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Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of
the transforming growth factor (TGF) family. MSTN has important functions in skeletal
muscle (SM), and its crucial involvement in several disorders has made it an important
therapeutic target. Several strategies based on the use of natural compounds to inhibitory
peptides are being used to inhibit the activity of MSTN. This review delivers an overview of
the current state of knowledge about SM and myogenesis with particular emphasis on the
structural characteristics and regulatory functions of MSTN during myogenesis and its
involvements in various muscle related disorders. In addition, we review the diverse
approaches used to inhibit the activity of MSTN, especially in silico approaches to the
screening of natural compounds and the design of novel short peptides derived from
proteins that typically interact with MSTN.

Keywords: myostatin, skeletal muscle, MSTN inhibitors, natural compounds, peptides

INTRODUCTION

Skeletal muscle (SM) is the largest organ, comprising ~40% of total body weight, and one of the most
dynamic and plastic tissues in the human body (Holmberg and Durbeej, 2013). These highly
dynamic plastic tissues constitute 50–75% of body protein content and perform a large number of
crucial body functions such as movement, temperature control, and maintaining glucose levels
(Frontera and Ochala, 2015). Muscle satellite cells (MSCs) are multipotent precursor cells that are
found between the sarcolemma and the basal lamina and provide anatomical and functional stability,
preserving SM integrity (Lee et al., 2018). MSCs are capable of self-renewing and developing
differentiated progeny. In particular, the proliferation and differentiation of MSCs to myotubes via
the myogenic program relies on the coordinated regulations of paired box transcription factors
(Pax3/Pax7) and the basic helix-loop-helix (bHLP) family of transcription factors (myogenic factor
5, Myf5; myogenic differentiation, MyoD; and myogenin, MYOG). During the gradual muscle loss
associated with muscular dystrophy (MD) or aging, MSC activity is commonly impaired due to
imprecise asymmetrical division or abnormal transcriptional control (Bianchi et al., 2020).

Aging is characterized by a progressive loss of muscle mass, leading to a loss of muscular strength
(Cartee et al., 2016). Apart from aging, the loss of muscle mass is also associated with several other
disease conditions such as cancer, chronic obstructive pulmonary disease (COPD), muscular
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dystrophies, acquired immune deficiency syndrome (AIDS),
immune disorders, congestive heart failure, etc. (Fanzani et al.,
2012). Furthermore, sarcopenia, a condition that impairs physical
ability and metabolism, is also linked to age-related loss of SM
mass and function (Curtis et al., 2015).

Myostatin; also known as growth differentiation factor 8
(GDF8) has been well reported to negatively regulate muscle
growth and size (Carnac et al., 2007; Chen et al., 2021). The
putative involvement of MSTN in muscle atrophy has been
documented in several studies, prompting interest in MSTN as
a therapeutic target to counteract muscle loss in patients with a
range of muscle-wasting conditions (Baczek et al., 2020; Sartori
et al., 2021). MSTN-deficient mice were found to have 2 to 3 times
the SM mass of wild-type mice, which indicated MSTN acts as a
negative regulator of muscle cells in vivo (McPherron et al., 1997).
MSTN inhibition is also regarded as a crucial therapeutic target in
the context of enhancing muscle strength and insulin sensitivity
(Camporez et al., 2016).

MSTN inhibition is considered to be a potentially effective
means of addressing the issue of muscle loss. Computational
methods are widely used to discover novel inhibitors in a quick
and cost-effective manner, typically through peptide design and
compound screening. Usually, peptides are generated based on
the 3D structures of protein complexes (Baig et al., 2018). Peptide
fragments are often created from the interacting residues of
protein-protein interactions (PPIs), which are central
considerations in rational drug design (Baig et al., 2016).
Computational screening of large compound collections
against the binding sites of target proteins often results in the
rapid identification of potential ligands. Virtual screening (VS.) is
usually conducted using structure- and ligand-based approaches
(Baig et al., 2016).

Other TGF-β superfamily members, in addition to MSTN, are
documented to be effective negative muscle regulators, notably
“activin A” being the second negative muscle regulator. Latres
et al. (2017) found that MSTN and “activin A” adversely affect
muscle development and function, and that blocking both of
these ligands with antibodies resulted in a large increase in muscle
and lean body mass in mice and monkeys, with a better
therapeutic window than inhibiting all TGF-ligands.

The role played by MSTN in the development and growth of
SM, and the mechanism by which it regulates the myogenic
process are discussed in this review together with its role in
different diseases and the strategies used to inhibit its activity
[from natural compounds to myostatin inhibitory proteins
(MIPs)]. In addition, we also review the state-of-the-art in
silico approaches used to design MSTN inhibitors based on
the structures of its interacting proteins.

SKELETAL MUSCLE AND MYOGENESIS

SM is composed of muscle fiber with a unique structure, which
mainly consists of actin and myosin filaments that allow muscles
to contract and relax. Each muscle fiber represents a muscle cell,
which has a fundamental cellular unit known as the sarcomere.
Fascicules are formed by bundles of myofibers, and muscle tissue

is formed by bundles of fascicles, with each layer being contained
by the ECM and maintained by cytoskeletal networks (Lieber and
Friden, 2000). Thus, SM is responsible for body movement and
posture. In addition, SM physically protects soft tissues, and
internal organs, and maintains body temperature by producing
heat using the energy generated during muscle contraction
(Argilés et al., 2016).

The SMs present a strong capacity to regenerate, even after
serious damage caused by heavy exercise, mechanical laceration,
disease, or induced under experimental circumstances, e.g., by
crushing or injecting cardiotoxin (CTX), begin a cascade of
episodes leading to the muscle restoration (Collins and
Morgan, 2003; Guardiola et al., 2017). MSCs divide
symmetrically to increase their number, or asymmetrically to
produce cohorts of committed satellite cells and consequently
progenitors after they have been activated. Myogenic progenitors
multiply and eventually differentiate by fusing with other
myogenic progenitors or injured fibers in order to restore fiber
integrity and function (Dumont et al., 2015; Dueweke et al.,
2017).

