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Abstract: When acquiring a terahertz signal from a time-domain spectroscopy system, the
signal is degraded by measurement noise and the information embedded in the signal is distorted.
For high-performing terahertz applications, this study proposes a method for enhancing such a
noise-degraded terahertz signal using machine learning that is applied to the raw signal after
acquisition. The proposed method learns a function that maps the degraded signal to the clean
signal using a WaveNet-based neural network that performs multiple layers of dilated convolutions.
It also includes learnable pre- and post-processing modules that automatically transform the time
domain where the enhancement process operates. When training the neural network, a data
augmentation scheme is adopted to tackle the issue of insufficient training data. The comparative
evaluation confirms that the proposed method outperforms other baseline neural networks in
terms of signal-to-noise ratio. The proposed method also performs significantly better than the
averaging of multiple signals, thereby facilitating the procurement of an enhanced signal without
increasing the measurement time.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Terahertz (THz) time-domain spectroscopy (TDS) and imaging are widely used in various
engineering and biomedical fields for extracting and analyzing information contained in a
sample [1–6]. The THz signal is acquired from the sample by transmission or reflection, where
measurement noise is inevitably introduced by signal acquisition devices. If the acquired signal
is degraded by measurement noise with a low signal-to-noise ratio (SNR), embedded information
is distorted, leading to the extraction of incorrect features of the sample. Therefore, an effort to
obtain a THz signal with a high SNR is required for high-performing THz applications.

One solution for acquiring a high-SNR THz signal is to use a high-performing THz source
and detector, or insert special equipment for reducing measurement noise [7–13]. However, this
solution is not a unified methodology and should be designed and implemented for individual
systems. The other solution is to convert the noisy signal to a clean signal following the signal
acquisition [14–20]. This signal-based solution can be used for a given THz system without any
hardware additions and modifications, regardless of its system configuration. The signal-based
solution usually enhances a raw signal before feature extraction, as noise in the signal plays a
significant role in providing incorrect information for the sample [16].

The simplest signal-based solution for a high SNR involves performing the same measurement
multiple times and obtaining the average of the resulting signals in the time domain, thereby
removing random measurement noise [14–18]. Despite its simplicity, the long measurement time
required for conducting multiple measurements leads to the inability of its use for applications
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that demand rapid signal acquisition. More sophisticated methods based on signal processing
theory, such as wavelet transform and statistical modeling, have been developed for enhancing a
THz signal [19,20]. Additionally, considerable research on enhancing noisy speech has been
conducted in speech processing fields, and the most common approach entails the correction of
degraded spectral magnitude by spectral subtraction in the frequency domain [21,22].

With advances in machine learning, it is widely used to develop methods for signal enhancement.
Machine learning estimates a function from the degraded signal to the clean signal through
supervised learning, which is typically conducted in the frequency domain [22,23]. The operation
for spectral magnitude delivers a desirable performance, however the function from the degraded
phase to the clean phase is not well learned because phase information is usually random with no
distinct correlation between the degraded and clean phase. Consequently, most solutions enhance
only the spectral magnitude while preserving the phase of the degraded signal, hence yielding
a low enhancement performance. To resolve the limitation of the frequency-domain approach,
signal enhancement with all processes conducted in the time domain has been developed [24].
However, it encountered the issue of high computational complexity due to the immense number
of sample-by-sample operations in the time domain.

WaveNet, a new machine learning model specifically designed for time-domain processing of
speech and audio signals, was developed recently [25]. It supports a large receptive field required
for modeling long temporal dependency of the signal with moderate complexity, and has been
successfully used for synthesis and modification of speech and audio signals [26,27]. WaveNet
functions as an autoregressive model by feeding an output sample back to the input in the next
time step, resulting in a sequential generation of output samples. The structure of WaveNet can
be modified to function on a frame basis, where all output samples are determined from the input
frame and independently generated without feedback; this is referred to as frame-based WaveNet
[27].

