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Background: Early recognition of deterioration events is crucial to improve clinical outcomes. For 
this purpose, we developed a deep-learning-based pediatric early-warning system (pDEWS) and 
aimed to validate its clinical performance. 
Methods: This is a retrospective multicenter cohort study including five tertiary-care academic 
children’s hospitals. All pediatric patients younger than 19 years admitted to the general ward 
from January 2019 to December 2019 were included. Using patient electronic medical records, we 
evaluated the clinical performance of the pDEWS for identifying deterioration events defined as 
in-hospital cardiac arrest (IHCA) and unexpected general ward-to-pediatric intensive care unit 
transfer (UIT) within 24 hours before event occurrence. We also compared pDEWS performance to 
those of the modified pediatric early-warning score (PEWS) and prediction models using logistic 
regression (LR) and random forest (RF). 
Results: The study population consisted of 28,758 patients with 34 cases of IHCA and 291 cases of 
UIT. pDEWS showed better performance for predicting deterioration events with a larger area un-
der the receiver operating characteristic curve, fewer false alarms, a lower mean alarm count per 
day, and a smaller number of cases needed to examine than the modified PEWS, LR, or RF models 
regardless of site, event occurrence time, age group, or sex. 
Conclusions: The pDEWS outperformed modified PEWS, LR, and RF models for early and accurate 
prediction of deterioration events regardless of clinical situation. This study demonstrated the po-
tential of pDEWS as an efficient screening tool for efferent operation of rapid response teams. 
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INTRODUCTION 

Many healthcare centers worldwide continue to develop and introduce various early-warn-

ing scoring systems to identify patients in critical condition in advance of onset to perform 
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prompt intervention to improve patient safety and clinical out-

come [1-5]. For afferent limbs, such systems widely range from 

simple and easy bedside calculations to more sophisticated 

complex scoring systems that include laboratory test results, a 

combination of patient clinical characteristics and medical his-

tories, and therapeutic interventions [6-9]. Furthermore, due 

to recent revolutionary progress in artificial intelligence (AI) 

and machine learning, these algorithms can be implemented 

for more precise and earlier prediction of critical events [10-13]. 

However, most research has focused on adult populations and 

has rarely been externally validated or widely implemented in 

real clinical practice. 

Previously, we developed a deep-learning-based ear-

ly-warning system (DEWS) for predicting in-hospital cardiac 

arrest (IHCA) in an adult population [14] and demonstrated its 

excellent clinical performance. After fine-tuning and setting up 

the DEWS, we implemented electronic medical records (EMR) 

to monitor the risk of deterioration among adult patients in 

general wards, presenting better performance that conven-

tional methods. The DEWS was successfully implemented 

in rapid response systems (RRTs) [15] and was validated by a 

multicenter study including adult patients [16]. Subsequently, 

further upgrades for learning and additional training using 

pediatric data led to development of a deep-learning-based 

pediatric early-warning system (pDEWS) that can predict pe-

diatric IHCA and unexpected general ward-to-pediatric inten-

sive care unit (PICU) transfer (UIT), which were validated in a 

single-center study [17]. In this study, we aimed to validate the 

clinical performance of pDEWS externally for predicting dete-

rioration events in a larger multicenter cohort and compared it 

to several conventional predicting models.   

MATERIALS AND METHODS 

Study Design 
This was a retrospective multicenter observational cohort 

study of five tertiary-care academic children’s hospitals. The 

requirement for informed consent was waived due to the ret-

rospective nature of the study. External validation of the clini-

cal performance of previously developed pDEWS for identify-

ing deterioration events defined as either UIT or IHCA within 

24 hours before event occurrence was performed [17]. This 

study was approved by the Institutional Review Board of each 

participating hospital (Seoul National University Children’s 

Hospital: 2003-229-1115; Severance Hospital: 4-2019-1304; 

Kyungpook National University Children’s Hospital: 2020-02-

002; Pusan National University Yangsan Hospital: 05-2020-005; 

Samsung Medical Center: 2020-03-148-0020, respectively).

Deep-Earning-Based Pediatric Early-Warning System 
The pDEWS architecture includes an embedding layer, three 

bi-directional long short-term memory (LSTM) layers for mod-

eling the sequential characteristics of EMR data as an encoder, 

and three fully connected (FC) layers as a classifier. Before the 

LSTM encoder, we embedded the input data, consisting of 

respiratory rate (RR), heart rate (HR), systolic blood pressure 

(SBP), diastolic blood pressure (DBP), body temperature (BT), 

age, and a time feature through the FC embedding layer. To 

reflect the vital sign trend for each patient, 20 consecutive se-

ries of vital signs were used as inputs to the LSTM layer [18]. 

We used the last time step LSTM output to pass to the FC layer. 

Batch normalization and dropout were used on each FC layer 

in the classifier to regularize and stabilize the pDEWS model 

[19]. By adding a softmax layer at the end, the pDEWS model 

output a score between 0 and 1. We optimized the parameters 

of the pDEWS model by minimizing the cross-entropy loss 

function with the Adam optimizer [20]. The hyperparame-

ters were tuned with the best performance from 10% of the 

derivation data. To resolve the class imbalance problem, we 

over-sampled the event data allowing duplication during the 

training process. We trained our model for 1000 epochs and 

selected the model with the highest area under the receiver 

operating characteristic curve (AUROC) score in the valida-

tion data. We also applied a transfer learning technique [21] to 

encourage our pDEWS model to obtain additional knowledge 

from other data by initializing the pDEWS model’s connection 

weights from the DEWS model, which was developed to pre-

dict adult patient IHCA. 

