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Abstract: Precision medicine has been revolutionized by the advent of high-throughput next-
generation sequencing (NGS) technology and development of various bioinformatic analysis tools
for large-scale NGS big data. At the population level, biomedical studies have identified human
diseases and phenotype-associated genetic variations using NGS technology, such as whole-genome
sequencing, exome sequencing, and gene panel sequencing. Furthermore, patients’ genetic variations
related to a specific phenotype can also be identified by analyzing their genomic information. These
breakthroughs paved the way for the clinical diagnosis and precise treatment of patients’ diseases.
Although many bioinformatics tools have been developed to analyze the genetic variations from the
individual patient’s NGS data, it is still challenging to develop user-friendly programs for clinical
physicians who do not have bioinformatics programing skills to diagnose a patient’s disease using
the genomic data. In response to this demand, we developed a Phenotype to Genotype Variation
program (PhenGenVar), which is a user-friendly interface for monitoring the variations in a gene
of interest for molecular diagnosis. This allows for flexible filtering and browsing of variants of
the disease and phenotype-associated genes. To test this program, we analyzed the whole-genome
sequencing data of an anonymous person from the 1000 human genome project data. As a result,
we were able to identify several genomic variations, including single-nucleotide polymorphism,
insertions, and deletions in specific gene regions. Therefore, PhenGenVar can be used to diagnose a
patient’s disease. PhenGenVar is freely accessible and is available at our website.

Keywords: precision medicine; NGS; exome browser; genetic variations

1. Introduction

Precision medicine, also known as personalized medicine, is a new emerging field of
medicine that combines the individual patient’s clinical phenotypes, health records, and
diverse omics data for tailored diagnosis, treatment, and prevention of human diseases [1].
With the completion of the human genome project and advances in next-generation DNA
sequencing (NGS) technologies, it is now possible to identify the patient’s genetic variations
at single-nucleotide resolution and interpret the phenotypic consequences of them in human
diseases [2–5].

Several NGS approaches have been used to identify complex human disease-associated
genetic variations. These include whole-genome sequencing, whole-exome sequencing, and
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targeted gene panel sequencing [6,7]. Recent large-scale consortia efforts have facilitated
the meta-analysis of genome-wide association studies (GWAS) to identify genetic variants
associated with human diseases, such as Alzheimer’s disease, cancers, coronary artery
disease, and type 2 diabetes mellitus [4,8–10]. For instance, several genes, such as APOE,
CD33, CLU, CR1, EPHA1, PICALM, and TREM2, have been identified as major genetic
risk factors for Alzheimer’s disease [11–15]. BRCA1 and BRCA2 mutations account for
approximately 5% of all breast cancer cases [16,17]. However, pathogenic mutations in
BRCA1 and BRCA2 increase the risk of breast cancer by 65% and 45%, respectively [18]. This
implies that despite the low total heritability explained by polymorphisms in these genes,
monitoring genetic variations in BRCA1 and BRCA2 is advantageous for the diagnosis of
breast cancer in high-risk patients [19]. Therefore, it is essential to obtain a catalog of genes
associated with specific human diseases and phenotypes in order to facilitate genetic risk
prediction. There are many clinical databases, such as Medical Subject Headings (MeSH),
the National Cancer Institute’s (NCI) Thesaurus, Online Mendelian inheritance in man
(OMIN), SNOMEDCT, United Medical Language System (UMLS), and Human Phenotype
Ontology (HPO) [20–25]. Among these, HPO provides a more comprehensive resource
that contains semantic links for disease genes and ontologies for computational analysis of
human phenotypes.

NGS data of individual patients contain diverse types of genetic variations, such as
single nucleotide variants (SNVs), insertions and deletions (indels), and genetic aberrations,
such as inversions and translocations. There are many computational tools for variant
calling from NGS data, such as DeepVariant, DELLY, FermiKit, GATK HaplotyperCaller
(GATK HC), Pindel, Platypus, Strelka2, and VarScan [26–33]. Using these variant detection
tools, it is possible to detect the genetic variants in the disease-related genes for molecular
diagnosis. The genetic variants identified from the NGS data are stored as variant call
format (VCF), mutation annotation file (MAF), mutation file format (MUT), or other types of
files. Among these, VCF is the most widely used community standard for storing mutation
data [34]; however, the analysis of VCF files requires intensive bioinformatic expertise.
Therefore, there is a need to develop tools for managing and visualizing VCF data. The
currently available VCF processing programs include SNVerGUI, database.bio, DaMold,
mirVAFC, GAVIN, and gNOME [35–40]. In addition, other tools, such as integrative
genomic viewer (IGV), variant call miner (VCF-Miner), VCF.Filter, myVCF, BrowseVCF,
and VCF-Server, were also developed to identify disease-associated genetic variants from
NGS data [41–46]. Among these, IGV is the most widely used tool for visualizing genome
variation data. However, there is still a need to develop an easy and comprehensive tool
for non-bioinformatician researchers to analyze a patient’s genomic data for diagnosis and
clinical decision support.

