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INTRODUCTION

Sepsis is an important factor that contributes to acute kidney 
injury (AKI).1,2 The development of AKI following sepsis and 
septic shock is reportedly associated with high morbidity and 
mortality.3 The mortality rate of patients with septic AKI is es-
timated to be 35%.4 Moreover, non-recovery from AKI is asso-
ciated with a decreased long-term survival.5

The diagnosis of septic AKI is based mainly on the clinical 
status and serum creatinine (Scr) in clinical practice. Howev-
er, the Scr concentration may be influenced by non-renal fac-
tors, such as sex, age, medications, and the amount of muscle 
mass.6 Therefore, biomarkers for identification of the features 
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of septic AKI and renal recovery are warranted. Amino acid pro-
filing using liquid chromatography–tandem mass spectrometry 
(LC-MS/MS) was used for investigating the biomarkers.

Tryptophan (TRP) is an essential amino acid that plays an 
important role in the biosynthesis of proteins.7 Several stud-
ies8-14 have focused on the role of TRP catabolism in numer-
ous immune-regulatory processes, including protein synthe-
sis, inflammation, tissue injury, and systemic infections. TRP 
is a precursor of several physiologically important metabo-
lites.7 Kynurenine (KYN), the first degradation product of 
TRP,11,13,15 is synthesized metabolically by indoleamine 2,3-di-
oxygenase (IDO) and TRP 2,3-dioxygenase.7 IDO is activated 
during inflammation16 leading to elevated levels of downstream 
metabolites, including KYN. KYN metabolites have been impli-
cated in the pathophysiologies of various immunomodulatory 
disorders, including sepsis.16 

The current study aimed to investigate potential biomarkers 
for the development and recovery of AKI following sepsis. We 
sought to identify biomarkers, including amino acids, TRP me-
tabolites, and inflammatory markers, such as C-reactive pro-
tein (CRP), and procalcitonin. 

MATERIALS AND METHODS

Study population and design 
This study prospectively analyzed the samples of adult patients 
(aged ≥18 years) who were diagnosed with sepsis and admit-
ted to the medical intensive care unit (ICU) of Severance Hos-
pital, a 2500-bed (30-bed medical ICU) tertiary referral hospital 
in South Korea, between June 2018 and May 2019. The study 
protocol involved medical ICU cohorts. The inclusion criteria 
for the cohorts were an age ≥18 years and fulfillment of at least 
two criteria of systemic inflammatory response syndrome or 
the presence of sepsis within 24 hours of admission to the ICU 
(D0). The exclusion criteria were age under 18 years and preg-
nant patients. Participants who met the revised sepsis 3 defini-
tion were included in the current study. Participants were divid-
ed into the AKI and non-AKI groups, based on the development 
of AKI within 48 hours At D0. Patients with septic AKI were sub-
divided into AKI-recovery and non-recovery groups, based on 
whether the kidney injury recovered within 7 days of the pre-
cipitating event.

Data collection 
The following demographic, clinical, and laboratory data were 
collected: baseline data [age, sex, body mass index, and the 
Charlson Comorbidity Index (CCI),17 Acute Physiology and 
Chronic Health Evaluation II (APACHE II), and Sequential Or-
gan Failure Assessment (SOFA) assessment scores]; laboratory 
parameters [Scr, estimated glomerular filtration rate (eGFR), 
albumin, lactate, CRP, procalcitonin]; sepsis severity (sepsis or 
septic shock); AKI severity (stage 1, 2, or 3); and clinical out-

comes [renal replacement therapy (RRT), length of stay (LOS) 
in the hospital and ICU (in days), and mortality]. 

Definition of variables 
Sepsis and septic shock were defined using the third interna-
tional consensus definition.18 The diagnosis of AKI was based 
on the Kidney Disease Improving Global Outcomes criteria.19 
Patients were categorized as having stage 1, 2, or 3 AKI based 
on the maximum Scr measured within 48 hours of D0. Partici-
pants who received RRT were defined as having stage 3 AKI. 
Renal recovery was defined as the return of Scr levels to within 
150% of baseline or less without the need for RRT based on the 
international consensus criteria.20 The AKI-recovery status was 
assessed within 7 days of the precipitating event. 