Materials 
Pediatric patients (<19 years old) admitted to the general 

wards of five university affiliate tertiary care medical centers in 

the Republic of Korea over a 12-month period between Janu-

ary 2019 and December 2019 were included. From EMRs and 

■ We developed a deep-learning-based pediatric ear-
ly-warning system (pDEWS) and performed a multicenter 
validation.

■ pDEWS showed excellent performance in predicting clin-
ical deterioration events regardless of clinical setting.

KEY MESSAGES
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the medical database, we collected patient data including age, 

sex, event occurrence, exact time and location of event occur-

rences, and length of hospital stay and extracted five basic vital 

signs—RR, HR, SBP, DBP, and BT—during hospitalization for 

pDEWS and other early-warning system calculation. 

We excluded patients with data recorded <30 minutes after 

admission, no vital signs at 24 hours prior to the deterioration 

event, incorrect demographics, and do-not-resuscitate orders. 

Patient information was anonymized and de-identified prior to 

analysis. Outlier values outside the normal range of each vital 

sign or non-numeric values were excluded from the initially 

collected data and treated as missing values (Supplementary 

Table 1). Missing values were replaced with the most recent 

previous values. Based on these data, we also calculated the 

modified pediatric early-warning score (PEWS) to include only 

vital sign parameters (HR, RR, SBP, oxygen saturation, and tem-

perature). 

Outcome Measures 
The primary outcome of interest was deterioration event, 

defined as a composite of IHCA and UIT. UIT was defined as 

“PICU admission due to acutely deteriorating clinical condi-

tions,” excluding routine scheduled post-surgical treatment 

or PICU admission for scheduled procedures. Secondary 

outcomes were numbers of each type of deterioration event, 

IHCA and UIT. We also performed subgroup analyses by hos-

pital, age groups, event occurrence time, and sex. 

Statistical Analysis 
For validation, we performed extensive statistical analysis us-

ing scikit-learn (Scikit-learn 0.23.1; community-driven project 

sponsored by BCG GAMMA) and pandas (Pandas 1.0.5; com-

munity-driven project sponsored by NumFOCUS). We evalu-

ated deterioration prediction performance by calculating the 

AUROC and the area under the precision-recall curve (AUPRC) 

[22,23]. AUROC is one of the most generally used metrics and 

shows the area of sensitivity versus the false-positive rate. 

Compared with AUROC, AUPRC describes class imbalance 

data by measuring the area under the plot of precision versus 

sensitivity. Additionally, we calculated F-1 score [2x(preci-

sionxrecall)/(precision+recall)], the net reclassification index 

(NRI), positive predictive value [PPV=true positive/(true 

positive+false positive)], negative predictive value [NPV=true 

negative/(true negative+false negative)], mean alarm count 

per day (MACPD) per 1,000 beds, and patient number needed 

to examine (NNE) [23,24]. The NRI is used to compare im-

provement in prediction performance. To compare the clinical 

prediction of deterioration events within 24 hours prior to 

occurrence, we trained random forest (RF) models with vari-

ous hyperparameter sets and logistic regression (LR) models 

with an L2 regularization penalty and 1e-4 tolerance for stop-

ping criteria to obtain comparable performance to that of our 

pDEWS model. Then, we evaluated the clinical performance 

of pDEWS by comparing to modified PEWS, RF, and LR. In ad-

dition to predictive performance, we evaluated the alarm rate 

with comparison to MACPD at a set sensitivity level and the 

cumulative prediction percentage of deterioration events at 

the same time point within 24 hours of the event. 

Additionally, we calibrated pDEWS to reflect the real prob-

ability of deterioration events because a predictive model 

should infer proper output probabilities without being ex-

treme. We visualized pDEWS model calibration performance 

by comparing it with the ideal calibration line. We also per-

formed feature importance analysis to interpret which char-

acteristics of vital signs influence pDEWS model decision and 

calculated the importance of each feature and time-step by 

applying Shapley Additive Explanations (SHAP) values [25]. 

RESULTS 

Study Population 
Among the 29,035 patients admitted to five hospitals over a 

12-month duration, 277 were excluded (Figure 1). Among 

the remaining 28,758 patients, 16,167 were male (56.2%). The 

median hospital stay was 3.35 days (2.25–6.13 days) (Table 1). 

A total of 996,874 vital sign sets was evaluated to validate the 

pDEWS. There were 34 cases of IHCA, 291 cases of UIT, and 

325 related vital sign sets. 

Figure 1. A flowchart for patient inclusion and exclusion.

