
422 www.eymj.org

INTRODUCTION

After initial reports in late December 2019, coronavirus dis-
ease (COVID-19) has become a worldwide pandemic.1 Among 
several modalities used to treat the disease,2-7 only a few have 
proven to be effective.2,3 Supportive care and respiratory sup-
port are now considered as mainstays of treatment for COV-
ID-19.8 As such, medical professionals must focus on patient tri-
age to the appropriate level of care to reduce the risk of medical 
supply shortages.9

Numerous efforts have been made to establish risk factors of 
deterioration among patients with COVID-19.10-13 However, 
most of these require laboratory or radiographic findings, which 
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can be time consuming and costly to obtain. Therefore, we have 
developed an easy-to-use machine learning model with which 
to predict the risk of needing intensive care among COVID-19 
patients using easily obtainable patient information (e.g., de-
mographics, comorbidities, subjective symptoms, and body 
temperature).14 Another model was developed using the need 
for oxygen supplementation as another outcome. The models 
were integrated into a web-based application developed dur-
ing the early phase of the pandemic.15,16 However, the original 
models were developed from and validated in a retrospective 
cohort.14 In addition, the information was uploaded by attend-
ing physicians and not by the patients themselves. Because 
our easy-to-use machine learning models were designed to be 
used directly by patients, the validity of the models in which 
the information is directly uploaded by patients must be inves-
tigated. 

Thus, in this study, we aimed to prospectively evaluate the 
validity of the models for predicting the need for intensive care 
or oxygen supplementation among patients with COVID-19.

MATERIALS AND METHODS

Study design and patients 
In this prospective observational study, we screened all adult 
(age≥18 years) patients with COVID-19 confirmed by poly-
merase chain reaction who were admitted to the Armed Forc-
es Capital Hospital Trauma Center, Seongnam, South Korea 
from September 19, 2020 through November 19, 2020. We en-
rolled only those who volunteered to participate. The Armed 
Forces Capital Hospital Trauma Center is a 60-bed hospital 
constructed on March 5, 2020 to treat trauma patients. Because 
of a sudden upsurge in COVID-19 patients, a part of the center 
was converted into a 40-bed COVID-19 care unit. The unit is 
capable of providing general supportive care, including oxygen 
supplementation. Intensive care, such as mechanical ventila-
tion, vasopressor use, and extracorporeal life support, is not 
possible in this unit, and patients needing intensive care are 
transferred to other hospitals.

This study was approved by the Institutional Review Board of 
the Armed Forces Capital Hospital (approval number: AFCH-
20-IRB-037) and was conducted in accordance with the amend-
ed Declaration of Helsinki. The need for informed consent was 
waived because patients volunteered to directly provide their 
information into the application without any invasive measure-
ments. In addition, acquiring written informed consent was 
considered dangerous due to the highly transmissive nature of 
COVID-19.17

Data collection
Patients provided their data, including demographics, smok-
ing history, underlying comorbidities, activities of daily living, 
symptoms, and body temperatures, directly to an online web-

based application (Supplementary Fig. 1A, only online).14 In 
addition to their baseline data, the patients were encouraged 
to provide their daily symptoms and body temperature if pos-
sible. Additional information, such as symptom onset, patient 
outcome, date of admission, and date of discharge, was col-
lected by an attending physician.17

Definitions of outcomes and model development
This study included two prediction models: one predicting the 
need for intensive care [intensive care unit (ICU) score] and 
the other predicting the need for oxygen supplementation (ox-
ygen score). The need for intensive care was defined as admis-
sion to the ICU, use of extracorporeal life support, mechanical 
ventilation, vasopressors, or death within the first 30 days of ad-
mission.14 This accounted for patients who could not be admit-
ted to the ICU owing to limited hospital facilities. The need for 
oxygen supplementation during the first 30 days was included 
as another outcome because it is a useful criterion for hospi-
talization.18