REGULATION OF MYOGENESIS

Transcription Factors
MSCs present in SM originate from multipotent mesodermal
cells. Like embryonic progenitors, the progression of MSCs along
the myogenic lineage commences with the co-expressions of Pax3
and Pax7 and a family of bHLP transcription factors referred to as
myogenic-regulatory factors (MRFs), such as Myf5, MyoD, Mrf4,
and MYOG (Jan et al., 2016). These four MRFs are the
fundamental constituents of the myogenic pathway. Myf5, the
determining factor of myoblast, is expressed before commitment
to myogenic fate. MyoD, which is induced by Myf5, drives cells to
the myogenic lineage, and MYOG seems to work downstream of
Myf5 and MyoD, and it is necessary for the establishment of the
myogenic lineage as well as terminal differentiation of myoblasts
(Lindon et al., 1998; Tapscott, 2005; Londhe and Davie, 2011;
Ganassi et al., 2020).

When activated, MSCs undergo asymmetric division during
muscle regeneration to give rise to two self-renewal daughter cells
or emerge to form non-committed stem cells (Myf5-) for self-
renewal or committed (Myf5+) cells (Kuang et al., 2008). The up-
regulation of MyoD expression in activated MSCs (Pax7+/Myf5+)
causes them to proliferate to generate myoblasts (Shefer et al.,
2006). On the other hand, a decline in Pax7 expression in MyoD
primed myoblasts marks their withdrawal from the cell cycle and
entry into differentiation (Zammit et al., 2004). Collectively, the
transcriptional network regulates the progression of the MSC
lineage from origin to myogenic specification, differentiation, and
fusion to produce myoblasts.

Hormones
The regulation of muscle growth also involves different
hormones. A balance between the secretions of growth
hormone (GH) and testosterone was found to be a
prerequisite for optimizing muscle growth (Jan et al., 2016).
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Testosterone controls the sizes and numbers of muscle fibers by
stimulating the longitudinal growth of muscle fibers. Though
testosterone is associated with enhanced MSC proliferation and
differentiation, estrogen influences their trans-differentiation,
whereby lipids accumulate in differentiating myotubes
(Wheeler and Koohmaraie, 1994). As a result of stimulation of
insulin-like growth factor-1 (IGF-1) production via the liver JAK-
STAT pathway, GH stimulates muscle fiber hypertrophy by
enhancing the synthesis of proteins associated with MSC
proliferation (Velloso, 2008). IGF-1 is an important hormone
for muscle development and strength and helps in the
proliferative efficiency of MSCs. Reportedly, TGF-β1 acts as a
multifunctional cytokine that helps regulate muscle repair by
activating MSCs (Delaney et al., 2017). Oxytocin injection rapidly
enhanced muscle regeneration in young animals by aged MSCs
and their proliferation by activating the MAPK/ERK pathway
(Elabd et al., 2014).

GH-mediated conversion of thyroid hormone (TH) thyroxine
(T4) to triiodothyronine (T3) helps their distribution to different
tissues via binding to thyroxine-binding globulin, albumin, or
transthyretin (TTR) (Alshehri et al., 2015). TTR-based T4
distribution was found to promote myoblast differentiation by
regulating the expressions of myosin light chain 2 (MYL2) and
the calcium channel genes Cav1.1 and Cav3.1 (Lee et al., 2013).
We recently reported that during myoblast differentiation, TTR
maintains muscle homeostasis via the unique TH shuttle
mechanism. Furthermore, we postulated a unique mechanism
for T4 and T3 absorption and release in myoblasts, as well as the
role of TTR as an intracellular T4 sensor during myogenesis. (Lee
et al., 2019).

EXTRACELLULAR MATRIX

The extracellular matrix (ECM) is a complex structure comprised
of different structural molecules that provide mechanical support
to cells and maintain biochemical signaling (Zhang et al., 2021).
ECM proteins such as collagen IV and VI, laminins, and their
receptors (e.g., integrin α7β1 and dystroglycan) have been
reported to play crucial roles in SM development and to be
responsible for SM homeostasis (Thorsteinsdóttir et al., 2011;
Ahmad et al., 2020a; Ahmad et al., 2020b). ECM components
interact with and regulate the MSC niche in muscle fibers, and
alterations or inadequacies in the components of SM ECM can
have dramatic effects on the characteristic functions of MSCs
such as activation, self-renewal, proliferation, and differentiation
(Thomas et al., 2015).

Some ECM proteins bind and modulate the function of
MSTN, especially fibromodulin (FMOD), decorin, fibronectin,
and laminins (Miura et al., 2010). Earlier, we investigated several
ECM proteins, namely, FMOD (Lee et al., 2016; Lee et al., 2018),
matrix gla protein (Ahmad et al., 2017), and dermatopontin (Kim
et al., 2019), that play vital roles in the regulation of myogenesis.
MSTN is known to inhibit the transcription factors Pax7, MYOD,
and MYOG and thereby, regulate MSC proliferation and
differentiation (Joulia-Ekaza and Cabello, 2006; McFarlane
et al., 2008). Interestingly, it was observed FMOD bypassed

the inhibitory effects of MSTN and maintained its
transcriptional activity. We showed that FMOD directly bound
with MSTN in myoblast differentiation by co-
immunoprecipitation. Furthermore, PPIs between FMOD and
MSTN and its receptor (Activin receptor type-IIB, ACVRIIB)
showed that FMOD effectively reduced the interaction between
MSTN and ACVRIIB (Lee et al., 2016).

Intracellular aggregation of methylglyoxal, a precursor of
advanced glycation end-products (AGEs), and subsequent
glycation of biomolecules impaired ECM remodeling, and
curcumin and gingerol have been reported to reduce the
impact of AGE on myoblasts (Baig et al., 2017). Moreover,
enhanced AGE production and consequent RAGE (AGE
receptor)-AGE interaction hinders the muscle development
program. We also found by in silico analysis that the MSTN-
ACVRIIB interaction is reduced by curcumin or gingerol.
Protein-ligand (curcumin/gingerol and MSTN) and protein-
protein interactions (MSTN and ACVRIIB) studies were
carried out to explore the effect of curcumin and gingerol in
the myogenesis processes. MSTN was found to have interacted
with ACVRIIB with an energy score of −56.99. However, the free
energy of MSTN to ACVRIIB binding fell to −46.55 and −47.26,
correspondingly, for MSTN-curcumin and MSTN-gingerol
complexes, showing that curcumin and gingerol interfere with
MSTN-ACVRIIB interaction (Baig et al., 2017).