29,035 Patients admitted to
5 included hospitals

from January 2019 to December 2019

28,758 Patients enrolled
for multicenter validation cohort

277 Patients excluded
190 Vital records <30 min 
  53 Missing demographics
  21 No vital signs recorded 24 hr before event
  13 Do-not-resuscitate orders
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Table 1. Baseline characteristics of the study population
Characteristics Value
Total admissions 28,758
 Vital sign data set 996,874
Admission with unexpected PICU transfer 291
 Vital sign data set 6,050
Admission with in-hospital cardiac arrest 34
 Vital sign data set 371
Male 16,167 (56.2)
Age (yr) 6.28±5.24
Length of stay (day) 3.35 (2.25–6.13)
Initial vital sign
 Systolic blood pressure (mm Hg) 104.51±5.24
 Diastolic blood pressure (mm Hg) 62.18±10.38
 Heart rate (/min) 109.66±25.66
 Respiratory rate (/min) 24.97±6.87
 Body temperature (°C) 36.81±0.60
 SpO2 98.42±2.20
Vital sign within 24 hr before outcome
 Systolic blood pressure (mm Hg) 103.51±5.24
 Diastolic blood pressure (mm Hg) 61.75±13.38
 Heart rate (/min) 129.00±30.74
 Respiratory rate (/min) 32.21±14.42
 Body temperature (°C) 37.12±0.75
 SpO2 96.36±5.68
Total vital sign
 Systolic blood pressure (mm Hg) 105.00±5.24
 Diastolic blood pressure (mm Hg) 62.54±11.26
 Heart rate (/min) 109.05±25.39
 Respiratory rate (/min) 25.41±7.33
 Body temperature (°C) 36.82±0.59
 SpO2 98.28±2.72

Values are presented as number (%), mean±standard deviation, or median 
(interquartile range).
PICU: pediatric intensive care unit.

Primary Outcome 
The pDEWS yielded an AUROC of 0.892 (95% confidence inter-

val [CI], 0.888–0.895) for predicting deterioration events, which 

was larger than those of modified PEWS, LR, and RF models 

(Figure 2). The pDEWS AUPRC for predicting critical events 

was 0.093 (95% CI, 0.089–0.098), which was larger than the 

modified PEWS (0.029; 95% CI, 0.028–0.031), LR (0.045; 95% 

CI, 0.042–0.049), and RF (0.042; 95% CI, 0.040–0.044) models. 

We evaluated sensitivity, specificity, positive likelihood ratio 

(PLR), negative likelihood ratio (NLR), PPV, NPV, F-score, NNE, 

and MACPD for each cutoff value for predicting critical events 

(Table 2). Given that the cutoff value of the pDEWS was 90, it 

showed an acceptable F-1 score, corresponding to the most 

acceptable PPV and NPV for clinical integration, MACPD, and 

NNE. 

In a paired comparison to the modified PEWS, the LR, and 

RF models at the same specificity, pDEWS showed superior 

performance with the highest sensitivity, PLR, PPV, and F-1 

score and the lowest NLR and NNE (Supplementary Table 2). 

The pDEWS provided much lower MACPD and NNE for these 

deterioration events under the same sensitivity than did the 

modified PEWS, LR, and RF models (Figure 3). It markedly 

reduced false alarms in detecting these deterioration events 

by 56%, 37%, and 66%, respectively, at the cutoff value of the 

modified PEWS≥5 compared with modified PEWS, LR, and RF 

models (Figure 3). The cumulative percentage of deteriorating 

patients for these deterioration events was larger in the pDEWS 

than the modified PEWS or the LR or RF prediction models at 

the same cutoff level (Figure 4). The pDEWS showed markedly 

larger values than other methods for the true alarm count at 12 

hours before the occurrence and for the total period. 

Secondary Outcome 
For prediction of each type of deterioration event by pDEWS, 

the AUROC for IHCA was 0.865 (95% CI, 0.847–0.883) and for 

UIT was 0.897 (95% CI, 0.893–0.901) (Figure 5). For AUPRC, 

Figure 2. Areas under the receiver operating characteristic curves 
(AUROC) for predicting deterioration events. CI: confidence interval; 
pDEWS: deep-learning-based pediatric early-warning system; PEWS: 
pediatric early-warning score.
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Table 2. Performance of the pDEWS for prediction of deterioration events at difference cutoff levels
Cutoff Sensitivity Specificity PLR NLR PPV NPV F-1 score MACPD NNE
5 0.980 0.293 1.386 0.068 0.009 1.000 0.018 1,936 112.310
10 0.951 0.498 1.893 0.099 0.012 0.999 0.024 1,379 82.483
15 0.917 0.638 2.536 0.130 0.016 0.999 0.032 997 61.834
20 0.879 0.730 3.260 0.165 0.021 0.999 0.040 747 48.319
25 0.839 0.794 4.066 0.203 0.026 0.999 0.050 574 38.940
30 0.795 0.838 4.919 0.245 0.031 0.998 0.059 452 32.361
35 0.751 0.871 5.827 0.286 0.036 0.998 0.069 362 27.473
40 0.712 0.895 6.804 0.322 0.042 0.998 0.080 296 23.672
45 0.673 0.914 7.859 0.357 0.048 0.998 0.090 244 20.627
50 0.639 0.930 9.115 0.388 0.056 0.997 0.103 201 17.922
55 0.598 0.943 10.534 0.426 0.064 0.997 0.116 164 15.643
60 0.558 0.954 12.224 0.463 0.073 0.997 0.130 133 13.619
65 0.510 0.964 14.205 0.508 0.084 0.997 0.145 106 11.859
70 0.452 0.973 16.544 0.563 0.097 0.996 0.160 82 10.324
75 0.387 0.981 20.120 0.625 0.115 0.996 0.178 58 8.667
80 0.306 0.988 25.382 0.702 0.141 0.995 0.193 38 7.077
85 0.196 0.994 30.909 0.809 0.167 0.995 0.180 20 5.990
90 0.105 0.997 40.856 0.897 0.209 0.994 0.140 8 4.775
95 0.031 1.000 66.013 0.969 0.300 0.994 0.056 1 3.337

pDEWS: deep-machine-learning-based pediatric early warning system; PLR: positive likelihood ratio; NLR: negative likelihood ratio; PPV: positive predictive value; 
NPV: negative predictive value; MACPD: mean alarm count per day; NNE: number needed to examine.