Blood sample collection and amino acids using the 
metabolomics approach
The patients’ serum samples were collected at D0. All blood 
samples were centrifuged at 3000 rounds per minute for 10 
and 15 minutes, respectively. The supernatants were trans-
ferred to Eppendorf tubes and stored at -80°C. All samples 
were thawed immediately prior to analysis. For the measure-
ment of the 22 amino acids, the Zivak amino acids kit (Zivak 
Technologies, Istanbul, Turkey), a quantitative LC-MS/MS anal-
ysis kit specific for amino acids in biological fluids, was used. 
First, whole blood samples were vortexed for 30 s, and centri-
fuged at 12700×g for 5 min. For each sample, the pellet was dis-
carded, and 100 μL of serum was added to 400 μL of acetonitrile 
and vortexed for 30 s. The mixture was centrifuged at 12700×g 
for 10 min. Finally, 300 μL of the supernatant was analyzed us-
ing a LC-MS/MS. An equal volume of 0.1% trifluoroacetic acid 
aqueous solution was added to each serum extract prior to LC-
MS/MS analysis. Pure amino acids solution was prepared for 
mass comparison and quantitative LC-MS/MS. The 22 amino 
acids measured were as follows: alpha-aminobutyric acid, al-
anine, arginine, asparagine, aspartic acid, citrulline, glutamic 
acid, glutamine, glycine, histidine, hydroxyproline, isoleucine, 
leucine, lysine, methionine, ornithine, phenylalanine, proline, 
serine, threonine, tyrosine, valine, and TRP. The serum samples 
were processed in strict accordance with the manufacturer’s 
instructions. The KYN concentration was determined using the 
same LC-MS/MS system using our laboratory-developed meth-
od. As for the repeatability of the assay, the correlation of vari-
ance was 3.0%–4.8%. 

Statistical analysis
Data were presented as the number of cases (%) and median 
[interquartile range (IQR)]. Categorical data were compared 
using the Pearson’s chi-squared test or Fisher’s exact test. Con-
tinuous variables were compared using the Mann–Whitney test 
or t-test. One-way analysis of variance was used to compare the 
three groups. The differences in the cumulative survival ob-
tained by Kaplan–Meier curves were identified using the log-
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rank test. Multivariate logistic regression analysis was used to 
identify the risk factors associated with sepsis-induced AKI. 
The odds ratios (ORs) and 95% confidence intervals (CI) were 
also calculated. P-values<0.05 were considered significant for 

all analyses. Data analysis was performed using SPSS version 
25 (IBM Corp., released 2017, Armonk, NY, USA). The receiver 
operating characteristic (ROC) curves were plotted, and the 
area under the curve (AUC) was analyzed using the MedCalc 

          Sepsis participants (n=91)
              - Sepsis (n=42)
              - Septic shock (n=49)

           Exclusion (n=7)
               - ESRD patients on dialysis

Inclusion (n=84)

Sepsis without AKI (n=34)

Late onset AKI (n=2) Non-AKI (n=32)
    Recovery (n=20)
       - Within 72 hours (n=14)
       - Within 1 week (n=6)

Non-recovery (n=30)

Sepsis with AKI (n=50)
- Stage 1 (n=9)
- Stage 2 (n=5)

  - Stage 3 (n=36)

Fig. 1. Flowchart of the study population. ESRD, end-stage renal disease; AKI, acute kidney injury.