In this study, as a signal-based solution for acquiring a high-SNR THz signal, we developed a
method for converting the noisy THz signal to a high-SNR signal using frame-based WaveNet.
We also inserted learnable pre- and post-processing modules into the network for automatically
transforming the time domain where the enhancement process operates, thereby improving the
enhancement performance. When training the neural network, we adopted a data augmentation
scheme to solve the issue of insufficient training data. WaveNet has mostly been used for speech
and audio signals, and to the best of our knowledge, this study is the first to apply the WaveNet to
THz signals.

To demonstrate the superiority of the proposed method, we developed enhancement methods
using other machine learning models, such as the convolutional neural network (CNN) [28,29]
and conventional frame-based WaveNet, and verified that the proposed method outperforms these
baseline models. To further support the contribution of this study, we also confirmed that the
proposed method with only one signal measurement provides higher performance than the signal
averaging method that consumes extra measurement time to acquire many signals. Because
the proposed method is designed based on machine learning, it can deal with the differences in
signal properties caused by different THz systems by re-training the network using a new training
dataset acquired from the corresponding THz system.

In this study, as a preliminary step to verify the feasibility of the enhancement of THz signals
using machine learning, we acquired the THz signals transmitted through the air and developed a
network structure and its operations suitable for removing measurement noise contained in these
signals. After verifying the enhancement performance for the THz signals transmitted through the
air, we will extend the scope of signal enhancement to the THz signals in general THz-TDS and
improve the network operations to handle the influence of test samples with different properties
in our next study.



Research Article Vol. 30, No. 4 / 14 Feb 2022 / Optics Express 5475

2. THz signal acquisition

Figure 1 shows the system configuration of the THz signal acquisition used in this study. We
used a standard THz-TDS system based on a mode-locked Ti:sapphire laser with a pulse width
of 80 fs at an 800 nm central wavelength and a repetition rate of 80 MHz. The laser beam was
divided into the pump and probe beams for the generation and detection of the THz signal. The
THz pulses were generated by pumping the femtosecond laser pulse on the p-InAs crystal. The
generated THz pulses were guided and focused by the parabolic mirrors and polymethylpentene
(TPX) lens onto a photoconductive detector to generate a photocurrent gated by probe pulses
with a function of time delay. The THz signals were detected by acquiring photocurrents at each
time delay point via a lock-in amplifier. As the time constant of a lock-in amplifier is 300 ms, the
sweep time of the delay is on the order of hundreds of milliseconds per data point. It took 7 min
to acquire a single 11.3 ps THz signal with 340 time samples on the time axis. The measurements
were conducted in dry air, under 1% humidity condition.

Fig. 1. System configuration of THz signal acquisition. The THz pulses are generated by
pumping the femtosecond laser pulse with a width of 80 fs and a repetition rate of 80 MHz
on the p-InAs crystal. The detector obtains the THz signals of 11.3 ps with 340 time samples
on the time axis.

We acquired 40 signals and used them for machine learning and performance evaluation.
Figure 2(a) shows a raw signal in the time domain with 340 time samples, denoted by xk(n),
0 ≤ n < 340, where 1 ≤ k ≤ 40 is a measurement index, and the inset presents the noise floor of
three different signals. To run supervised learning for signal enhancement, we require an ideal
noise-free signal with infinite SNR that is used as a target signal for training. However, it is
impossible to acquire such a signal in practice using the same THz system. Instead, assuming
that most of the noise is removed by averaging many noisy signals, we use the mean of the
signals provided for training as the target signal, which is denoted by x̄(n). Figure 2(b) shows the
spectral magnitudes of xk(n) and x̄(n) averaged over 38 training signals, which were obtained by
a discrete Fourier transform. We can see that noise characteristics vary with xk(n) and x̄(n) has a
peak dynamic range of approximately 73 dB. Then, the goal of enhancement in this study is to
determine a function that maps xk(n) to x̄(n) for all k.

Because x̄(n) is assumed to be a noise-free signal, ek(n) = [x̄(n) − xk(n)] corresponds to the
noise contained in xk(n) for each k. Then, we measure the quality of xk(n) in the time domain
using the SNR defined in Eq. (1), which corresponds to the ratio of the power of x̄(n) to the power
of ek(n).