Both models were originally derived from and validated in 
a separate nationwide cohort that included hospitalized pa-
tients with COVID-19 from 100 hospitals in South Korea. Pa-
tient information was uploaded to an online case report form 
by the attending physicians in each center, and the database 
was managed by the Korean Disease Control and Prevention 
Agency (https://icreat.nih.go.kr/).14 We used patient charac-
teristics that could be easily provided by patients, such as 
demographics, smoking history, symptoms, and body temper-
ature, to derive a machine learning model with an AutoML 
method.19 The details of the included variables are presented in 
Supplementary Table 1 (only online). Patients hospitalized 
from January 25, 2020 through March 20, 2020 were assigned 
to the model derivation group, and those hospitalized from 
March 21, 2020 through June 3, 2020 were assigned to the mod-
el validation group. Detailed descriptions of model derivation 
and validation for ICU score are provided in an earlier report.14 
Results of the calculated probability of the need for intensive 
care based on the predefined XGBoost model are presented 
as numbers ranging from 0 (lowest probability) to 100 (highest 
probability).14 Oxygen score was derived in a similar manner 
using the same variables. ICU score and oxygen score to pre-
dict patient outcomes showed excellent discrimination perfor-
mance in both the derivation and validation groups from the 
previous cohort (Supplementary Fig. 2, only online).14 Vari-
ables with high feature importance included activities of daily 
living, age, dyspnea, body temperature, sex, and symptoms of 
dyspnea (Fig. 1). Details on these variables are presented in 
Supplementary Tables 2 and 3 (only online).

Statistical analysis
Probabilities of the need for intensive care and oxygen supple-
mentation according to ICU and oxygen scores were calculat-
ed automatically after data were uploaded by patients. The 
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probabilities are presented as numbers from 0 to 100, with 0 
referring to the lowest probability of requiring intensive care 
or oxygen supplementation in each model and 100 referring 
to the highest. The attending physician could inspect these 
scores along with details via a web-based application for phy-
sicians (Supplementary Fig. 1B, only online). We calculated 
the area under the receiver operating characteristics curve 
(AUC) with 95% CIs to assess the discrimination performance 
of initial scores.

Although both scores were derived to predict 30-day out-
comes using baseline scores, serial data were gathered for fur-
ther analyses. We utilized linear mixed-effects models to evalu-
ate the repeated measures of each score. The models are useful 
for analyzing repeated measures as they can use all data avail-
able and account for repeats within subjects.20,21 Separate lin-
ear mixed effects models were used to estimate associations 
between changes in ICU and oxygen scores and the presence 
of each outcome (need for intensive care or oxygen) with pa-
tient-specific intercept.20 The model included terms for time 
(hospital days), outcome, and interactions between them. Two 
different baseline timepoints were used in both scores: the day 
of hospitalization and the day of symptom onset. Scores pro-
vided on the day or after discharge were excluded in the anal-
yses. In addition, the scores provided from the day of oxygen 
supplementation were excluded in the analysis of oxygen scores. 
All statistical analyses were performed using Stata version 16 
(StataCorp. 2019. Stata Statistical Software: release 16. Stata-
Corp LLC, College Station, TX, USA).

RESULTS

Baseline characteristics
Among 82 patients hospitalized in the COVID-19 care unit dur-
ing the study period, 44 patients volunteered to participate in 
our study. Among those patients, 5 and 15 patients needed in-
tensive care and supplementary oxygen, respectively. All 5 pa-
tients who needed intensive care also needed supplementary 
oxygen. The remaining 29 patients were discharged without the 
need for oxygen supplementation or intensive care (Fig. 2). 

The median patient age was 61 years (IQR: 53–64 years). 29 
(65.9%) were female, and 35 (79.6%) were never smokers. The 
most common underlying comorbidities were hypertension 9 
(20.5%) and diabetes mellitus 8 (18.2%). Almost all patients 
were able to independently perform their daily activities 43 
(97.7%). The median duration between symptom onset and 
hospitalization was 2 days (IQR: 1–4.5 days), and the most fre-
quent symptoms were cough 26 (59.1%), sputum 20 (45.5%), 
and sore throat 18 (40.9%). The baseline demographics, under-
lying comorbidities, and symptoms did not differ according to 
the requirement of oxygen or intensive care. However, patients 
who required intensive care had higher baseline body tem-
peratures than those who did not need oxygen or intensive 
care (p=0.006) (Table 1).

Performance of baseline scores to predict 30-day 
outcomes
The median ICU score at baseline was 2.59 (IQR: 2.10–5.24) in 
the overall population, 4.53 (IQR: 3.41–5.61) in the 5 patients 
who needed intensive care, and 2.39 (IQR: 2.06–5.07) in the 39 
patients who did not need it (p=0.048). The patients needed 
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intensive care within a median of 8 days (IQR: 7–9 days) from 
hospitalization and a median of 9 days (IQR: 8–11 days) from 
symptom onset. The AUC of ICU scores to predict the need for 

intensive care within 30 days was 0.774 (95% CI: 0.614–0.934) 
(Fig. 3A). 