In this study, we developed the Phenotype to Genotype Variation (PhenGenVar)
browser application as an intuitive user interface. This tool was designed for physicians or
researchers to monitor the patient’s genetic variations from the set of selected genes that
are associated with a specific disease or phenotype. With exome and genome browsers in a
PhenGenVar application, it is possible to detect genetic variations at the gene or exon level,
as well as at the single-nucleotide level.

2. Materials and Methods
2.1. Development of Visual Interface for PhenGenVar Browser

The PhenGenVar browser application was written in the C# programing language
using Microsoft.Net framework. The application was developed as a graphic interface
that can be performed on a Windows operating system. The human genome reference
dataset, including the position, annotation, and amino acid composition, was obtained
from the UCSC genome browser database [47]. To remove duplicated reads and minimize
errors in sequence alignment, the flag and concise idiosyncratic gapped alignment report
(CIGAR) string fields were utilized for error correction and realignment of the read data
in the BAM file [48]. We adopted a data partitioning and indexing method for efficient
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visualization of large-scale genomic data. Genomic data are divided into partitions that
can be managed and accessed separately, using an efficient indexing scheme. To reduce
the information loss caused by partitioning, each partitioned region included overlapping
regions between the flanking partitions. In display processing, indexed partitions are
loaded into memory, and the corresponding genomic regions are displayed on the screen
according to the resolution. In the browser, the resolution of the sequence alignment was
adjusted from a 100 bp to 100 kb window. To minimize the decline in speed to render many
output images of multiresolution, Direct2D-based rendering was used.

2.2. Database Embedded in the PhenGenVar Application

Human reference genome data were downloaded and pre-installed in the PhenGenVar
application as the hg19 and hg38 versions [47]. The SNP database (dbSNP) was downloaded
from the National Center for Biotechnology Information [49]. The dbSNP versions available
for the hg19 human genome are SNP138, SNP141, SNP142, SNP144, SNP146, SNP147,
SNP150, and SNP151. The dbSNP versions available for hg38 are SNP141, SNP142, SNP144,
SNP146, SNP147, SNP150, and SNP151. The gene sets were downloaded from the human
phenotype ontology (HPO) to provide a list of genes associated with human disease and
phenotype [24].

2.3. Sample Data Used in This Study

To test the PhenGenVar application for a patient’s diagnosis, publicly available per-
sonal whole-genome sequence data were retrieved from the 1000 Genomes Project with
sample accession number NA11995 [50].

2.4. Implementation

The PhenGenVar is available at http://dblab.hallym.ac.kr/PhenGenVar, and the copy-
right of the software was provided freely. PhenGenVar was implemented on a Windows
10 platform with an Intel Core i7 3.3GHz CPU, 32 GB main memory, and 1TB hard drive.

3. Results
3.1. Development of a PhenGenVar Browser Application

We developed a PhenGenVar browser application as an intuitive user interface to
enable clinical physicians and biological researchers to explore genetic variations in a
gene of interest for molecular diagnosis. It allows users to browse for genomic regions
and variants associated with a specific phenotype. To protect the personal information of
patients and enhance the speed of the analysis, the application was developed as a personal
computer-based software program that runs locally instead of a web-based program.

PhenGenVar consists of two separate browsers: an exome browser and a genome
browser (Figure 1). The exome browser of PhenGenVar is the main program designed
for gene-level analysis by selecting a user-defined phenotype-related gene set and then
monitoring the genetic variations of the specific gene. The exome browser output displayed
the corresponding genomic regions with the reported variants and detailed information.
The genome browser can subsequently be called from the exome browser and utilized
to closely browse the variant calling results based on read alignment. Thus, the Phen-
GenVar application provides a convenient and intuitive user interface at various levels of
genomic resolution.