Figure 3. Comparison of (A) mean alarm count per day (MACPD) at the same sensitivity and (B) sensitivity at the same number needed to examine 
(NNE) for deterioration events. pDEWS: deep-learning-based pediatric early-warning system; PEWS: pediatric early-warning score.
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Figure 4. Cumulative percentages of deteriorating patients. The cutoffs of the models for each figure were set at threshold points with the same 
specificity as (A) pediatric early-warning score (PEWS) ≥4, (B) PEWS ≥5, and (C) PEWS ≥6. pDEWS: deep-learning-based pediatric early-warning 
system.

Figure 5. Areas under the receiver operating characteristic curves (AUROC) for the prediction of (A) in-hospital cardiac arrest (IHCA) and (B) 
unexpected ward-to-pediatric intensive care unit transfer (UIT). CI: confidence interval; pDEWS: deep-learning-based pediatric early-warning 
system; PEWS: pediatric early-warning score.

IHCA was 0.006 (95% CI, 0.005–0.008), and UIT was 0.100 (95% 

CI, 0.096–0.106). 

Subgroup Analysis
The five participating hospitals had different characteristics in 

that hospital B had a higher proportion of UIT (1.8%), and hos-

pital A had a higher proportion of IHCA than the other hospi-

tals. In a comparison of AUROCs for predicting deterioration 

events by individual hospital, the pDEWS yielded a larger AU-

ROC than other prediction models (Figure 6). For comparing 

patients by age (<3 months, 3 months to <1 year, 1 to <4 years, 

4 to <12 years, and 12 to <19 years), the pDEWS AUROC for 

predicting deterioration events increased with increasing age 

group (Figure 7A). It also outperformed other models regard-

less of age group. pDEWS AUROCs were similar between day 
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Figure 6. Areas under the receiver operating characteristic curves (AUROC) for prediction of deterioration events by hospital: (A) hospital A, (B) 
hospital B, (C) hospital C, (D) hospital D, and (E) hospital E. CI: confidence interval; pDEWS: deep-learning-based pediatric early-warning system; 
PEWS: pediatric early-warning score.

parisons. It also consistently showed the best performance for 

any occurrence time among the compared prediction models 

(Figure 7B). There was also no difference in predicting power 

between male and female patients (Figure 7C).  
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Figure 7. Areas under the receiver operating characteristic curves (AUROC) for prediction of deterioration events by subgroup analysis: (A) age 
group, (B) event occurring time, and (C) sex. CI: confidence interval; pDEWS: deep-learning-based pediatric early-warning system; PEWS: pediatric 
early-warning score (Continued to the next page).

<3 mo <3 mo–1 yr

4≤yr<12

1≤yr<4

12≤yr<19 

AA
1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0 1.0 1.00.8 0.8 0.80.6 0.6 0.60.4 0.4 0.40.2 0.2 0.20 0 0
1-Specificity 1-Specificity 1-Specificity

P<0.001 P<0.001 P<0.001

Se
ns

iti
vi

ty

Se
ns

iti
vi

ty

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0

1.00.80.60.40.20
1-Specificity

P<0.001

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0

1.00.80.60.40.20
1-Specificity

P<0.001

Se
ns

iti
vi

ty

been developed and introduced, there have been problems 

associated with considerable variation in the performance in 

different settings [5,6,26-28]. Therefore, external validation is 

required to widely implement this method in clinical practice. 

Similar to previous single-center validation studies in pedi-

atric populations, pDEWS also showed good performance in 

the multicenter cohort. Although the five included hospitals 

had different settings and characteristics, the pDEWS demon-

strated excellent and consistent clinical performance in each 

hospital, suggesting strong advantages of this method using 

deep learning methods based on only five basic vital signs. 

One of the significant obstacles for a multicenter study is 

disparity in EMR quality, which could vary widely across hos-

pitals. However, vital-sign data are essential for all admitted 

patients and are usually systematically checked and recorded 

using the same measurement units regardless of institution, 

which enables the pDEWS model to be applied without spe-

cialized staged modifications across hospitals. Consistent with 

previous reports, this study showed that complex systems that 

include many parameters are not necessary for improving per-

formance quality. 

The pDEWS also showed consistent performance in several 

subgroup analyses categorized by sex, age, and event-occur-

rence time. pDEWS success could be due partially to the ad-

vantages of AI, which reduce human error. The performance of 

prediction deterioration events improved with increasing age 

group, though this might also be related to the characteristics 

of AI and deep learning methods, where few event numbers in 

the younger age group could pose a difficulty for deep learn-

ing and model training. Nevertheless, the pDEWS yielded the 

largest AUROC for predicting deterioration events among the 

prediction models, highlighting its excellent performance. 
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Figure 7. Areas under the receiver operating characteristic curves (AUROC) for prediction of deterioration events by subgroup analysis: (A) age 
group, (B) event occurring time, and (C) sex. CI: confidence interval; pDEWS: deep-learning-based pediatric early-warning system; PEWS: pediatric 
early-warning score.
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Figure 9. Deep-learning-based pediatric early-warning system (pDEWS) model feature importance analysis. (A) Sequence-wise feature importance 
and (B) average feature importance. RR: respiratory rate; HR: heart rate; DBP: diastolic blood pressure; SBP: systolic blood pressure; BT: body 
temperature.