Table 1. Demographic and Clinical Characteristics of Participants Enrolled in the Study

Total (n=84)
Sepsis

p value
Non-AKI (n=34)

AKI
Recovery (n=20) Non-recovery (n=30)

Age, yr 71.0 (60.9–80.2) 73.5 (57.0–82.3) 66.0 (60.0–78.5) 70.0 (64.0–80.0) 0.961
Sex, male 50 (59.5) 20 (58.8) 11 (55.0) 19 (63.3) 0.836
Body mass index, kg/m2 22.5 (19.8–25.6) 23.5 (20.4–25.9) 21.9 (19.1–24.1) 23.1 (20.1–25.7) 0.556
CCI 3.0 (2.0–5.8) 2.0 (1.0–4.0) 3.0 (2.0–5.0) 4.5 (2.0–7.25) 0.002
SOFA 8.0 (6.0–10.8) 6.5 (4.0–9.0) 8.0 (7.0–10.8) 10.0 (7.8–13.0) <0.001
APACHE II 28.5 (20.3–33.0) 21.5 (17.0–30.3) 30.5 (25.3–33.8) 32.0 (22.8–38.0) 0.004
Scr, mg/dL 1.2 (0.6–2.8) 0.8 (0.5–1.2) 1.2 (0.8–2.7) 2.9 (1.5–3.4) <0.001
eGFR (CKD-EPI), mL/min/1.73 m2 47.5 (19.4–94.2) 86.0 (48.8–114.3) 61.0 (21.0–87.5) 18.0 (13.0–38.8) <0.001
Albumin, g/dL 2.5 (2.2–2.8) 2.6 (2.2–2.9) 2.7 (2.2–2.9) 2.3 (2.1–2.7) 0.137
Lactate, mmol/L 2.1 (1.5–4.9) 1.7 (1.2–2.2) 2.2 (1.5–4.8) 4.6 (2.1–9.2) <0.001
CRP, mg/L 148.6 (67.9–247.4) 133.7 (71.7–221.4) 175.9 (50.5–320.0) 158.6 (81.2–243.7) 0.363
Procalcitonin, ng/mL 3.6 (0.6–14.6) 0.9 (0.3–3.3) 6.4 (1.5–24.7) 12.3 (2.6–28.5) 0.004
Sepsis severity <0.001

Sepsis 39 (46.4) 26 (76.5) 7 (32.0) 6 (20.0)
Septic shock 45 (53.6) 8 (23.5) 13 (65.0) 24 (80.0)

AKI severity <0.001
Stage 1 9 (10.7) 0� 8 (40.0) 1 (3.3)
Stage 2 5 (6.0) 0� 4 (20.0) 1 (3.3)
Stage 3 36 (42.9) 0� 8 (40.0) 28 (93.3)

RRT  31 (36.9) 0� 5 (25.0) 26 (86.7) <0.001
AKI, acute kidney injury; CCI, Charlson Comorbidity Index; SOFA, Sequential Organ Failure Assessment; APACHE II, Acute Physiology and Chronic Health Evaluation 
II; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CRP, C-reactive protein; RRT, re-
nal replacement therapy.
Data are presented as numbers (%) or median (interquartile range).



184

Biomarkers for AKI in Sepsis

https://doi.org/10.3349/ymj.2022.0324

software (version 16.4.3; MedCalc, Oostende, Belgium). Graph-
Pad Prism 7 (Graph-Pad, San Diego, CA, USA) was used for 
graphical plotting. For predicting the development of AKI, AUC-
ROC analysis was performed by comparing patients with AKI 
to those without. Also, for predicting the biomarker of AKI re-
covery, the AKI-recovery and non-recovery AKI groups were 
compared.

Ethics statement
The study protocol was reviewed and approved by the Institu-
tional Review Board of Severance Hospital (IRB No. 4-2017-
0654). Written consent was obtained from the patients or their 
guardians. All procedures were performed in accordance with 
the relevant guidelines and regulations. 

RESULTS

Baseline characteristics of the study population
A total of 91 patients diagnosed with sepsis were admitted to 
the medical ICU during the study period (Fig. 1). Seven patients 
with end-stage renal disease who required dialysis were exclud-
ed from the study. Thirty-four (40.5%) of the 84 patients who 
met the inclusion criteria were classified as having sepsis with-
out AKI, and 50 (59.5%) as sepsis with AKI. Of the non-AKI pa-
tients, only two patients developed delayed AKI after 48 hours. 
Of the patients with sepsis with AKI, 20 (40%) recovered within 
7 days following the precipitating event, whereas 30 (60%) pa-
tients did not recover during that period. 