Baseline oxygen score was only assessed after oxygen sup-

Discharged after recovery 
(n=39)

Required intensive care and 
transferred to another hospital 

(n=5)

Participating paients 
(n=44)

Did not require oxygen 
(n=29)

Required oxygen 
(n=15)

Fig. 2. Hospital course of the included patients.

Table 1. Baseline Patient Characteristics according to Level of Care

Variables Total
(n=44)

Do not need oxygen 
or intensive care

(n= 29)

Need oxygen but 
not intensive care

(n=10)

Need intensive 
care
(n=5)

p-value

Age, yr 61 (53–64) 60 (43–63) 62 (58–64) 63 (62–64) 0.132
Female sex 29 (65.9) 19 (65.5) 7 (70.0) 3 (60.0) >0.999
Smoking history 0.394

Never smoked 35 (79.6) 24 (82.8) 8 (80.0) 3 (60.0)
Former smoker 7 (15.9) 3 (10.3) 2 (20.0) 2 (40.0)
Current smoker 2 (4.6) 2 (6.9) 0 0

Comorbidities
Hypertension 9 (20.5) 5 (17.2) 2 (20.0) 2 (40.0) 0.459
Diabetes mellitus 8 (18.2) 5 (17.2) 2 (20.0) 1 (20.0) >0.999
Chronic neurological disorder 3 (6.8) 3 (10.3) 0 0 >0.693
Autoimmune disease 1 (2.3) 0 1 (10.0) 0 0.341
Use of immune suppressants 1 (2.3) 0 1 (10.0) 0 0.341

Activities of daily living >0.999
Independent 43 (97.7) 28 (96.6) 10 (100.0) 5 (100.0)
Partially dependent 1 (2.3) 1 (3.5) 0 0

Symptom
Onset, days 2 (1–4.5) 2 (1–3) 2 (1–5) 3 (2–3) 0.936
Cough 26 (59.1) 15 (51.7) 6 (60.0) 5 (100.0) 0.138
Sputum 20 (45.5) 12 (41.4) 5 (50.0) 3 (60.0) 0.729
Sore throat 18 (40.9) 14 (48.3) 2 (20.0) 2 (40.0) 0.296
Myalgia 15 (34.1) 9 (31.0) 4 (40.0) 2 (40.0) 0.895
Headache 15 (34.1) 9 (31.0) 3 (30.0) 3 (60.0) 0.500
Anosmia 8 (18.2) 5 (17.2) 2 (20.0) 1 (20.0) >0.999
Fatigue 5 (11.4) 3 (10.3) 1 (10.0) 1 (20.0) 0.781
Rhinorrhea 4 (9.1) 4 (13.8) 0 0 0.731
Dyspnea 2 (4.6) 1 (3.5) 0 1 (20.0) 0.264
Hemoptysis 2 (4.6) 1 (3.5) 1 (10.0) 0 0.571
Arthralgia 2 (4.6) 1 (3.5) 0 1 (20.0) 0.264
Chest pain 1 (2.3) 1 (3.5) 0 0 >0.999
Diarrhea 1 (2.3) 0 1 (10.0) 0 (0.0) 0.341

Body temperature, °C 37.2 (36.8–37.5) 37.1 (36.6–37.4) 37.5 (37.1–37.8) 37.7 (37.6–38.0) 0.006
Data are presented as a n (%) or median (IQR). P-values were calculated using Fisher’s exact test for categorical variables and the Kruskal-Wallis test for contin-
uous variables.
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plementation in three patients, and they were excluded from 
the analyses of oxygen scores. The median oxygen score at base-
line was 6.55 (IQR: 4.30–8.61) in 41 patients, 8.07 (IQR: 6.39–
16.14) in 12 patients who needed oxygen supplementation, and 
6.00 (IQR: 6.28–16.14) in 29 patients who did not need it (p= 
0.022). The patients needed oxygen supplementation within a 
median of 4 days (IQR: 3–6 days) from hospitalization and with-
in a median of 7.5 days (IQR: 6–9.5 days) from symptom onset. 
The AUC of oxygen scores to predict the need for oxygen sup-
plementation within 30 days was 0.728 (95% CI: 0.559–0.898) 
(Fig. 3B). 