MYOKINES

SM produces several bioactive proteins, including cytokines, and
numerous other peptides collectively called “myokines”. Skeletal
myofibers produce a plethora of myokines, which exert auto-,
para, and/or endocrine effects. Since myokine secretion is
generally regulated by exercise, it has various advantageous
effects on metabolic, cardiovascular, and mental health
(Manole et al., 2018). Myokines are known to be involved in
MSC activation and regulate their major functions, for example,
they augment proliferation and differentiation rates (Mandai
et al., 2017). The roles of myokines in the SM milieu appear
to be directed toward MSC regulation at different stages, for
instance, MSTN and growth differentiation factor 11 (GDF11)
down-regulate MSC activation, proliferation, fusion, and
differentiation, while IGF-1 promotes MSC fusion and
differentiation (Mandai et al., 2017; Suh and Lee, 2020b).

Interleukin (IL)-6 plays a pleiotropic function in multiple
tissues and organs. SM produces and secretes IL-6 during
prolonged exercise, and is thus reflected as myokines (Munoz-
Canoves et al., 2013). Local IL-6 production increase MSCs
activation and promote the regeneration of myotube (Munoz-
Canoves et al., 2013). Besides, IL-6 treatment has been found to
enhance MSCs proliferation by controlling the cyclin D1 and
c-myc genes (Serrano et al., 2008). The importance of IL-6 in
myogenic differentiation has been confirmed as myoblast
obtained from IL-6 null mice exhibits reduced fusion ability
in vitro (Hoene et al., 2013). Like IL-6, leukemia inhibitory
factor (LIF) has also been identified as a myokine, released by
SM in response to exercise (Broholm and Pedersen, 2010;
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Pedersen and Febbraio, 2012). LIF regulates MSCs proliferation
both in mice and humans. Exogenous LIF promotes the
proliferation of human myoblast by inducing the transcription
factors JunB and c-Myc (Broholm et al., 2011). In addition, LIF
has also been found to induce myoblast differentiation (Yang
et al., 2009).

Interleukin-15 (IL-15) is highly expressed in SM and has
anabolic effects on SM protein dynamics (Quinn et al., 2002).
IL-15 mRNA expression is up-regulated during myoblast
differentiation and its administration inhibits the white
adipose tissue deposition in rodents (Quinn et al., 2005). Also,
IL-15 treatment decreased muscle protein degradation and SM
wasting in an in vivo rat model of cancer cachexia (Carbo et al.,
2000). Furthermore, reduced exercise endurance has been
reported in IL-15−/− mice, however, enhanced exercise
induction has been found in SM-specific IL-15-transgenic mice
(Quinn et al., 2013; Quinn et al., 2014). Altogether, the above
studies indicate that IL-6, IL-15, and LIF appeared as a vital
myogenesis controllers, functioning during both myoblast
proliferation and differentiation.

MYOSTATIN

TheMSTN protein sequence includes a secretion signal sequence,
a proteolytic processing site, and a carboxy-terminal region with a
conserved pattern of nine cysteine residues, all of which are
shared by TGF-superfamily members. MSTN activation requires
proteolytic cleavages of the precursor protein by a furin family
enzyme and BMP1/Tolloid matrix metalloproteinase (Huang
et al., 2011). Natural MSTN mutations in increased SM mass
in many species including humans and similar results have been
observed in MSTN null experimental mice (Amthor et al., 2007).
During embryogenesis, MSTN is produced by cells in the
myotome and developing SM and regulates the overall amount
of muscle fibers formed. In adults, MSTN is secreted by SM,
circulates in the blood, and inhibits muscle fiber growth (Lee,
2012).

Structure of MSTN
MSTN is translated as a precursor protein, which undergoes
several proteolytic processing events that result in the formation
of active, mature MSTN (Qian et al., 2015). Initially, the
amino(N)-terminal signal sequence is removed by a signal
peptidase to form Pro-MSTN, and dimerization follows due to
disulfide bond formation near carboxy(C)-termini. Subsequently,
furin cleaves the dimer at its proteolytic processing site RXXR
site. C-terminus cleavage results in an N-terminal propeptide
with an N-linked glycosyl group and a receptor-binding domain
at the C-terminal. Latent MSTN complex forms when the
N-terminal propeptide binds the C-terminal region
noncovalently through a crucial peptide sequence, which
prevents MSTN from binding to its receptor. In the last stage,
BMP-1/TLD cleaves the propeptide, which leads to the release of
mature MSTN. Increased muscle growth in adult mice was
attributed to an inability to cleave the latent complex
(Wolfman et al., 2003).

Like other members of the pro-TGF-β superfamily, pro-MSTN is
a homodimer comprised of two identical disulfide-linked subunits.
Each chain consists of 109 amino acid residues containing a pro-
domain (N-terminal) and a smaller growth factor (GF) domain
(C-terminal). As found in other members of the TGF-β superfamily,
the GF domain of MSTN contains a cystine-knot motif and four
antiparallel β-strands referred to as “fingers”. The two identical GF
domains of MSTN are connected by their concave “palms”, which
are covalently linked to each other by disulfide bonds between C339
residues in the wrist region. The pro-domain contains N-terminal
“forearm” helices, which grasp mature GF, and a globular “arm/
shoulder” domain, which sits on top of the mature GF protomers
(Cotton et al., 2018). EachMSTNmonomer has four intermolecular
disulfide bonds, three of which are involved in cysteine knot
formation. When the two monomers of MSTN come together in
an antiparallel direction they generate convex or concave surfaces.
The cysteine knots and dimerization are the major determinants of
MSTN stability. Due to its similarity with activin class members
(~40%) and its binding to activin receptors and inhibitors (follistatin;
FST), MSTN has long been considered to be amember of the activin
class, as it has been shown to interact with ACVRIIB and ACVRIIA,
as well as FST (Lee and McPherron, 2001). However, later x-ray
structural analysis demonstrated that it is a member of the TGF-β
superfamily, though it exhibits remarkable differences in the
N-terminal region and in the region preceding the wrist helix
(Cotton et al., 2018).

