi-
ates wer e conv erted to r epr esent the r elativ e position based on
he core joint and scaled to obtain values between 0.5 and 0.5,
1  
hich can be calculated as 

x = ( x/ f rame _ width ) − x neck 

y = ( y/ f rame _ height ) − y neck 

v alua tion for action recognition 

he dataset was e v aluated by training the deep learning model
S-G3D, a gr a ph conv olutional netw ork (GCN)–based action

ecognition model [ 26 ]. Since only well-performed actions should
e used as input data for action r ecognition, onl y data that re-
eiv ed a scor e of 1 or 2 were used. The models were trained by
 ge gr oup, and combinations of camer a vie ws (3 angles: fr ont, left,
nd right) were explored by training with data from specific views.
her efor e, ther e wer e 21 models: 3 a ge gr oups and 7 vie w combi-
ation settings for each age group. Each model was trained with
ata including specific views depending on its view combination
etting. Interconnections of m ultivie ws wer e not consider ed in the
odels. Models were trained with the data from each view inde-

endently. 
The mean lengths of data in age groups A, B, and C were 136,

67, and 87 fr ames, r espectiv el y. Videos wer e normall y shorter
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Figure 2: Snapshot examples of the skeleton videos extracted from the same videos in Fig. 1 C. BODY_25 format was used with an output of 25 joints. 
These snapshots are for illustrative purposes only, and the actual data are the list of joint coordinates from entire frames . T his list contains all 
ca ptur ed joint coordinates from 1 video. 
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than 300 frames based on the review of the video length histogram 

(see Supplementary Fig. S3). Ther efor e, the maxim um length of 
input was set as 300 frames because the GCN-based action recog- 
nition models only accept inputs of the same length as recur- 
r ent neur al netw orks (RNNs). It w as padded b y zero if the sample 
length was shorter than 300 frames and sliced to 300 frames if the 
sample length was longer than 300 frames. 

Initiall y, we tr ained for 100 epoc hs to optimize the number of 
epoc hs for tr aining. Since the models conv er ged befor e 50 epoc hs,
we trained for 50 epochs in the entire experiment (see Supple- 
mentary Fig. S2). We used an SGD optimizer with a weight decay 
of 0.001, a base learning rate of 0.01 (a high base learning rate is 
common in GCN-based action recognition model training), and a 
MultiStepLR learning r ate sc heduler with milestones (20, 30, 40),
gamma 0.1. This hyper par ameter setting was fixed across all mod- 
els to only evaluate the effect of the combination. Additionally, the 
whole random seed was fixed to 100. 

The dataset was split into 3 subsets based on the participants 
while considering the overfitting problem (see Supplement Fig. 
S1): tr aining (80%), v alidation (10%), and testing (10%). In age 
group A, the training, validation, and testing sets included 4,368 
samples of 104 participants, 579 samples of 14 participants, and 

593 samples of 13 participants, r espectiv el y. In a ge gr oup B, the 
tr aining, v alidation, and testing sets included 2,685 samples of 80 
participants, 309 samples of 11 participants, and 360 samples of 8 
participants, r espectiv el y. In a ge gr oup C, the tr aining, v alidation,
and testing sets included 5,049 samples of 125 participants, 687 
samples of 17 participants, and 597 samples of 14 participants, re- 
spectiv el y. Ther e wer e 7 combinations of camer a vie ws, and eac h 

setting had the same behavior data from the same c hildr en in the 
tr aining, v alidation, and testing sets. 

Results 

Data distribution 

The data distribution of the dataset is presented in Table 4 . Except 
for a few actions, the ov er all distribution was unbalanced. The 
distribution was most unbalanced in group C, the oldest group 

with the largest ratio of perfect actions . T he sex ratios for each 

behavior were balanced in all age groups. 