SNRk(dB) = 10log10

∑︁
n |x̄(n)|2∑︁
n |ek(n)|2

(1)
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Fig. 2. Examples of THz signals. (a) raw signal of 11.3 ps with 340 time samples in the
time domain with the inset showing the noise floor of three different signals and the mean of
38 signals; (b) spectral magnitudes of three different signals and the mean of 38 signals.

The average SNR, computed by averaging SNRk over k, is 29.82 dB, which corresponds to the
baseline quality of the raw signals before enhancement. Note that the SNR in Eq. (1) is different
from the peak dynamic range, which is also often referred to as an SNR in THz field [17].

3. Proposed enhancement method

3.1. WaveNet structure

There are various machine learning models, such as the neural network (NN), support vector
machine, and decision tree [29]. We selected the NN because it is suitable for conducting signal
enhancement and various structural variations have been developed for it. The feedforward
NN consists of multiple fully-connected layers, where the neurons in the adjacent layers are all
connected. The structure of the NN can be modified to analyze the local properties of an input
using convolution with a small filter size, resulting in the CNN [29]. The CNN usually includes
a pooling operation to extract only key local features.

In this study, we use the WaveNet model that is a variant of NN designed for conducting
signal processing in the time domain, resulting in the elimination of problems that occur in a
frequency-domain approach. Specifically, we use frame-based WaveNet, instead of the original
WaveNet operating in a recursive fashion, because a non-causal frame-to-sample operation is
more suitable for enhancing 340-sample signal than generating samples one-by-one in a recursive
manner.

The structure of WaveNet is primarily the same as that of a CNN with the exception that the
filter is applied to the input area larger than the filter size by skipping input samples. Figure 3
shows the structure of a frame-based non-causal WaveNet with five layers that serves as the
framework of the proposed network. In the input layer, each neuron is associated with one sample
out of 340 input samples. Each neuron in the output layer corresponds to one output sample,
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and its value is computed by a convolution of three neurons in the previous hidden layer that
are eight positions apart; this operation is called a dilated convolution with a filter size of 3 and
a dilation factor, D, of 8. The same connection between layers is repeated with the same filter
size, while decreasing the dilation factor by half up to the input layer. All neurons use the gated
activation with hyperbolic tangent and sigmoid functions as in [25]; no residual connection is
used. This is how a stack with five layers, as shown in Fig. 3, is constructed, where one output
sample is determined by 31 input samples; this structure is said to have the receptive field of
31 samples. As a result, we obtain a frame-to-sample function in the form of layered dilated
convolutions. The next output sample is also determined by a 31-sample input frame, centered at
the output time position. Consequently, when all the input samples are given, all output samples
are computed in parallel using different input frames of 31 samples. In the training stage, we
learn all the convolution filter coefficients and obtain a fixed function that maps the 31-sample
frame to one output sample in all the time positions.

Fig. 3. Structure of frame-based non-causal WaveNet. It conducts convolution with a filter
size of 3 and a dilation factor of 1, 2, 4, or 8 in each of five layers and serves as the framework
of the proposed network. The receptive field of this structure is 31 samples.

The superiority of WaveNet, compared to the CNN, stems mainly from a large receptive field
with a small filter size, made possible by the dilated convolutions [25]. The network with a large
receptive field has the potential for a better performance because it can model long temporal
dependency of the signal using input samples in a long time period. When more layers are added
to the top of the stack in Fig. 3 with increasing dilation factors, the receptive field of WaveNet
increases. However, as the network size increases with more layers, the risk of poor training also
increases, especially when the size of the training dataset is small.

3.2. Pre- and post-processing

As shown in Fig. 2(b), most of the signal power lies in the low frequency band. Then, as the
network training continues, the enhancement function is biased to remove noise in the low band
with less noise removal in the high band, because noise removal in the high-power band is more
helpful in reducing the cost function that guides the direction of network learning. To solve the
problem of low-band-focused learning, a pre-emphasis on the high band is usually applied to
the signal before training [24]. Apart from pre-emphasis on the high band, it is also necessary
to increase the effective receptive field of WaveNet without increasing its size, because signal
enhancement using input samples in a longer time period can yield better performance.