SIGNALING PATHWAYS

The mechanisms of MSTN-induced SM loss are mediated by
reduced protein synthesis and/or enhanced protein catabolism
(Elliott et al., 2012). MSTN decreases protein synthesis by
inhibiting the Akt/mTOR signaling pathway and induces
muscle atrophy by promoting the transcriptions of atrophy-
related genes (atrogenes). MSTN signaling pathways can be
divided into Smad and non-Smad mediated pathways (Figure 1).

The Smad-Mediated Pathways
Mature MSTN contains a disulfide-linked dimer of the
C-terminal domain and is 100% identical in humans, mice,
rats, pigs, chickens, and dogs. The C-terminal dimer of mature
MSTN binds to ACVRIIB and results in the recruitment and
activation of activin type I receptors (Alk4 or Alk5), which in turn
promote the activations of Smad 2 and Smad 3 to inhibit
myoblast differentiation. Activation of MSTN signaling
inhibits Akt phosphorylation by IGF-1 and the IGF-1-induced
protein synthesis pathway possibly under Smad 3 mediation
(Morissette et al., 2009). Inhibition of the MSTN-ACVRIIB-
ALK4/ALK5-Smad2/3 pathway is strongly associated with
muscle hypertrophy in adults, and Smad3 also increases E3
ligase atrogin-1 expression, which increases protein catabolism
by the proteasome ubiquitination pathway (Goodman et al.,
2013). Although Smad2/3 plays a predominant role in the
protein catabolic pathway induced by MSTN, Smad3 null mice
also exhibit MSTN-induced SM atrophy. Furthermore, MSTN
overexpression was found to repress the differentiation of
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myoblasts by inhibiting MyoD and MyoD expression through
MEK/Erk1/2 pathways (myogenic differentiation suppression
pathways) (Yang et al., 2006). Thus, MSTN regulates muscle
mass by acting through various signaling pathways that regulate
muscle growth.

The Non-Smad Pathways
MSTN activates the JNK/Erk 1/2 (c-Jun N-terminal kinase/Erk 1/
2) signaling pathway in proliferating and differentiating C2C12
cells (Huang et al., 2007). Philip et al. reported MSTN activates
p38 MAPK through the TAK1-MKK6 cascade independently of
Smad activation in proliferating A204 and C2C12 cells and that
p38 MAPK plays an important role in the MSTN-regulated
inhibition of myoblast proliferation (Philip et al., 2005). In
another study, MSTN was found to act upstream of Wnt
pathway components and suppress Wnt4 expression, which is
capable of stimulatingMSC proliferation. Therefore, inhibition of
Wnt signaling downregulated MSC proliferation (Steelman et al.,
2006). Altogether, these findings suggest the complexity of MSTN
signal transduction is probably due to the involvement of
different signaling pathways and that the precise integration of
these pathways underlies the growth inhibitory effects of MSTN.

PATHOLOGIC ROLES OF MSTN

Muscle wasting is associated with cancer-related cachexia, age-
related sarcopenia, and metabolic diseases such as obesity and
diabetes, which are all directly related to morbidity and mortality.

Associations between MSTN and muscle-wasting conditions
have been investigated at the clinical level (Consitt and Clark,
2018). Plasma MSTN has been reported to increase with age, and
its association with the prevalence of sarcopenia was found to be
stronger in women (Bergen et al., 2015). In particular, plasma
MSTN has been suggested to be a possible marker for the early
diagnosis of cachexia in women with medullary thyroid
carcinoma (Hedayati et al., 2016). Furthermore, the expression
of MSTN in SMwas significantly greater in gastric cancer patients
before cachexia became clinically apparent, but this was not
observed in lung cancer patients (Aversa et al., 2012). In
another study, MSTN expression in the SMs of patients with
gastric cancer was no different from that observed in healthy
controls and was not associated with weight loss (D’Orlando
et al., 2014). Increased protein degradation is probably a primary
cause of pathologic muscle depletion, and it has been reported
that protein degradation was enhanced in an experimental model
of cancer cachexia and associated with muscle atrophy. In
preclinical investigations of cancer cachexia, excessive
proteolysis, particularly via autophagy and the ubiquitin-
proteasome system, and low protein synthesis in SM have
been documented (Sandri, 2016).

Diabetes and Obesity
Studies have explored the impact of MSTN on insulin resistance,
and several studies conducted using mouse models have provided
evidence that the absence of MSTN has significant effects on
metabolism, that is, it improves insulin sensitivity and reduces
obesity (Amor et al., 2019). Many studies have suggested that

FIGURE 1 | Smad and non-Smadmediated signaling pathway ofMSTN.MSTN binds to the ACVRIIB and ALK4/5 complex resulting in successive phosphorylation
of Smad2/3, leading to its binding with Smad4 and translocation of the complex to the nucleus. Non-Smad signaling, on the other hand, tends to suppress the AKT
intracellular signaling pathways. Both Smad and non-Smad mediated signaling cause gene transcriptional alterations in the nucleus, as well as activation of muscle
atrophymarker genes (MuRF1 and Atrogin1), resulting in muscle loss. Extracellularly, MSTN pathway inhibitors can bindMSTN directly or bind its receptor complex
to prevent MSTN from interacting with its receptor complex and triggering downstream signals.
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MSTN has a substantial impact on metabolism and may
contribute to the development of obesity and diabetes (Allen
et al., 2008; Allen et al., 2011). MSTN protein secretion was higher
from the cultured myotubes of obese insulin-resistant subjects.
High MSTN expression was first reported in the SMs of morbidly
obese patients, whereas low expression was associated with
subsequent fat loss (Hittel et al., 2009). In addition, MSTN
expression and insulin sensitivity were found to be inversely
proportional, and it was suggested a causal relationship exists
between MSTN expression and insulin sensitivity (Hittel et al.,
2010). In high-fat diet (HFD) mice, mutation-induced reductions
in MSTN activity protected against obesity-induced insulin
resistance (Wilkes et al., 2009). MSTN decreased insulin-
induced GLUT4 membrane translocation and glucose
absorption by inhibiting GLUT4 expression (Ahmad et al.,
2018; Liu et al., 2018).