Changes in daily score according to patient outcomes
In total, 464 scores were calculated for both ICU and oxygen 
scores. Among those scores, 24 scores were provided on the 
day of and after discharge and were therefore excluded. ICU 
score was measured at least twice in all 44 patients, with a me-
dian of 10 measurements (IQR: 7–12.5) per patient. When 
baseline score was defined as that obtained on the admission 
day, the 5 patients who needed intensive care showed an av-

erage daily increase of 0.71 points (95% CI: 0.20–1.22), while the 
39 patients who did not need intensive care showed an average 
daily decrease of -0.11 points (95% CI: -0.20 – -0.02), with a sig-
nificant difference between the two groups (p=0.002) (Fig. 4A). 
A similar significant difference was found when the baseline 
score was set as that obtained on the day of symptom onset 
[+0.85 points (95% CI: 0.36–1.35) vs. -0.10 points (95% CI: -0.19– 
-0.01), p<0.001] (Fig. 4B). 

With respect to oxygen score, only 353 scores from 41 pa-
tients were included, because 87 scores were obtained on the 
day of oxygen supplementation. The oxygen score was mea-
sured at least twice in all 41 patients, with a median of eight 
measurements (IQR: 4–11) per patient. There was no significant 
difference in daily changes in oxygen scores starting from the 
day of hospitalization between the 12 patients who required ox-
ygen and the 29 patients who did not require oxygen (p=0.113) 
(Fig. 4C). The difference remained insignificant between the two 
groups of patients when the baseline score was set as that ob-
tained on the day of symptom onset (p=0.349) (Fig. 4D). How-
ever, when only the scores calculated within less than 7 days 
of symptom onset were analyzed, the patients who required 
oxygen supplementation showed a significantly higher in-
crease in their daily oxygen score than those who did not need 
oxygen supplementation [1.81 (95% CI: 0.48–3.14) vs. -0.28 
(95% CI: -1.00–0.43), p=0.007]. 

DISCUSSION

In this study, we aimed to validate our predeveloped machine 
learning models to predict the need for intensive care and ox-
ygen supplementation among patients with confirmed COV-
ID-19. Initial scores predicted 30-day outcomes with good 
discrimination performance. In addition, we found distinct 
patterns of changes in daily scores according to patient out-
comes. To our best knowledge, this study is the first to evaluate 
prognostic models with real-world data provided directly by 
patients. Further, this study is also the first to evaluate patterns 
of changes in these patients. 

Our models have several advantages. First, they can enable 
early triage with minimal resources. Early triage is crucial for 
achieving good outcomes in patients with COVID-19 because 
the time window between symptom onset to critical event is 
very short.22,23 Unlike other models,24-28 our models do not in-
clude radiographic or laboratory findings as prediction vari-
ables. In contrast to fully equipped higher-level facilities, quar-
antine facilities may not have advanced medical equipment,29 
and underdeveloped areas may not have any medical facilities 
at all. Second, our web-based application can facilitate prog-
nostic evaluation in a large group of patients. As the number of 
patients with COVID-19 increases, it is difficult to predict each 
patient’s prognosis individually given limited resources. A lack 
of efficient triage can lead to higher mortality rates, particularly 

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

0.00                      0.25                      0.50                      0.75                      1.00

0.00                      0.25                      0.50                      0.75                      1.00

1-Specificity

1-Specificity

AUC=0.774 (95% CI: 0.614–0.934)

AUC=0.728 (95% CI: 0.559–0.898)

Se
ns

iti
vit

y
Se

ns
iti

vit
y

A

B
Fig. 3. ROC curve of each score for predicting 30-day outcomes. (A) ROC 
curve of ICU score to predict the need for intensive care within 30 days 
of hospitalization. (B) ROC curve of oxygen score to predict the need for 
oxygen supplementation within 30 days of hospitalization. ROC, receiver 
operating characteristics; ICU, intensive care unit; AUC, area under the 
receiver operating characteristics curve.