Although the two tasks of high-band emphasis and receptive field increase are not related,
we design a novel method to achieve the effects of both the tasks through a single process.
We apply a learnable down-sampling operation to the input through the NN. Subsequently,
the WaveNet operates on the down-sampled time axis with lower temporal resolution, which
effectively increases its receptive field when viewed from the original time axis. In addition, the
down-sampling operation causes spectrum aliasing that makes the spectral envelope of signal
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flatter, similar to the effect of pre-emphasizing the high band. The down-sampling is paired
with the learnable up-sampling including a function for aliasing removal at the final stage of
enhancement.

The pre-processing used in the proposed method is different from the conventional down-
sampling in the way the coefficients are determined. The conventional down-sampling conducts
a fixed operation with pre-defined coefficients without considering the enhancement operation,
whereas the pre-processing uses the coefficients that are learned in connection with the enhance-
ment operation. Therefore, the pre-processing automatically transforms the time domain such
that the subsequent WaveNet module performs the optimal enhancement.

3.3. Proposed network for signal enhancement

We design an enhancement network that consists of a frame-based WaveNet module and pre-
and post-processing modules, as shown in Fig. 4. The pre-processing module, serving as
down-sampling, consists of one CNN layer of convolution and max pooling. It inputs the noisy
signal xk(n) of 340 samples and outputs the pre-processed signal xk

′(n) of 170 samples. In all
convolution and pooling boxes in all figures, the numbers in parenthesis indicate the filter size
and the number of output channels. For example, the convolution box in the pre-processing
module conducts the convolution with a filter size of 3 and outputs a one-channel signal. The
convolution uses a stride of 1 and max pooling uses a stride of 2, which then implements the
down-sampling by 2.

Fig. 4. Overall structure of the proposed enhancement network. It consists of pre-processing,
WaveNet, and post-processing modules, where the WaveNet module contains two stacks of
frame-based WaveNet. The pre- and post-processing modules conduct learnable down- and
up-sampling operations to increase the receptive field of the overall network and emphasize
the high band.

We input x′k(n) of 170 samples to the WaveNet module and compute its output yk
′(n) of 170

samples, which leads the WaveNet module to run on the down-sampled time axis. Here, the
WaveNet module consists of two WaveNet stacks shown in Fig. 3, where each dilated convolution
outputs a 32-channel signal, except for the last one with a two-channel output. We then input
the two-channel signal yk

′(n) to the post-processing module, serving as an up-sampling with
aliasing removal, and obtain the final enhanced signal yk(n) of 340 samples through one CNN
layer of transposed convolution with a stride of 2. No biases are used in all modules, and
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the pre-processing, WaveNet, and post-processing modules have 7, 18720, and 6 parameters,
respectively. When training the network in Fig. 4, we run a joint optimization for all pre-
processing, post-processing, and WaveNet modules in each learning step. In this way, we can
learn the down- and up-sampling operations in connection with the WaveNet function, such that
the optimal enhancement is obtained.

The receptive field of the WaveNet module in Fig. 4 is 61 samples; it almost doubled compared
to that of WaveNet in Fig. 3 because of the two-stack structure. The effective receptive field of
the overall network in Fig. 4 becomes 124 samples. In other words, owing to the down-sampling
in the pre-processing module, the receptive field almost doubles without increasing the size of
the WaveNet module. Accordingly, each output sample in yk(n) is computed from 124 samples
in xk(n), centered at the output time position. To get a similar receptive field without the pre- and
post-processing modules, we have to insert two more stacks to the WaveNet module, which then
doubles the WaveNet size

4. Performance evaluation

4.1. Experimental setup

To verify the superiority of the proposed method, we included two additional NN models as
baseline models for performance evaluation. One baseline model is a CNN autoencoder with
a bottleneck structure with seven layers, as shown in Fig. 5. All convolutions and transposed
convolutions use a stride of 2, and the pooling operation is not used in any layers. The number of
signal channels was set the same as in the proposed WaveNet. Each of the 32 channels in the
output of the third convolution has fewer samples than the input; therefore, it learns to represent
core information on the input, with different aspects for different channels, that is essential for
reconstructing the desired output. Then, unnecessary information such as the noise component
is eliminated as the input passes through the network and the desired signal enhancement is
conducted. The other baseline model is the conventional frame-based WaveNet without pre- and
post-processing modules. This baseline is identical to the WaveNet module in Fig. 4, except
for the last dilated convolution layer. As there is no post-processing for the two-to-one channel
mapping, the final dilated convolution layer generates a one-channel output that corresponds to
the final enhanced signal.
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Fig. 5. Baseline CNN for performance comparison. It has an autoencoder structure with
bottleneck. The three convolution layers encode the input to represent core information
for noise elimination, and the three transposed convolution layers reconstruct the enhanced
signal from the core information.