The primary goal of the early-warning system (EWS) is to re-

duce critical events by timely recognition and intervention for 

deteriorating patients. As EWS are increasingly introduced and 

used in clinical practice, clinical outcomes have improved and 

in-hospital critical events have decreased significantly [3,29-

31]. These results could be related to the timeliness of EWS 

recognition [32,33]. As compared with the cumulative predic-

tion percentage of deterioration events at the same time point 

within 24 hours of the event, pDEWS yielded a larger area than 

those of other prediction models. 

On the other hand, regarding RRT implementation, alarm 

count is a key point of interest for validating EWS. As previ-

ously reported, there is the challenge of increased alarm rates, 

which is related to not only accuracy and efficacy, but also 

practicality. A false alarm results in unnecessary activation of 

RRT, which could lead to RRT exhaustion with alarm fatigue 

and additional workload [34,35]. Consequently, excessive false 

alarms and alarm fatigue might result in inappropriate re-

sponses and desensitization and reduced or missing responses 

to clinically significant events, putting the patient at substantial 

risk of decreased safety and poor quality of care [36,37]. How-

ever, the pDEWS has an outstanding feature for controlling the 

alarm count with smaller MACPD and NNE at the same speci-

ficity as other prediction models. Thus, in real clinical practice, 

implementation of the pDEWS to an EMR system could be 

automatic by manipulating the input vital sign data. From this 

information, the pDEWS could predict and detect deteriora-

tion events early and accurately, generating alarms for RRT 

activation. As the pDEWS showed acceptable levels of MACPD 

and NNE, it could be helpful for more efficient RRT operations 
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with few false alarms, which could reduce physician workload, 

enable prompt and effective intervention, and consequent-

ly decrease critical event occurrence and improve clinical 

outcomes. Furthermore, pDEWS has the advantage of being 

adjustable according to site characteristics by controlling the 

alarm threshold. Collectively speaking, pDEWS has a promis-

ing role for improving clinical practice. 

In addition to other supporting outcome data for clinical 

performance of pDEWS, we evaluated and performed cali-

bration of this prediction model, which showed acceptable 

findings. The previous deep-learning-based model has been 

criticized for being a “black box” in terms of decision making 

with nontransparent, unknown, and non-traceable algorithms 

[38,39]. However, in this study, we performed feature impor-

tance analysis, which showed the importance of each factor by 

time-step. This could partially explain the underlying process 

of pDEWS. 

This study has several advantages. To our knowledge, this is 

the first evaluation of the clinical performance of an EWS for 

predicting deterioration events composed of IHCA and UIT 

in a pediatric multicenter validation cohort. It demonstrated 

excellent performance using various statistical approaches. 

This study also included subgroup analysis to consider vari-

ous clinical situations, which could be helpful for application 

in real clinical practice. We performed model calibration and 

feature importance analysis, which were rarely performed in 

previous studies, and which demonstrated the high quality of 

this prediction model and partially explained the deep-learn-

ing-based algorithm. 

Additionally, this study has several limitations. Because 

the primary outcome was deterioration events composed of 

IHCA and UIT, all included institutions were tertiary academic 

children’s hospitals because of the need for a PICU. Therefore, 

this study could have a selection bias and its generalizability 

is limited. Because it is a multicenter study, EMR quality, data 

collection, and the related missing rate could be different 

across all hospitals, which could affect the results. There was 

a smaller number of events in the younger age group, which 

could affect pDEWS performance. 

The pDEWS showed excellent clinical performance for 

predicting deterioration events, including IHCA and UIT, 

compared with modified PEWS and other prediction models, 

like RF or LR. The pDEWS offered earlier prediction with fewer 

false alarms and higher accuracy, which could be promising 

if implemented in real clinical practice. It may provide more 

precise and timely identification of deterioration events, which 

could be helpful for more efficient operation of RRT with de-

creased workload and improved clinical outcomes. 

CONFLICT OF INTEREST 

No potential conflict of interest relevant to this article was re-

ported. 

FUNDING 

None.  

ACKNOWLEDGMENTS 

None. 

ORCID 

Yunseob Shin https://orcid.org/0000-0002-1955-1908 

Kyung-Jae Cho https://orcid.org/0000-0003-3564-3287 

Yeha Lee https://orcid.org/0000-0002-6248-7729 

Yu Hyeon Choi https://orcid.org/0000-0002-3057-0886 

Jae Hwa Jung https://orcid.org/0000-0001-7443-9073 

Soo Yeon Kim https://orcid.org/0000-0003-4965-6193 

Yeo Hyang Kim https://orcid.org/0000-0002-1631-574X 

Young A Kim https://orcid.org/0000-0002-8332-5200 

Joongbum Cho https://orcid.org/0000-0001-5931-7553 

Seong Jong Park https://orcid.org/0000-0003-0250-2381 

Won Kyoung Jhang https://orcid.org/0000-0003-2309-0494 

AUTHOR CONTRIBUTIONS

Conceptualization: SYS, CKJ, PSJ, JWK. Data curation: SYS, 

CKJ, LYH, CYH, JJH, KSY, KYH, KYA, CJB, JWK. Formal analy-

sis: SYS, CKJ, LYH. Methodology: SYS, CKJ, LYH, JWK. Project 

administration: all authors. Visualization: SYS, CKJ, JWK. Writ-

ing–original draft: JWK, SYS, CKJ. Writing–review & editing:

JWK, SYS, CKJ.

SUPPLEMENTARY MATERIALS 

Supplementary materials can be found via https://doi.

org/10.4266/acc.2022.00976. 