Cancer Cachexia and Sarcopenia
Because SM is largely composed of proteins, an imbalance between
protein synthesis and degradation sensitively affects muscle mass,
and reductions in muscle mass may lead to functional disability and
an increase in the risk of injury and mortality. Cachexia and
sarcopenia are two representative conditions that are closely
related to gradual muscle loss and its inevitable consequences.
Although the mechanisms of muscle loss are not clearly defined
in either condition, the results obtained from experimental rodent
models and clinical trials indicate that MSTN inhibition offers a
promising means of controlling muscle loss and cancer-related
cachexia (Sakuma and Yamaguchi, 2012).

Cachexia is a multifactorial syndrome associated with a
chronic illness that causes involuntary weight loss due to
reduced SM mass with or without fat mass loss. Cachexia is
associated with chronic inflammatory disorders such as COPD,
heart failure, chronic kidney disease, AIDS, sepsis, and most
commonly cancer. The overall prevalence of cachexia due to any
disease is around 1% among the patient population (i.e.
approximately 9 million) (von Haehling and Anker, 2014).
The most prominent clinical feature of cancer-related cachexia
is SM loss due to anorexia and increased protein catabolism.
Nutritional support does not reverse weight loss and the
condition is treated using appetite-enhancing and/or anti-
inflammatory drugs (Sadeghi et al., 2018).

Inflammation probably contributes to muscle atrophy by
regulating the NF-κB signaling pathway, and conversely, the
suppression of inflammation reverses muscle atrophy (Yu et al.,
2017). In a study conducted on animals with tumor-induced
cachexia, the expression of MSTN was up-regulated (Samant
et al., 2017), and another study showed that blockage/inhibition
of MSTN in animals with cancer cachexia prevented muscular
atrophy without affecting tumor growth (Aversa et al., 2017).
Thus, it is believed that increased MSTN expression is
responsible for the progression of cancer and cancer-associated
cachexia. Furthermore, it was observed that genetic deletion of
MSTN or inhibition of its expression using anti-sense
oligonucleotide preserved muscle mass (Gallot et al., 2014). The
addition of a soluble antagonist of ACVRIIB that antagonizesMSTN
signaling also reduced cancer-associated cachexia and reversed

muscle wasting (Zhou et al., 2010). In a recent review, Hulmi
et al. reviewed the numerous anti-cachectic benefits of ACVR2
inhibition in preclinical cancer models and in combination with
anticancer therapies (Hulmi et al., 2021). The administration of this
antagonist to mice with Lewis lung carcinoma or transfected with
colon-26 cells improved muscle strength and reversed muscle
wasting and prolonged survival in mice with a C26 tumor (Zhou
et al., 2010; Busquets et al., 2012; Hatakeyama et al., 2016). MSTN
levels and MSTN-mediated signaling pathways were found to be
upregulated in experimental cancer cachexia and cancer patients
even before the development of cancer cachexia (Costelli et al., 2008).
However, plasma levels of MSTN are not always correlated with
muscle loss in human cancer patients (Loumaye et al., 2015), and
genetic deletion of MSTN or its acute inhibition using trichostatin A
or FST does not always have a preventive effect against cancer
cachexia in experimental rodents (Bonetto et al., 2009; BennyKlimek
et al., 2010). Antibody against MSTN failed to elicit any significant
clinical benefit in muscle dystrophy or pancreatic cancer patients
(Wagner et al., 2008; Golan et al., 2018).

Sarcopenia is the result of a decline in the number of motor units
andmuscle fiber atrophy and is more prevalent these days due to the
increasing number of elderly (Stoever et al., 2017). Although it is well
known that reduced protein synthesis and/or increased protein
degradation induces SM atrophy, reports regarding the
underlying molecular pathways are inconsistent. Currently, no
approved therapy is available for treating sarcopenia.
Nevertheless, numerous reports have demonstrated that MSTN is
a potential therapeutic target (White and LeBrasseur, 2014).

Moreover, reported relations between MSTN and muscle mass
and aging also vary. In healthy older men, lower serumMSTN levels
were linked to lower SMmass, but not in women (Peng et al., 2018).
It is also evident that serum MSTN does not differ in young and
sarcopenic elderly men (Ratkevicius et al., 2011). On the other hand,
serum MSTN levels are elevated in elderly people and inversely
correlated with lean mass. This discordance may stem from the
technical limitations of enzyme-linked immunosorbent assays or
radioimmunoassays used to discriminate between active and inactive
MSTN or between MSTN and the similar protein (GDF-11)
(Yarasheski et al., 2002). In SM, although MSTN mRNA levels
are not correlated with age, MSTN protein levels are elevated in
elderly subjects. Furthermore, MSTN protein levels are higher in the
muscle tissues of elderly men than in healthy young men after acute
muscle exercise (McKay et al., 2012).

Drug development targeting MSTN or its signaling pathways
is being actively pursued. The amount of nuclear FOXO1 was
increased in myotubes after MSTN treatment (McFarlane et al.,
2006). FOXO1 and Smad2 were found to synergistically increase
the MSTN mRNA expression and its promoter activity in the
myotube of the C2C12 cell (Allen and Unterman, 2007). MSTN
induced cachexia has been reported to be triggered by the
activation of the ubiquitin-proteasome system (UPS) via
FOXO1-dependent signaling, and it has been shown that
increased MSTN expression is involved in the production of
COPD-related muscle atrophy (Testelmans et al., 2010).