We only have 40 signals xk(n), which are insufficient to conduct a general K-fold cross
validation for performance evaluation [29]. Hence, we implemented a leave-one-out cross
validation (LOOCV), which is widely used in performance evaluation for machine learning with
insufficient data [29]. In each trial for the LOOCV, we used 38 signals for training, one for
validation, and one for testing. For each network in the evaluation, we ran 40 independent trials
with different training signals and obtained 40 learned models, each using 38 training signals. We
then evaluated the performance of each model using one testing signal associated with the trial.
In this manner, every xk(n) participated once in the testing. Finally, we computed the average
performance across the 40 models as the final performance of the given network.

All networks in the evaluation were trained using the same methods for a fair comparison.
They used the He initialization [30], stochastic gradient descent (SGD) method with a batch
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size of one [29], Adam optimizer [31], mean-squared-error cost function with no regularization
terms, and the learning rate of 0.005. To prevent overfitting, early stopping was used with a
patience time of 100 epochs. All networks were implemented and trained using a TensorFlow
platform. We confirmed that the learning process of each network does not contain any abnormal
phenomena and shows a learning curve of typical shape observed in normal machine learning.

4.2. Preliminary performance

Table 1 shows the average SNR of enhanced signals across all 40 trials in the LOOCV for the
evaluated networks, including the SNR of unprocessed raw signals, where the SNR of each signal
was computed using Eq. (1). The proposed WaveNet provides the highest SNR, and the baseline
WaveNet is better than the baseline CNN. These results confirm that the pre- and post-processing
modules in the proposed WaveNet, designed for emphasizing the high band and increasing the
receptive field, improve the performance, compared to the baseline WaveNet, despite the fact that
both networks use the same WaveNet module. For the significance test for evaluation results,
we conducted the t-test over 40 trials in the LOOCV and confirmed that the proposed WaveNet
provides significant improvement with the p-value less than 0.01, compared to both baseline
models.

Table 1. Preliminary Performance for Various Networks

Network Avg. SNR (dB)

No enhancement (raw signal) 29.82

Baseline CNN 43.38

Baseline WaveNet 51.32

Proposed WaveNet 53.93

Let yk(n) be the enhanced signal from xk(n). Figure 6 shows the spectral magnitude of yk(n) by
different methods for each of three xk(n) shown in Fig. 2(b), along with the spectral magnitudes
of xk(n) and its target x̄(n) made by averaging 38 training signals. Owing to the enhancement
process, yk(n) has a spectral magnitude closer to the target than xk(n) with every method. Even
with the proposed method, however, the high-band noise level of yk(n) is definitely higher
than that of the target, which implies that the enhancement performance has not yet reached
the desired level. Therefore, a better training scheme is required, while maintaining the same
network structure, in order to further decrease the high-band noise level after enhancement.

Fig. 6. Spectral magnitude of enhanced signal by different methods for three different
signals. For each signal, the high-band noise level of enhanced signal is higher than that
of the target, even using the proposed WaveNet. These results mean that the enhancement
performance has not yet reached the desired level.
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4.3. Data augmentation

When 38 training signals are given in each trial of the LOOCV, the training performance is poor
owing to the amount of information in 38 training signals being insufficient to represent general
properties of a target model, hence causing overfitting of learning to these signals. To improve
the training performance by solving this problem, we developed data augmentation method that
artificially increases the number of training signals with possible enhancement in generalization,
without extra signal measurements. We used three methods of data augmentation and compared
their performances. First, we shifted each training signal on the time axis to generate new signals.
Because the signal samples are almost zero, except in the mid-region as shown in Fig. 2(a), we
shifted the signal by a small distance without modifying its characteristics. For each training
signal, we obtained 70 new time-shifted signals with time offsets between −20 and 50, and the
total number of training signals after data augmentation became 38× 71= 2698 for each of the
40 trials in the LOOCV.