665https://www.accjournal.orgAcute and Critical Care 2022 Novemebr 37(4):654-666

Shin Y, et al. Multicenter validation of pDEWS

REFERENCES 

1. Agulnik A, Antillon-Klussmann F, Soberanis Vasquez DJ, Arango 

R, Moran E, Lopez V, et al. Cost-benefit analysis of implement-

ing a pediatric early warning system at a pediatric oncology hos-

pital in a low-middle income country. Cancer 2019;125:4052-8. 

2. Bonafide CP, Localio AR, Song L, Roberts KE, Nadkarni VM, 

Priestley M, et al. Cost-benefit analysis of a medical emergency 

team in a children’s hospital. Pediatrics 2014;134:235-41. 

3. de Groot JF, Damen N, de Loos E, van de Steeg L, Koopmans L, 

Rosias P, et al. Implementing paediatric early warning scores 

systems in the Netherlands: future implications. BMC Pediatr 

2018;18:128. 

4. Sambeeck SJ, Fuijkschot J, Kramer BW, Vos GD. Pediatric Early 

Warning System Scores: lessons to be Learned. J Pediatr Inten-

sive Care 2018;7:27-32. 

5. Lambert V, Matthews A, MacDonell R, Fitzsimons J. Paediatric 

early warning systems for detecting and responding to clini-

cal deterioration in children: a systematic review. BMJ Open 

2017;7:e014497. 

6. Chapman SM, Wray J, Oulton K, Pagel C, Ray S, Peters MJ. 

‘The Score Matters’: wide variations in predictive performance 

of 18 paediatric track and trigger systems. Arch Dis Child 

2017;102:487-95.  

7. Chapman SM, Maconochie IK. Early warning scores in paediat-

rics: an overview. Arch Dis Child 2019;104:395-9.  

8. Lockwood JM, Thomas J, Martin S, Wathen B, Juarez-Colunga E, 

Peters L, et al. AutoPEWS: automating pediatric early warning 

score calculation improves accuracy without sacrificing predic-

tive ability. Pediatr Qual Saf 2020;5:e274. 

9. Gorham TJ, Rust S, Rust L, Kuehn S, Yang J, Lin JS, et al. The 

vitals risk index-retrospective performance analysis of an au-

tomated and objective pediatric early warning system. Pediatr 

Qual Saf 2020;5:e271. 

10. Zhai H, Brady P, Li Q, Lingren T, Ni Y, Wheeler DS, et al. Develop-

ing and evaluating a machine learning based algorithm to pre-

dict the need of pediatric intensive care unit transfer for newly 

hospitalized children. Resuscitation 2014;85:1065-71. 

11. Pimentel MA, Redfern OC, Malycha J, Meredith P, Prytherch D, 

Briggs J, et al. Detecting deteriorating patients in the hospital: 

development and validation of a novel scoring system. Am J Re-

spir Crit Care Med 2021;204:44-52. 

12. Rubin J, Potes C, Xu-Wilson M, Dong J, Rahman A, Nguyen H, 

et al. An ensemble boosting model for predicting transfer to the 

pediatric intensive care unit. Int J Med Inform 2018;112:15-20. 

13. Kang DY, Cho KJ, Kwon O, Kwon JM, Jeon KH, Park H, et al. Arti-

ficial intelligence algorithm to predict the need for critical care 

in prehospital emergency medical services. Scand J Trauma 

Resusc Emerg Med 2020;28:17. 

14. Kwon JM, Lee Y, Lee Y, Lee S, Park J. An algorithm based on deep 

learning for predicting in-hospital cardiac arrest. J Am Heart 

Assoc 2018;7:e008678. 

15. Cho KJ, Kwon O, Kwon JM, Lee Y, Park H, Jeon KH, et al. Detect-

ing patient deterioration using artificial intelligence in a rapid 

response system. Crit Care Med 2020;48:e285-9. 

16. Lee YJ, Cho KJ, Kwon O, Park H, Lee Y, Kwon JM, et al. A multi-

centre validation study of the deep learning-based early warn-

ing score for predicting in-hospital cardiac arrest in patients 

admitted to general wards. Resuscitation 2021;163:78-85. 

17. Park SJ, Cho KJ, Kwon O, Park H, Lee Y, Shim WH, et al. Devel-

opment and validation of a deep-learning-based pediatric early 

warning system: a single-center study. Biomed J 2022;45:155-

68. 

18. Hochreiter S, Schmidhuber J. Long short-term memory. Neural 

Comput 1997;9:1735-80. 

19. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov 

R. Dropout: a simple way to prevent neural networks from over-

fitting. J Mach Learn Res 2014;15:1929-58. 

20. Kingma DP, Ba J. Adam: a method for stochastic optimization. 

arXiv [Preprint]. 2017 [cited 2022 Sep 18]. Available from: 

https://doi.org/10.48550/arXiv.1412.6980. 

21. Torrey L, Shavlik J. Transfer learning. In: Olivas ES, Guerrero JD, 

Martinez-Sober MM, Jose Rafael, Serrano López AJ, editors. 

Handbook of research on machine learning applications and 

trends: algorithms, methods, and techniques. Hershey: IGI 

Global; 2009. p. 242-64. 

22. Ozenne B, Subtil F, Maucort-Boulch D. The precision: recall 

curve overcame the optimism of the receiver operating charac-

teristic curve in rare diseases. J Clin Epidemiol 2015;68:855-9. 