3.2. PhenGenVar Exome Browser for Gene-Level Variation Analysis

The exome browser of PhenGenVar is an overview page for gene-level analysis of
genetic variations from a patient’s genomic data, such as exome sequencing or whole-
genome sequencing. This browser page mainly consists of data uploading areas, gene and
variant filtering panels, and an exon viewer panel (Figure 1A).

http://dblab.hallym.ac.kr/PhenGenVar
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Figure 1. Main pages of PhenGenVar exome and genome browser. (A) Main page of PhenGenVar
exome browser. The browser consists of menu bar (1), control panel (2), gene/transcript view panel
(3), gene filter panel (4), exon variant call panel (5), VCF filter panel (6), information panel (7), main
exon view panel (8), and exon view control panel (9). (B) Main page of PhenGenVar genome browser.
The browser consists of control panel (1), cytoband panel (2), coverage graph panel (3), genetic
structure panel (4), and main genome view panel (5).

To begin data analysis, it is necessary to upload the binary sequence alignment map
(BAM) file and VCF file, both of which are generated from the patient’s exome or whole-
genome sequencing data. To explore the genetic variations of genes related to the patient’s
disease phenotype, a gene list can be created or typed individually as HUGO Gene Nomen-
clature Committee (HNGC) official gene symbol names [51]. In addition, the exome browser
provides the gene groups registered in human phenotype ontology (HPO), which is a com-
prehensive resource for over 13,000 terms related to phenotypic abnormalities found in
human diseases [24]. To analyze the genetic variations of each gene using the VCF/BAM
file data, users can flexibly select a specific human reference genome sequence version and
dbSNP version.

Once the patient’s genome data and gene groups are uploaded, the analyzed output
data are represented as a summary table, as shown in Figure 2A. This table shows the SNP
data for each gene in the selected gene group. The SNP data include not only the SNPs
registered in the dbSNP database [52] but also novel SNPs, which might be rare variations
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found in the patient’s genome. A set of genes with genetic variation can be selected using
the gene filter panel of the exome browser, as shown in Figure 2B. In this filter panel, allele
frequency values can also be adjusted to narrow down genes with more significant genetic
variations. In addition to gene filtering, a more detailed filtering option is available using
the VCF filter panel (Figure 2C, upper panel). Once a specific gene is selected from the
gene filter panel, all variant information of the corresponding gene is represented in the
exon variant call panel of the exome browser (Figure 2C, lower panel). This panel provides
detailed variant information, such as position, dbSNP reference number (rsID), sequence
alterations compared to the reference genome, and type of variations. In the above VCF
filter panel, additional filtering was performed by clicking the type of sequence variations
and adjusting the allele frequency.
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Figure 2. Output data of the exon variant information. (A) Statistical summary of the variant
information from the VCF file. (B) Example of the gene filter panel and gene/transcript view panel.
The genes and transcript with variants are highlighted with green color. (C) Example of the variant
output in the VCF filter panel and the exon variant call panel.

The final output of the exome browser is shown in the main exon view panel, in which
the gene structure, variants along the reference sequence, and read alignment are repre-
sented (Figure 3). To test how the PhenGenVar application can be utilized to detect genetic
variation, we uploaded a publicly available personal whole-genome sequence data from
1000 human genome project and monitored it to identify various genetic variations [50].
In the gene structure area, exons with or without sequence variations are represented
in blue or green boxes, respectively. The read alignment viewer showed various types
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of sequence variations, such as SNPs (Figure 3A), deletions (Figure 3B), and insertions
(Figure 3C). Therefore, we were able to identify specific sequence variations in the read
alignment viewer. The sequence variation regions can also be represented by selecting the
specific variation from the exon variant call panel (Figure 3C). Since the PhenGenVar appli-
cation was designed to show the read alignment in the 30 bp upstream and downstream
of the exon as a default setting, the exome browser also provides sequence variation in
the intron. The scope of intron area output was adjustable in the Viewer Control Panel.
We demonstrated that the exome browser of the PhenGenVar application can be used to
identify genetic variations, which might be related to the patient’s disease phenotype.
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Figure 3. Identification of genetic variants in an exome browser. (A) Single nucleotide polymorphism
(SNP) in an ATR gene. The red box indicates the position of SNP. (B) Deletion in a MST1L gene. The
deleted area is shown in a red box. (C) Insertion of the sequences in a PRDM2 gene. The position of
the insertion is indicated by the arrow.

3.3. PhenGenVar Genome Browser for Single Base-Resolution Analysis

The PhenGenVar genome browser was designed to present detailed read alignment
information at single-nucleotide resolution (Figure 1B). The genome browser is popped up
from the exome browser by selecting variants from the exon variant call panel or by double
clicking the variant region from the main view panel. In addition, read alignment can be
performed in a specific region of the genome by typing the chromosome position or gene
name in the control panel of the genome browser. The resolution of the read alignment
panel can be adjusted by changing the levels in the trackbar of the control panel from 59 bp
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to 121,704 bp. Thus, the structure of the corresponding gene and its neighboring genes
can be shown at low resolution, while the nucleotide sequences and coded amino acid
sequences can be shown at higher resolution.