Ghrelin is largely produced in gastric oxyntic mucosa (DeBoer,
2011), and ghrelin treatment reduces proinflammatory cytokine
release in cachexia patients (Kishimoto et al., 2012). Furthermore,
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increases in anabolic activity by ghrelin enhance GH release and
reduce the effects of inflammation, which offers promise for the
treatment of cachexia (Yanagi et al., 2018). In addition, ghrelin has
been shown to prevent muscle atrophy in rats by enhancing AKT
phosphorylation, suppressing the MSTN pathway, and activating
myogenin and MyoD (Chen et al., 2015). Ghrelin formulations for
parenteral administration are being developed (Garin et al., 2013).
However, administration by injection over extended periods can
result in poor patient compliance and therapy failure, and ghrelin is
prone to enzymatic breakdown in blood when delivered
intravenously (Brimijoin et al., 2016). Liposomes are frequently
utilized as drug carriers due to their ability to encapsulate
hydrophilic, amphiphilic, and lipophilic compounds (Pashirova
et al., 2020), and the protective phospholipid layers of these
systems protect ghrelin from pH, free radical, and enzymatic
degradation in vivo (Sessa and Weissmann, 1968) and
metabolism in the mucosal layer of the nasal cavity (Vieira and
Gamarra, 2016). Ghrelin liposomes coated with chitosan are being
developed for nose-to-brain administration for the treatment of
cachexia (Salade et al., 2017). Furthermore, it has been shown that
anionic liposomes can protect ghrelin from enzymatic breakdown by
trypsin and carboxylesterase. Ghrelin interacts with lipid bilayers
electrostatically and hydrophobically. Coating ghrelin with N-(2-
hydroxy) propyl-3-trimethyl ammonium chitosan chloride
enhanced mucin adsorption capacity (22.9%), with improved
permeability via Calu3 epithelial monolayers recovering 10.8% of
ghrelin in the basal compartment versus nonloaded ghrelin was
used. Ghrelin can also be protected frommetabolic enzymes in nasal
tissues. Anionic liposomes coated with chitosan in dry powder form
exhibited better mucin adhesion, ghrelin loadings, and enzymatic
protection against trypsin, and reduced ghrelin degradation during
storage at room temperature (Howick et al., 2018).

MSTN INHIBITION

Ever since its discovery, intensive research has been conducted to
suppress the activity of MSTN using soluble activin type IIB

(sACVRIIB) receptors, peptides or propeptides, small molecules,
neutralizing antibodies, or MIPs (Table 1).

Antibodies
The injection of MSTN neutralizing antibodies is known to
significantly increase muscle mass (by up to 17%) in aged
mice. The administration of neutralizing antibodies targeting
MSTN, such as LY-2495655, MYO-029, PF-06252616, ATA
842, and REGN1033/SAR391786, improves body metabolism
as well as the increase of SM mass (Camporez et al., 2016; St
Andre et al., 2017). Furthermore, these antibodies help
increase muscle mass and strength while attenuating
muscle atrophy and act by blocking the ability of MSTN to
prevent the signaling of TGF-β family members (Latres et al.,
2015).

MSTN Receptor Proteins
ACVRIIB is a widely reported signaling receptor for several
members of the TGF-β superfamily. ACVRIIB is involved in
the negative regulation of muscle mass and is extensively
distributed in SM, adipose tissues, and other organs. ACE-
031 is a soluble form of ACVRIIB, and various studies on an
Amyotrophic Lateral Sclerosis mouse model have shown a
single dose of ACE-031 increases muscle mass and strength.
This fusion protein of ACVRIIB and IgG1-Fc acts by binding
to MSTN, and thus, disrupts its inhibitory effect (Campbell
et al., 2017). Experiments on ACE-031 were subsequently
suspended due to possible safety issues of epistaxis and
telangiectasia.

Peptides/Propeptides
The latent MSTN complex circulates in the blood and is
subsequently converted into its mature form after the removal
of associated propeptides (Lee and McPherron, 2001). The
binding of MSTN by these propeptides prevents MSTN
functioning, and this is considered potential means of
increasing muscle mass (Yang et al., 2001). Soon after the
removal of these propeptides by proteolytic cleavage and

TABLE 1 | List of MSTN inhibitors.

Category/type Name Stage Function References

Myostatin/ACVRIIB
Antibodies

LY-2495655 phase 2 trial increases lean mass in elderly people Becker et al. (2015)
MYO-029 phase 1/2 trial used to treat DMD by binding to myostatin and inhibiting its function Wagner et al. (2008)
PF-
06252616

phase 2 trial induce muscle anabolic activity in the mdx mouse model of DMD St Andre et al. (2017)

ATA 842 increased muscle mass and muscle strength in young and old mice Camporez et al. (2016)
ACE-031 Phase 2 trial

(terminated)
potential therapy for myopathies Campbell et al. (2017)

ACE-2494 Phase 1 trial significant gain in muscle mass in Col1a1Jrt/+mice Tauer and Rauch, (2019)
ACE-083 Phase 2 trial improve muscle mass in a variety of neuromuscular conditions Glasser et al. (2018)
Bimagrumab Phase 2 trial enhances differentiation of primary human skeletal myoblasts and increases

SM mass in mice
Dutt et al. (2015)

Natural compounds Epicatechin phase 1/2a trial enhances exercise capacity in mice Gutierrez-Salmean et al.
(2014)

Sulforaphane Phase 2 trial repairs vascular smooth muscle cell dysfunction in age-related cardiovascular
diseases and protects against skin aging

Bose et al. (2020)
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conversion of latent MSTN to its mature form, MSTN binds to its
receptor (usually ACVRIIB) and initiates the signaling process
that regulates muscle growth. At this stage, several MIPs inhibit
the binding of MSTN to ACVRIIB.

Myostatin Inhibitory Proteins
Follistatin
Follistatin (FST) is an extracellular cysteine-rich glycoprotein,
which is structurally dissimilar to TGF-β family members, and it
has been established that FST interrupts the activity of MSTN by
binding to it and preventing MSTN binding to its receptor (Lee
and McPherron, 2001; Liu et al., 2021). In vivo studies have
reported that the overexpression of this glycoprotein has
hypertrophic effects on mouse muscles similar to those
observed in MSTN null mice (Winbanks et al., 2012).
Moreover, a homozygous mutation in the FST gene reduces
muscle mass, which suggests it plays an important role in the
regulation of myogenesis (Lee et al., 2010; Liu et al., 2021).

FST-Related Gene
FST-related gene (FLRG) also known as FSTL3 protein, exhibits
high homology to a 10-cysteine repeat of FST. In vitro studies
have shown that like FST, FLRG binds to activin and BMPs to
inhibit their biological activities (Tsuchida et al., 2001).
Furthermore, endogenous latent MSTN complex largely
circulates in association with propeptide and FLRG, which
both act independently as negative regulators of MSTN,
probably by preventing MSTN binding to its receptor (Thies
et al., 2001). Reports suggest that FLRG potently inhibits MSTN
activity in a concentration-dependent manner (Hill et al., 2002).
Monovalent FSTL3-Fc fusion protein (mono-FSTL3-Fc)
generated with knobs-into-holes technology has recently been
reported to overcome the limitations of existing anti-myostatin
therapies, as systemic administration of mono-FSTL3-Fc in mice
resulted in muscle fiber hypertrophy and improved muscle mass
in vivo (Ozawa et al., 2021a; Ozawa et al., 2021b).