23. Weng CG, Poon J. A new evaluation measure for imbalanced 

datasets. In: Roddick JF, Li J, Christen P, Kennedy PJ, editors. 

AusDM ‘08: proceedings of the 7th Australasian Data Mining 

Conference; 2008 Nov 27-28; Glenelg, SA, Australia. Darling-

hurst, NSW, Australia: Australian Computer Society, Inc.; 2008. 

p. 27-32. 

24. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg 

EW. Net reclassification improvement: computation, inter-

pretation, and controversies: a literature review and clinician’s 

guide. Ann Intern Med 2014;160:122-31. 

25. Lundberg SM, Lee SI. A unified approach to interpreting model 

predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fer-

gus R, Vishwanathan S, et al., editors. Advances in neural infor-

https://doi.org/10.1002/cncr.32436
https://doi.org/10.1002/cncr.32436
https://doi.org/10.1002/cncr.32436
https://doi.org/10.1002/cncr.32436
https://doi.org/10.1542/peds.2014-0140
https://doi.org/10.1542/peds.2014-0140
https://doi.org/10.1542/peds.2014-0140
https://doi.org/10.1186/s12887-018-1099-6
https://doi.org/10.1186/s12887-018-1099-6
https://doi.org/10.1186/s12887-018-1099-6
https://doi.org/10.1186/s12887-018-1099-6
https://www.ncbi.nlm.nih.gov/pubmed/31073463
https://www.ncbi.nlm.nih.gov/pubmed/31073463
https://www.ncbi.nlm.nih.gov/pubmed/31073463
https://doi.org/10.1136/bmjopen-2016-014497
https://doi.org/10.1136/bmjopen-2016-014497
https://doi.org/10.1136/bmjopen-2016-014497
https://doi.org/10.1136/bmjopen-2016-014497
https://doi.org/10.1136/archdischild-2016-311088
https://doi.org/10.1136/archdischild-2016-311088
https://doi.org/10.1136/archdischild-2016-311088
https://doi.org/10.1136/archdischild-2016-311088
https://doi.org/10.1136/archdischild-2018-314807
https://doi.org/10.1136/archdischild-2018-314807
https://doi.org/10.1097/pq9.0000000000000274
https://doi.org/10.1097/pq9.0000000000000274
https://doi.org/10.1097/pq9.0000000000000274
https://doi.org/10.1097/pq9.0000000000000274
https://doi.org/10.1097/pq9.0000000000000271
https://doi.org/10.1097/pq9.0000000000000271
https://doi.org/10.1097/pq9.0000000000000271
https://doi.org/10.1097/pq9.0000000000000271
https://doi.org/10.1016/j.resuscitation.2014.04.009
https://doi.org/10.1016/j.resuscitation.2014.04.009
https://doi.org/10.1016/j.resuscitation.2014.04.009
https://doi.org/10.1016/j.resuscitation.2014.04.009
https://doi.org/10.1164/rccm.202007-2700oc
https://doi.org/10.1164/rccm.202007-2700oc
https://doi.org/10.1164/rccm.202007-2700oc
https://doi.org/10.1164/rccm.202007-2700oc
https://doi.org/10.1016/j.ijmedinf.2018.01.001
https://doi.org/10.1016/j.ijmedinf.2018.01.001
https://doi.org/10.1016/j.ijmedinf.2018.01.001
https://doi.org/10.1186/s13049-020-0713-4
https://doi.org/10.1186/s13049-020-0713-4
https://doi.org/10.1186/s13049-020-0713-4
https://doi.org/10.1186/s13049-020-0713-4
https://doi.org/10.1161/jaha.118.008678
https://doi.org/10.1161/jaha.118.008678
https://doi.org/10.1161/jaha.118.008678
https://doi.org/10.1097/ccm.0000000000004236
https://doi.org/10.1097/ccm.0000000000004236
https://doi.org/10.1097/ccm.0000000000004236
https://doi.org/10.1016/j.resuscitation.2021.04.013
https://doi.org/10.1016/j.resuscitation.2021.04.013
https://doi.org/10.1016/j.resuscitation.2021.04.013
https://doi.org/10.1016/j.resuscitation.2021.04.013
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.jclinepi.2015.02.010
https://doi.org/10.1016/j.jclinepi.2015.02.010
https://doi.org/10.1016/j.jclinepi.2015.02.010
https://doi.org/10.7326/m13-1522
https://doi.org/10.7326/m13-1522
https://doi.org/10.7326/m13-1522
https://doi.org/10.7326/m13-1522


666 https://www.accjournal.org Acute and Critical Care 2022 Novemebr 37(4):654-666

Shin Y, et al. Multicenter validation of pDEWS

mation processing systems 30 (NIPS 2017): NeurIPS Proceed-

ings; 2017 Dec 4-8; Long Beach, CA, USA. Curran Associates 

Inc.; 2017.  

26. Trubey R, Huang C, Lugg-Widger FV, Hood K, Allen D, Edwards 

D, et al. Validity and effectiveness of paediatric early warning 

systems and track and trigger tools for identifying and reducing 

clinical deterioration in hospitalised children: a systematic re-

view. BMJ Open 2019;9:e022105. 

27. Kowalski RL, Lee L, Spaeder MC, Moorman JR, Keim-Malpass 

J. Accuracy and Monitoring of Pediatric Early Warning Score 

(PEWS) scores prior to emergent pediatric intensive care unit 

(ICU) transfer: retrospective analysis. JMIR Pediatr Parent 

2021;4:e25991. 