To test whether the PhenGenVar genome browser can be utilized to identify specific
genetic variations at single-nucleotide resolution, we monitored the various types of se-
quence variations using the personal genome sequencing data that were used above. As
shown in Figure 4, we identified SNP variant, deletion, and insertion in specific genes of
personal genome. The single nucleotide change from C to T in an ATR gene, in which
the synonymous mutation does not change the coding amino acid, was identified from
all the sequence reads (Figure 4A). In an MST1L gene, deletion of five nucleotide was
confirmed in half of the sequence reads (Figure 4B). This implies that one of two paired
chromosomes harbors a mutated MST1L gene with a frameshift. We also identified an
insertion of additional CTC sequence in a PRDM2 gene (Figure 4C). Since about half of the
sequence reads contained this insertion, we estimate that one of two paired chromosomes
has a mutated PRDM2 gene with an additional CTC insertion. As a result, we showed that
the visual inspection with a PhenGenVar genome browser is an effective and powerful
tool for variant call validation, reducing the number of false positives and assisting in the
confirmation of true genetic variant discoveries.
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(C) Insertion of the sequences in a PRDM2 gene. The positions of genetic variants are indicated with
red boxes.
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4. Discussion

In this study, we developed a knowledge-based PhenGenVar browser for disease-gene
variation visualization for clinical diagnosis. Using personal whole-genome sequencing
data, we proved that the PhenGenVar browser is useful for identifying genetic variations,
such as SNPs, insertions, and deletions of specific genes from the user-defined gene set.
Compared to other genome browsers, such as IGV, which were designed to monitor genetic
variations of all genomic regions from large-scale datasets, our program was specialized to
quickly detect the genetic variations of genes of interest from the patient’s exome or whole-
genome sequencing data. Moreover, because the PhenGenVar can be installed on a personal
computer, the security of the patient’s personal information can be better guaranteed.

The advent of high-throughput NGS technology has accelerated the discovery of com-
mon and rare disease-associated genetic variants in large population genomic data [53,54].
Based on this information, personal exome or whole-genome sequencing has been widely
used to identify genetic variations and their associations with various human diseases [54,55].
For instance, BRCA1 and BRCA2 are partially responsible for breast and ovarian cancers,
and their SNVs are widely used for cancer diagnosis [56]. Since our knowledge of the genes
related to a specific disease phenotype has greatly increased, it is necessary to diagnose
a patient’s disease using a precise and fast method. The PhenGenVar application can
be used as a tool for this purpose. Compared to previous tools, one advantage of the
PhenGenVar program is that the exome browser is specifically designed to quickly monitor
the genetic variations in each exon and its exon–intron junction area, which is critical for
the deleterious mutations of disease-responsible genes. To prove this, we showed that the
application could easily detect genetic variations in specific genes using randomly selected
whole-genome sequencing data from an anonymous person. Thus, we believe that the
PhenGenVar can be widely used for clinical diagnosis utilizing the relatively cost-effective
exome sequencing data. Moreover, this method can be applied to custom-targeted gene
panel sequencing data [57].

The main objective of PhenGenVar application is to quickly identify genetic variations
from a knowledge-based gene set. Thus, the precise diagnosis using this application relies
on the quality of the gene set associated with a specific disease. The gene sets from the
HPO were pre-installed in the current version of PhenGenVar. We will update more disease
gene sets upon user request in the next version.

5. Conclusions

PhenGenVar is a freely available program developed with the aim of supporting clini-
cal diagnosis using the patient’s NGS data. It is designed to monitor the genetic variations
of selected gene lists that are associated with specific disease and phenotype. This user-
friendly program is developed for researchers or physicians to analyze the patient’s genetic
data with no programing knowledge requirement. Because the PhenGenVar browsers
provide the comprehensive GUI-based VCF visualization, it allows users to manage, filter,
query, and export the variant results in a fast and effective way (Supplementary Figure S1).
We expect that this tool can be widely used by the medical physicians to diagnose the
patient’s diseases from their genomic data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12060959/s1, Supplementary Figure S1. Simple steps to use
PheGenVar browser, PhenGenVar Exom Browser manual.pdf and PhenGenVar Genome Browser
manual.pdf.
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