The second method of data augmentation was the generation of new signals by merging
two different signals via averaging. Because all signals contain the same information with
different measurement noise, the signal merge can generate new signals that are likely to be
acquired using the same THz system, although they have lower noise level than the raw signals
because of the averaging effect. Considering all cases of signal pairs from 38 training signals,
we generated (38× 37)/2= 703 new signals, and the total number of training signals became
38+ 703= 741 for each of the 40 trials in the LOOCV. The third method was a combination of
the two methods of time shift and signal merge. In this case, the final number of training signals
became 741× 71= 52611 for each trial in the LOOCV.

We trained the network using each of the three augmented training datasets and compared their
performances. When the time-shift data augmentation and the combined data augmentation were
used, the batch size in the SGD changed to 16, in accordance with the large number of training
signals. Data augmentation was applied only to the training signals, and all evaluations were
performed using the original raw signals.

4.4. Performance of signal enhancement

The average SNR of enhanced signals per data augmentation method is shown in Table 2. For
each network, data augmentation improves the enhancement performance, compared to no data
augmentation, and the degree of SNR improvement heavily depends on the data augmentation
method. The signal merge functions better than the time shift because the former generated
signals with new shapes, whereas the latter only changed time positions. The combination of the
two augmentation methods yields the best performance, except for the CNN, as it provides the
largest number of training signals with varying shapes and positions. For each data augmentation
method, the proposed WaveNet continues to provide a higher SNR than both baseline networks
with the p-value less than 0.01 in the t-test, and the baseline WaveNet is better than the CNN.
Finally, we obtain the average SNR of 71.49 dB when using the proposed WaveNet along
with combined data augmentation, which provides an increase of 41.67 dB compared to the
unprocessed raw signals with an SNR of 29.82 dB.

Figure 7 shows the spectral magnitude of yk(n) by different enhancement methods when the
combined data augmentation is used for the same xk(n) shown in Fig. 6. With the baseline
WaveNet or the proposed WaveNet, yk(n) and its target x̄(n) have almost the same high-band
noise level, which proves the ability of data augmentation for generalized training. As a result, the
proposed method increases the peak dynamic range of acquired signal to the target level. We also
confirmed that yk(n) by the proposed method and its target have almost the same phase over the
entire frequency range. Even with data augmentation, however, the baseline CNN cannot provide
the desired level of enhancement, which confirms that the WaveNet has a better ability to enhance
the THz signals than the CNN. In conclusion, the enhanced signal by the proposed method has
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Table 2. Performance for Various Networks and Data Augmentation
Methods

Data augmentation Network Avg. SNR (dB)

Time shift
Baseline CNN 44.64

Baseline WaveNet 58.41

Proposed WaveNet 66.43

Signal merge
Baseline CNN 55.14

Baseline WaveNet 64.84

Proposed WaveNet 68.91

Combination
Baseline CNN 49.86

Baseline WaveNet 66.98

Proposed WaveNet 71.49

similar spectral characteristics and noise level to the target that was made by averaging 38 signals.
Further, the enhancement process does not introduce any spectral distortion in both magnitude
and phase. Therefore, we can replace the average of multiple signals, which is commonly used as
a high-SNR signal, with the enhanced signal without causing any fundamental differences in
THz applications.

Fig. 7. Spectral magnitude of enhanced signal by different methods when the combined
data augmentation is used. For each signal, the proposed WaveNet reduces the high-band
noise level to the target noise level and the enhanced signal has the same peak dynamic range
as the target signal.