28. Jensen CS, Aagaard H, Olesen HV, Kirkegaard H. Inter-rater re-

liability of two paediatric early warning score tools. Eur J Emerg 

Med 2019;26:34-40. 

29. Kotsakis A, Lobos AT, Parshuram C, Gilleland J, Gaiteiro R, 

Mohseni-Bod H, et al. Implementation of a multicenter rapid 

response system in pediatric academic hospitals is effective. 

Pediatrics 2011;128:72-8. 

30. McLellan MC, Gauvreau K, Connor JA. Validation of the Chil-

dren’s Hospital Early Warning System for critical deterioration 

recognition. J Pediatr Nurs 2017;32:52-8. 

31. Brown SR, Martinez Garcia D, Agulnik A. Scoping Review of Pe-

diatric Early Warning Systems (PEWS) in resource-limited and 

humanitarian settings. Front Pediatr 2019;6:410. 

32. Dean NP, Cheng JJ, Crumbley I, DuVal J, Maldonado E, Ghebre-

mariam E. Improving accuracy and timeliness of nursing doc-

umentation of Pediatric Early Warning Scores. Pediatr Qual Saf 

2020;5:e278.  

33. Hyland SL, Faltys M, Hüser M, Lyu X, Gumbsch T, Esteban C, 

et al. Early prediction of circulatory failure in the intensive care 

unit using machine learning. Nat Med 2020;26:364-73. 

34. Nguyen J, Davis K, Guglielmello G, Stawicki SP. Combating 

alarm fatigue: the quest for more accurate and safer clinical 

monitoring equipment. In: Stawicki SP, Firstenberg MS, editors. 

Vignettes in patient safety. London: IntechOpen Limited; 2019. 

p. 93-113. 

35. Lyons PG, Edelson DP, Carey KA, Twu NM, Chan PS, Peberdy 

MA, et al. Characteristics of rapid response calls in the United 

States: an analysis of the first 402,023 adult cases from the get 

with the guidelines resuscitation-medical emergency team reg-

istry. Crit Care Med 2019;47:1283-9. 

36. Ruskin KJ, Hueske-Kraus D. Alarm fatigue: impacts on patient 

safety. Curr Opin Anaesthesiol 2015;28:685-90. 

37. Cvach M. Monitor alarm fatigue: an integrative review. Biomed 

Instrum Technol 2012;46:268-77. 

38. The Lancet Respiratory Medicine. Opening the black box of ma-

chine learning. Lancet Respir Med 2018;6:801. 

39. Azodi CB, Tang J, Shiu SH. Opening the black box: interpretable 

machine learning for geneticists. Trends Genet 2020;36:442-55. 

https://doi.org/10.1136/bmjopen-2018-022105
https://doi.org/10.1136/bmjopen-2018-022105
https://doi.org/10.1136/bmjopen-2018-022105
https://doi.org/10.1136/bmjopen-2018-022105
https://doi.org/10.2196/25991
https://doi.org/10.2196/25991
https://doi.org/10.2196/25991
https://doi.org/10.2196/25991
https://doi.org/10.1097/mej.0000000000000493
https://doi.org/10.1097/mej.0000000000000493
https://doi.org/10.1097/mej.0000000000000493
https://doi.org/10.1542/peds.2010-0756
https://doi.org/10.1542/peds.2010-0756
https://doi.org/10.1542/peds.2010-0756
https://doi.org/10.1542/peds.2010-0756
https://doi.org/10.1016/j.pedn.2016.10.005
https://doi.org/10.1016/j.pedn.2016.10.005
https://doi.org/10.1016/j.pedn.2016.10.005
https://doi.org/10.3389/fped.2018.00410
https://doi.org/10.3389/fped.2018.00410
https://doi.org/10.3389/fped.2018.00410
https://doi.org/10.1097/pq9.0000000000000278
https://doi.org/10.1097/pq9.0000000000000278
https://doi.org/10.1097/pq9.0000000000000278
https://doi.org/10.1097/pq9.0000000000000278
https://doi.org/10.1038/s41591-020-0789-4
https://doi.org/10.1038/s41591-020-0789-4
https://doi.org/10.1038/s41591-020-0789-4
https://www.ncbi.nlm.nih.gov/pubmed/31343475
https://www.ncbi.nlm.nih.gov/pubmed/31343475
https://www.ncbi.nlm.nih.gov/pubmed/31343475
https://www.ncbi.nlm.nih.gov/pubmed/26539788
https://www.ncbi.nlm.nih.gov/pubmed/26539788
https://doi.org/10.2345/0899-8205-46.4.268
https://doi.org/10.2345/0899-8205-46.4.268
https://doi.org/10.1016/s2213-2600(18)30425-9
https://doi.org/10.1016/s2213-2600(18)30425-9
https://doi.org/10.1016/j.tig.2020.03.005
https://doi.org/10.1016/j.tig.2020.03.005

	INTRODUCTION 
	MATERIALS AND METHODS 
	Study Design 
	Deep-Earning-Based Pediatric Early-Warning System
	Materials 
	Outcome Measures 
	Statistical Analysis 

	RESULTS 
	Study Population 
	Primary Outcome 
	Secondary Outcome 
	Subgroup Analysis
	pDEWS Calibration and Feature Importance A

	DISCUSSION 
	CONFLICT OF INTEREST
	FUNDING
	ACKNOWLEDGMENTS 
	ORCID 
	AUTHOR CONTRIBUTIONS
	SUPPLEMENTARY MATERIALS 
	REFERENCES 