Growth and Differentiation Factor-Associated Serum Protein
Growth and differentiation factor-associated serum protein-1
and -2 (GASP-1 and GASP-2) also importantly regulate the
biological activity of MSTN (Lee and Lee, 2013). These two
proteins are mostly expressed in adult tissues and have been
well reported to induce small but significant increases in muscle
mass in mice (Monestier et al., 2012). One of the multiple
domains of GASP-1 is homologous to the 10-cysteine repeat
of FST, whereas, in GASP-2, the FSD domain is responsible for
MSTN binding. Recombinant GASP-1 binds directly to mature
MSTN and its propeptide, and the inhibitory potential of GASP-1
is reduced when its C-terminal domains are removed (Hill et al.,
2003).

Decorin and FMOD
Decorin (DCN) is a component of the MSTN signaling
pathway and has been reported to antagonize the effects of
MSTN. This member of the small leucine-rich proteoglycan
gene family has been found to suppress MSTN activity
efficiently and to enhance the differentiation and

proliferation rates of myogenic cells (Kishioka et al., 2008).
Reportedly, MSTN and decorin are produced at the same time
in muscle cells (Nishimura et al., 2002). FMOD is known to be
actively involved in the assembly of ECM and was recently
reported to be a novel regulator of MSTN during myoblast
differentiation by regulating the transcriptional activities of
MSTN and other myogenic marker genes, which include
myogenin (MYOG) and myosin light chain 2 (MYL2) (Lee
et al., 2016). FMOD suppresses muscle aging by negatively
regulating the MSTN gene or reducing the action of MSTN
protein, while MSTN promotes muscle aging by positively
regulating the expressions of the Atrogin1, CD36, and PPAR
genes in muscle tissues (Lee et al., 2021a).

NATURAL COMPOUNDS

Epicatechin
(-)-Epicatechin (EC) is a flavonol, anti-oxidant, and bioactive
stereoisomer of catechin that is used as a food supplement and
found in cocoa and green tea (Gadkari and Balaraman, 2015). EC
treatment also reduced MSTN expression and significantly
increased the levels of myogenic marker genes responsible for
muscle growth in the quadriceps muscles of mice, and it has been
well-established aging is associated with higher MSTN levels but
reduced levels of several myogenic genes such as FST, MYOG,
and MyoD (Mafi et al., 2019). These findings suggest EC
promotes SM development by inhibiting MSTN.

Fructus Schisandrae
Fructus Schisandrae (FS; Schisandra chinensis) is a well-known
traditional herb in Korea, China, and Japan. The dried fruit of
this herb (called Baill) is used to enhance physical capacity
and for its anti-inflammatory and anti-stress effects
(Panossian and Wikman, 2008). It has been reported that
FS extract helps increase SM mass. When administered to a
mouse MD model that exhibited high MSTN mRNA levels, FS
extract reduced these levels in a dose-dependent manner
(Kim et al., 2015).

Sulforaphane
Sulforaphane (SFN), which is found in cruciferous vegetables, is a
bioactive isothiocyanate that inhibits the activity of histone deacetylases
(HDACs) (Myzak et al., 2006). SFN significantly reduces MSTN
expression in porcine MSCs and can inhibit HDAC activities and
DNA methyltransferase expression (Fan et al., 2012).

Astragalus Polysaccharide
Astragalus polysaccharide (APS; also known as Huang Qi) is a
well-known extract of Astragalus membranaceus (Fisch.) Bge
(AMB) (Fu et al., 2013). Injection of APS into the SMs of non-
insulin-dependent type 2 diabetic KKAy mice ameliorated
insulin resistance and hyperglycemia, and reduced MSTN
levels in SM, which demonstrated APS might improve
insulin sensitivity and reduce SM MSTN levels by
downregulating the ROS-ERK-NF-κB pathway (Liu et al.,
2013).
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Glycyrrhiza Uralensis
G. uralensis is native to Asia and is used as a medicinal herb,
sweetener, and in traditional Chinese medicine (Ji et al., 2016).
Recently, we reported that G. uralensis inhibits MSTN expression
and promotes myogenesis. In addition, liquiritigenin,
tetrahydroxymethoxychalcone, and licochalcone B isolated
from the EtOAc fraction of G. uralensis enhanced myoblast
proliferation and differentiation, and liquiritigenin enhanced
muscle regeneration in injured muscles (Lee et al., 2021b).
These findings show that G. uralensis-derived compounds
have therapeutic potential for the management of muscle-
related disorders.

DEVELOPMENTAL APPROACHES USED
TO DESIGN MSTN INHIBITORS

We have been working in the SM field using in silico, in vitro, and
in vivo techniques with an emphasis on the mechanism
responsible for SM development and regeneration, for more
than a decade. Our quest for an efficacious natural MSTN
inhibitor in the form of a small molecule or short peptide is
ongoing. This section will give a brief understanding of screening
natural compounds (Figure 2) and designing short peptides
(Figure 3).

Protein-Protein Interactions
PPIs play a vital role in mediating various cellular processes, and
thus, have attracted research attention (Guo et al., 2014; Qiu et al.,

2020). The advancement in the field of 3-dimensional structure
predictions of proteins and PPI includes the recent discovery of
AlphaFold (Jumper et al., 2021) and AlphaFold2 (Bryant et al.,
2022). Studies have shown that PPI provides a means of
effectively regulating various pathways and of developing
therapeutic targets. However, all the interfaces of proteins do
not contribute equally to PPI (Guo et al., 2014).

The mechanism of action of MSTN is based on its interaction
with other proteins in the pathway leading to the transformation
of latent MSTN to its mature form and further activation of the
Smad pathway, which leads to the inhibition of myogenesis.
Studies have shown PPIs are key mediators of various
signaling and regulatory networks (Villoutreix et al., 2008). As
discussed above, during the activations of different signaling
processes, and thus, the activations of atrophic genes, MSTN
interacts with a large number of different proteins, which
provides clues for the design of peptide inhibitors of MSTN.
Peptides that inhibit MSTN activity can be derived in two ways.