427

Hyung-Jun Kim, et al.

https://doi.org/10.3349/ymj.2022.63.5.422

in areas with a sudden upsurge of COVID-19 cases.30,31 Given 
that our models are web based and calculate risk automatically 
with data provided directly from patients, large-scale risk cal-
culation is possible. Third, our models can be used for telemed-
icine in the era of COVID-19.32 A previous study has reported 
that nearly half of all patients with COVID-19 are treated on an 
outpatient basis.33 Even when patients are hospitalized, time lag 
exists between symptom onset and hospitalization,34,35 leaving 
the possibility of acute patient deterioration before active in-
hospital management. Our models can be applied for active 
monitoring of patients who are on home quarantine and identi-
fy those at higher risk of deterioration and requiring early hos-
pitalization.

Among the patients who required supplementary oxygen, 
oxygen scores increased within 7 days of symptom onset, but 
decreased thereafter. This can be partly explained by the gener-
al supportive care given after hospitalization. Among the 12 pa-
tients included in the serial analysis of oxygen score, all 12 pa-
tients (100.0%) received antipyretics, and 11 patients (91.7%) 
received antitussives. Even among the other 29 patients who 
did not need supplementary oxygen, 23 patients (79.3%) re-
ceived antipyretics, and 18 patients (62.1%) received antitus-
sives. Considering that our models do not include laboratory 

or radiographic findings, the variables that can change daily are 
limited to body temperature and subjective symptoms. Such 
variables are prone to change according to the extent of gen-
eral supportive care. However, the median interval from symp-
tom onset to oxygen supplementation in this study was 7.5 days, 
similar to other previous studies.36,37 Therefore, a serial measure-
ment of oxygen score can be helpful for preemptive identifica-
tion of patients who may need oxygen supplementation.

The discrimination performance of our models seemed 
slightly lower than those calculated from a previous retrospec-
tive cohort (Supplementary Fig. 2, only online),14 which can 
be attributed to the following reasons: first, there is possible 
selection bias in the patients included in this study. The COV-
ID-19 unit of our center was a temporary unit capable of sim-
ple supportive care, and the number of healthcare providers 
was limited. Accordingly, it could not accommodate patients 
with severe underlying comorbidities, such as cancer, chronic 
lung disease, or dementia, or those dependent on others for their 
daily activities. Also, patients not capable of using smartphones 
could not participate in our study. Second, information upload-
ed directly by patients may differ from those defined by health-
care providers. Patients uploaded their information directly via 
a web-based application in this prospective cohort (Fig. 1A),15,16 

Fig. 4. Changes in scores according to disease course and 30-day outcome. Change in ICU score (A) after hospitalization and (B) after symptom onset 
according to the need for intensive care. Change in oxygen score (C) after hospitalization and (D) after symptom onset according to the need for oxygen 
supplementation. ICU, intensive care unit.
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unlike the data collected from the derivation cohort, which were 
uploaded by attending physicians.14

We can make several recommendations from this study. First, 
patients with higher scores should be prioritized for transfer to 
higher-level facilities. Although an exact score to predict short-
term outcomes has yet to be established, our models have prov-
en to be efficacious as good decision-support tools when active 
monitoring is impossible due to shortage of medical resources 
or manpower. Second, patients should record their daily status 
for up to 7 to 10 days after symptom onset. Our study revealed a 
median interval of 9 days (IQR 8–11 days) between hospitaliza-
tion and ICU admission, and a median of 7.5 days (IQR: 6–9.5 
days) between symptom onset and oxygen supplementation. 
These durations are similar to those in previous reports22,36,37 
and also match with trends in daily changes in ICU scores and 
oxygen scores in our study. If scores remain low during the first 
10 days, we can carefully expect a mild disease course without 
the need for oxygen supplementation or intensive care. In ad-
dition, day of symptom onset seems to be a better baseline 
timepoint than day of hospitalization for repeated measures.

Despite these advantages, our study also has some limita-
tions. First, the attending physician was not blinded to the cal-
culated scores during the study period. However, all patients 
received standard care regardless of the calculated scores. 
Second, because this was a pilot study, the number of patients 
was limited. Further studies with larger sample sizes are need-
ed to establish the validity of the model and to determine its 
usefulness for reducing overall mortality rates among patients 
with COVID-19.

As a pilot study, our models show fair discrimination per-
formance for identifying patients at risk of adverse outcomes 
and may need intensive care and oxygen supplementation. 
Thus, they can be useful for predicting patient outcomes and 
for patient monitoring during the early disease course. Further 
validation studies are needed to draw a complete conclusion.
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