To further increase the performance, we conducted the experiments on signal enhancement
with more than one input signal for the proposed WaveNet architecture. We acquired THz signals
K times and conducted the signal enhancement through simultaneous application of K signals to
the proposed WaveNet in a K-channel format. To handle the K-channel input, the pre-processing
module in Fig. 4 changed, as shown in Fig. 8. The K-channel input with 340 samples per channel
is converted to a one-channel signal of 170 samples through convolution and max pooling.
Beyond this stage, all operations are the same as before, with the output in Fig. 8 being applied
to the WaveNet module in Fig. 4. This is how K noisy signals are applied to the proposed
WaveNet and one enhanced signal is generated. This structure has the potential to improve the
enhancement performance using the correlation among K signals, as well as individual signal
characteristics. Because the number of input samples increases in the pre-processing module, it
is necessary to increase the network size to manipulate more input information. However, to
analyze the effect of the number of input signals, we use the same pre-processing architecture.

Figure 9 shows the SNR as a function of the number of input channels, where the proposed
WaveNet was independently trained for each number of channels, using one of the three data
augmentation methods. The highest SNR of 72.2 dB is achieved with four input channels using
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Fig. 8. Structure of the pre-processing module for K-channel input in the proposed network.
The convolution layer converts the K-channel input into one-channel signal, which is then
applied to the max pooling.

combined data augmentation, whereas the use of more than four input channels yields a lower
SNR. The lower SNR with more than four input channels is partly due to the small pre-processing
size with respect to the increased input channels. These experiments confirms that we can further
increase the SNR by spending more measurement time to acquire three or four signals.

Fig. 9. Performance of multi-channel signal enhancement for the proposed network. The
highest SNR of 72.2 dB is achieved when using four input channels and combined data
augmentation.

4.5. Comparison with averaging method

As a final step in performance evaluation, we compared the performance of the proposed method
and the averaging method that is the most common method for obtaining high-SNR signal. We
measured the SNR of the averaging method with N measurements as follows. We selected N
signals at random out of 40 signals xk(n) and measured the SNR of the averaged signal. We
repeated this process 40 times for each N and computed the average SNR over 40 trials. Figure 10
shows the average SNR as a function of N, where the blue and red lines represent the SNR
values obtained by the proposed method with and without data augmentation, respectively. For
the averaging method, a monotonic increase of SNR is evident as N increases. When data
augmentation is not used, the averaging method with 33 measurements provides the same SNR
as the proposed method with only one signal measurement. In this case, the measurement time
for the averaging method is 33× 7= 231 min, whereas the measurement time for the proposed
method is 7 min. When data augmentation is used, the proposed method performs better than the
averaging of any number of signals.

In summary, the performance evaluation corroborates that the proposed WaveNet-based neural
network with one signal measurement improves the SNR and reduces the high-band noise to
a level that can be achieved by averaging many signals. As a result, the proposed method
significantly reduces the measurement time, compared to the averaging method, when obtaining
high-SNR THz signals. The quality of THz signal is a key requirement for high-performing
THz applications regardless of the type of task, and this study contributes to the THz field by
providing a new way to obtain high-SNR signals without increasing the measurement time.
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Fig. 10. Performance of signal averaging method. The SNR increases monotonically with
the number of signal measurements. The blue and red lines represent the SNR values
obtained by the proposed method with and without data augmentation, respectively. The
proposed method without data augmentation provides similar performance to the averaging
of 33 signals.

5. Conclusion

In this study, we proposed a method to enhance noise-degraded THz signals using a WaveNet-
based neural network that is required for high-performing THz applications. By applying
a series of dilated convolutions to the input samples in the time domain, we estimated an
enhancement function from the noisy signal to the high-SNR signal. We also inserted pre-
and post-processing modules with a learnable filter to transform the time domain for better
enhancement. Through comparative performance evaluation, we verified that the proposed
WaveNet outperforms the conventional frame-based WaveNet and CNN. When multi-channel
input is applied to the proposed WaveNet, input signals up to four yield a higher SNR. Finally, we
confirmed that the proposed WaveNet provides a higher SNR than the averaging of signals after
multiple measurements. Despite acquiring only 40 signals for machine learning, we obtained
an enhancement network with satisfactory performance, which implies that we will be able
to achieve the same performance using this network for new THz systems without the heavy
burden of signal acquisition to prepare new training datasets. This study verifies the feasibility
of improving the SNR of THz signal using the proposed network architecture. In our future
research, we intend to investigate the operations of the proposed network for the THz signals in
general THz-TDS and imaging set-ups.
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