Derivation of Peptide Inhibitors From MIPs
MSTN is known to interact with FST, GASP-1, GASP-2, decorin,
FMOD, and FLRG, which are collectively referred to as MIPs.
These proteins inhibit the formation of mature MSTN complex
and interfere with complex formation between MSTN and
ACVRIIB. Designing short peptides based on the make-up of
MIPs offers a potential means of effective MSTN inhibitors, and
some studies indicate that these inhibitory peptides have
therapeutic potential for the treatment of a range of muscular
dystrophies (Tsuchida, 2008). FS I-I (MSTN-specific inhibitor

FIGURE 2 | A typical approach for the conventional drug design and development strategy. An overview of the techniques for identifying MSTN inhibitors using
in silico (virtual screening, molecular docking, ADMET, and so on), in vitro, and in vivo approaches.
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derived from FST) provides an example of an FST-derived
inhibitory peptide and increased SM mass in mdx/FS I-I mice
and reduced cell infiltration into muscles (Tsuchida, 2008). DCN
is another MIP protein with MSTN inhibitory potential. DCN48-
71 and 42-65 are two short fragment peptides derived from
members of the small leucine-rich proteoglycan family that
demonstrated MSTN inhibitory activity in vitro (El Shafey
et al., 2016). Similarly, other studies have successfully
identified and tested short peptides capable of inhibiting
MSTN activity. One such example is
WRQNTRYSRIEAIKIQILSKLRL-amide, which was designed
based on the mouse MSTN prodomain. Administration of this
peptide to MDX mice (a model of DMD) significantly increased
muscle mass. Subsequently, several peptides were designed by
structure-activity relationship (SAR) analysis of this short
peptide, and peptide ‘3d’ (XRQNTRYSRIEWIKIQIISKLRL-
amide) exhibited 11 times the potency of its parent and
induced muscle growth in MDX and wild-type ICR mice
(Takayama et al., 2017).

Detailed structural study of interactions between MIPs and
MSTN helped identify residues largely responsible for inhibiting
MSTN activity. These were later assembled in different
combinations to produce candidate anti-MSTN peptides.
Three-dimensional (3D) structures of MSTN in complex with
various isomers of FST are available in the protein data bank
(PDB) (e.g. PDB ID: 3HH2, 3SEK, and 5JHW) (Cash et al., 2012).
Crystal structure analysis showed that the binding of two Fst-like
3 (FSTL3) molecules with MSTN dimer resulted in a highly
compact structure and strong interactions in the docked complex.

Self-Inhibitory Peptides
Designing peptide inhibitors targeting PPIs is challenging due to
the large sizes of PPIs. Nonetheless, substantial progress has been
reported in the field of PPI inhibitor design during the last few
years (Jones and Thornton, 1996; Lu et al., 2020; Valtonen et al.,
2020). The use of self-derived peptide inhibitors has been one of
the most successful PPI inhibitor design strategies. This strategy
involves deriving inhibitory peptides from PPIs that act by
inhibiting their cognate interactions. The use of self-inhibitory
peptides has attracted much interest as a means of inhibiting PPIs
that are considered important therapeutic targets (Vlieghe et al.,
2010). MSTN activity can also be inhibited by disrupting the
interaction between MSTN and its receptor. The approach of
targeting protein-protein interfaces to block interactions between
MSTN-ACVRIIB instead of enzyme active sites provides another
way of reducing MSTN-mediated signaling activity without
hampering the intrinsic catalytic functionality of these proteins
(Chen et al., 2021).

Virtual Screening for Natural Antagonists of
MSTN
Computer-aided drug design (CADD) and computer-assisted
molecular design (CAMD) are used as drug discovery tools in
the pharmaceutical science field (Baig et al., 2016). VS. is widely
used for drug discovery and is complemented by High
Throughput Screening (HTS). The VS./HTS approach is used
to screen compound libraries quickly and cost-effectively using
high-end computational approaches. Selected compounds are

FIGURE 3 | A flowchart depicting the workflow for in silico peptide design.
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subsequently tested for biological activity. The activities of many
identified natural compounds have yet to be determined, such as
those detailed in the Chinese traditional medicine and Korean
medicinal compound databases. Several groups have attempted to
identify novel therapeutic candidates that target MSTN, but
unfortunately, a large number of identified compounds were
not MSTN specific and were also found to block activin A
and TGF-β signaling (Suh and Lee, 2020a). The specific
targeting of MSTN remains a significant research challenge as
many TGF-β ligands exhibit considerable structural similarities.
Recently, we performed a VS-based analysis on known muscle-
enhancing natural compounds for MSTN inhibitory activity and
identified curcumin and gingerol as candidates (Baig et al., 2017).
Undoubtedly, there are limitations of the VS approach that
should be taken into account. The prevalence of
stereochemical and valence mistakes in biochemical compound
libraries may potentially result in inviable molecules (Williams
et al., 2012; Santana et al., 2021). There are a variety of open
source and licensed virtual screening software/tools available, and
each has its own constraints that must be overcome to prevent the
production of erroneous conclusions or artifacts (Gimeno et al.,
2019). For VS, licensed software such as Molecular Operating
Environment (MOE) (Vilar et al., 2008), and the GLIDE module
in Schrodinger (Bhachoo and Beuming, 2017) as well as open
access tools such as Autodock Vina (Trott and Olson, 2010), are
commonly used.

CONCLUSION

The inhibitory role played by MSTN in muscle development has
made it an important therapeutic target for accelerating muscle
mass. There are several ways of disrupting MSTN activity ranging

from the use of MSTN antibodies to natural compounds. Detailed
knowledge of these strategies and the use of in silico techniques
should improve knowledge of the structural characteristics of
MSTN and its bindings with inhibitory proteins, derived
inhibitors, and other natural compounds. Structural insight of
binding between different MIPs and MSTN should open new
doors to the design of better therapeutic peptide candidates.
Although no drugs have yet been developed to prevent muscle
degeneration, we believe that research efforts targeting MSTN
will result in treatments that attenuate muscle degeneration and
improve the quality of life in the elderly and those suffering
from MD.
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