Action recognition 

We explored combinations of camera views by training with data 
from specific views to determine the most informative one. In 

group A, the combination of all views sho w ed the best perfor- 
mance (93.94%). In group B, the front-right combination sho w ed 

the best performance (88.33%). In group C, the combination of all 
views sho w ed the best performance (96.31%) (Table 5 ). This result 
indicates that if the number of views is higher, the performance 
s better because most of the upper ranks are combinations of
 ultiple vie ws. Ho w e v er, in the r esults using onl y a single vie w,

he front view sho w ed consistently good performance . T his result
uggests that the front view was the most informative . T herefore ,
n case of scarce r esources, tr aining the deep learning model using
ata from the front view is sufficient. 

Additionally, the confusion matrices of 3-view models and 

ingle-vie w models wer e obtained (see Supplementary Fig. S4).
he confusion matrices show that the diagonal of the 3-view
odel’s matrix had higher values than the front-view model’s ma- 

rix. In other w or ds, 3-view models sho w ed better performance
han single-view models. 

onclusion 

he dataset presented in this study consisted of young c hildr en
ivided into 3 age groups, based on the K-DST, performing 4 rep-
 esentativ e behaviors for each age group that were recorded and
ollected from 3 different angles. To represent child development 
atasets, we first defined core behaviors in the child development
rocess by age group through active discussions with a group of
 hild de v elopment experts, including pediatricians. Second, we es-
ablished e v aluation criteria in 3 stages for each behavior for clear
nd reliable evaluation. The data were collected from 399 chil-
r en. Eac h video of child behavior was manually labeled using a
-point scale for the e v aluation of motor de v elopment cr eated by
5 de v elopmental assessment experts and 3 pediatricians. As a r e-
ult of a ppl ying a deep learning–based action recognition model
o verify the quality of the de v eloped dataset, data collected from
 or mor e dir ections performed better than individual directions.
ur dataset is the first publicly accessible dataset that enables

he identification and e v aluation of young c hildr en’s actions and
otor de v elopment based on their skeletons . T his study empha-

ized gross motor skills based on a previous study [ 7 ] that found
ross motor skills to have more accuracy than fine motor skills
n the K-DST for c hildr en’s motor skill e v aluation. Ho w e v er, other
r e vious studies [ 3 , 27 ] have shown that fine motor skills are also
 aluable in e v aluating c hildr en’s motor skills. In our future work,
e will compare fine and gross motor skill e v aluations to enhance

he accuracy of child development evaluation. Additionally, the 
ataset will be extended to include c hildr en with and without
e v elopmental disabilities. It can be utilized to de v elop earl y di-
 gnostic pr ediction models using AI tec hniques suc h as mac hine
earning. Since the dataset provided in this study includes scores,
t can be used to de v elop a model for predicting scores. Further-

ore, it can be utilized as the basis for de v eloping scr eening tools
or c hildr en’s quantitativ e motor de v elopment le v els (body matu-
ity). Mor eov er, it was found that utilizing the m ultivie w data had
ositive effects on the model training. In our future w ork, w e will
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Table 4: Data distribution of the child behavior dataset 

Number (%) of videos for each label 

Group Behavior ID Number (%) of participants (female) Bad Good Perfect Total 

Group A ( n = 136) A01 Climb up the stairs 136 (50) 372 (20) 303 (17) 1,130 (63) 1,805 
A02 Go down the stairs 136 (50) 400 (22) 300 (17) 1,091 (61) 1,791 
A03 Throw the ball 135 (50) 249 (14) 445 (25) 1,119 (61) 1,813 
A04 Stand on one foot 136 (50) 620 (35) 627 (35) 543 (30) 1,790 

Group B ( n = 106) B01 Stand on one foot 98 (47) 182 (15) 504 (42) 519 (43) 1,205 
B02 Hop 2–3 steps 96 (47) 471 (45) 270 (25) 315 (30) 1,056 
B03 Long jump 103 (46) 180 (16) 213 (19) 705 (64) 1,098 
B04 Receive the ball 103 (48) 468 (36) 348 (27) 486 (37) 1,302 

Group C ( n = 157) C01 Stop the rolling ball 154 (45) 278 (14) 415 (21) 1,315 (65) 2,008 
C02 Bounce the ball 152 (45) 204 (10) 294 (15) 1,471 (75) 1,969 
C03 Jump over the rope 148 (47) 108 (5) 264 (13) 1,648 (82) 2,020 
C04 Jump rope 137 (47) 767 (45) 534 (31) 408 (24) 1,709 

Table 5: Classification accuracy comparison by camera view combination 

Top-1 (%) 

No. Camer a vie w combina tion Group A Group B Group C 

1 Front, left, right 93.94 87.50 96.31 
2 Front, right 93.69 88.33 94.22 
3 Front, left 92.17 85.83 95.23 
4 Right, left 91.67 85.83 96.23 
5 Front 92.93 82.50 90.95 
6 Right 92.93 77.50 92.96 
7 Left 85.35 85.83 91.46 
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easure the effect of multiple views by combining multiple data
s an extended concept of multiple data utilization. 

a ta Av ailability 

ll collected data are available in our GitHub repository [ 28 ]. All
upporting data and materials are also available in the GigaScience
igaDB database [ 29 ]. 

dditional Files 

upplementary Fig. S1. Loss gr a phs of eac h model. The y ello w
ines display the valid loss, while the blue lines show the train-
ng loss. Our experiment consisted of 21 models, encompassing
 age groups and 7 view settings per age. Each column presents
r a phs for a particular age group, ordered as follows: age group A,
 ge gr oup B, and a ge gr oup C. Eac h r ow displays gr a phs for a spe-
ific view setting, arranged as follows: V iew123, V iew12, V iew13,
 iew23, V iew1, V iew2, and V iew3. Across all settings, the training

oss and valid loss converged simultaneously, and none of the 21
odels exhibited any signs of loss explosion, indicating the ab-

ence of overfitting during the model training process. 
upplementary Fig. S2. Tr aining gr a phs of eac h model. The y ello w

ines indicate train loss, and the blue lines r epr esent tr ain accu-
acy. Our experiment consisted of a total of 21 models, compris-
ng 3 age groups and 7 view settings per age group. Each column
n the gr a phs corr esponds to 1 a ge gr oup, order ed as follows: a ge
r oup A, a ge gr oup B, and a ge gr oup C. Furthermor e, eac h r ow dis-
lays the gr a phs for 1 vie w combination, following the sequence
f V iew123, V iew12, V iew13, V iew23, V iew1, V iew2, and V iew3. The
r a phs exhibit train accuracy and train loss for 100 epochs, re-
ealing that the models converged before 50 epochs of training,
espite the absence of pr etr aining. 
upplementary Fig. S3. Video frame length histograms for each
 ge gr oup. The x-axis r epr esents the fr ame length of eac h video,
hile the y-axis indicates the number of videos . T he histograms

ndicate that most videos were less than 300 frames in length;
onsequently, we designated the maximum frame length for
odel inputs as 300 frames. 

upplementary Fig. S4. Confusion matrices of eac h a ge gr oup
odel predictions for the testing set. (A), (B), and (C) in the left

olumn are for single (front) view models, while (D), (E), and (F)
n the right column are for 3-view models . T he confusion matri-
es indicate that models trained with 3-view data outperformed
hose trained with front-view data. Specifically, the diagonal val-
es of the 3-view model’s matrix were higher compared to those
f the fr ont-vie w model, indicating superior performance of the
-view models over the single-view models. 

vailability of Source Code and 

equirements 

r oject name: Multivie w c hild motor de v elopment dataset for AI-
riven assessment of child development 
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� Pr oject homepa ge: [ 30 ] 
� Operating system(s): Linux 
� Pr ogr amming langua ge: Python3 
� Other r equir ements: PyTorc h > = 1.2.0, p yy aml, tensorboar dX,

tqdm, glob 
� License: MIT license 
� RRID: SCR_023552 

Abbreviations 

AI: artificial intelligence; GCN: gr a ph convolutional network; 
IRB: institutional r e vie w board; K-DST: Kor ean De v elopmental 
Screening Test for Infants and Childr en; RGB: r ed, gr een, and 

blue. 
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