Table 1 shows the clinical and laboratory characteristics of 
the participants enrolled in this study. The non-recovery AKI 
group showed higher CCI (4.5 vs. 2.0 vs. 3.0 vs., p=0.002), SOFA 
(10.0 vs. 6.5 vs. 8.0 vs., p<0.001), and APACHE II (32.0 vs. 21.5 

vs. 30.5 vs., p=0.004) scores compared to the non-AKI and AKI-
recovery groups. The Scr (2.9 vs. 0.8 vs. 1.2, p<0.001), eGFR 
(18.0 vs. 86.0 vs. 61.0, p<0.001), serum lactate (4.6 vs. 1.7 vs. 2.2, 
p<0.001), and procalcitonin (12.3 vs. 0.9 vs. 6.4, p=0.004) levels 
obtained during the initial laboratory test were also the high-
est for the non-recovery AKI group. 

Treatment outcomes
Table 2 shows the clinical outcomes of the participants enrolled 
in the study. The hospital LOS (44.5 days vs. 29.5 days, p=0.028), 
in-hospital mortality (50.0% vs. 23.5%, p=0.022, ICU mortality 
(42.0% vs. 14.7%, p=0.009), and 90-day mortality (48.0% vs. 
20.6%, p=0.012) were higher in the AKI group compared to the 
non-AKI group. Also, when comparing the non-recovery AKI 
group and the recovery-AKI group, we found that the non-re-

Table 2. Clinical Outcomes of Participants Enrolled in the Study 

(A) Comparison of clinical outcomes between non-AKI and AKI groups

Total (n=84)
Sepsis

p value
Non-AKI (n=34) AKI (n=50)

Hospital LOS, days 35.0 (21.3–62.8) 44.5 (28.5–73.3) 29.5 (18.3-45.3)   0.028
ICU LOS, days 9.0 (4.0–16.0) 10.5 (7.8–18.3) 8.0 (3.0-16.0)   0.160
In-hospital mortality 33 (39.3) 8 (23.5) 25 (50.0)   0.022
ICU mortality  26 (31.0) 5 (14.7) 21 (42.0)   0.009
90-day mortality 31 (36.9) 7 (20.6) 24 (48.0)   0.012
(B) Comparison of clinical outcomes between recovery and non-recovery AKI groups

Total (n=50)
AKI

p value
Recovery (n=20) Non-recovery (n=30)

Hospital LOS, days 29.5 (18.3–45.3) 33.0 (23.5–90.0) 23.5 (7.8–44.3)   0.106
ICU LOS, days 8.0 (3.0–16.0) 11.5 (7.0–16.0) 5.5 (3.0–15.3)   0.066
In-hospital mortality 25 (50.0) 3 (15.0) 22 (73.3) <0.001
ICU mortality  21 (42.0) 2 (10.0) 19 (63.3) <0.001
90-day mortality 24 (48.0) 4 (20.0) 20 (66.7)   0.002
AKI, acute kidney injury; LOS, length of stay; ICU, intensive care unit.
Data are presented as numbers (%) or median (interquartile range).
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Table 3. Metabolites of Participants Enrolled in the Study

(A) Comparison of metabolites between non-AKI and AKI groups
Sepsis

p value
Non-AKI (n=34) AKI (n=50)

Alpha-aminobutyric acid 22.2 (13.9–28.8) 21.2 (14.1–32.3) 0.985
Arginine 80.5 (60.2–102.9) 49.9 (31.4–96.5) 0.083
Asparagine 49.6 (41.0–64.9) 52.5 (38.5–68.2) 0.483
Aspartic acid 41.6 (32.8–56.0) 37.4 (26.6–53.4) 0.262
Citrulline 19.9 (12.1–28.8) 17.8 (12.2–26.7) 0.729
Glutamic acid 124.6 (102.2–155.6) 124.3 (100.2–19.3) 0.799
Glutamine 458.2 (353.6–518.3) 446.6 (339.1–599.0) 0.636
Glycine 267.4 (198.8–349.5) 254.6 (215.7–388.4) 0.560
Histidine 55.5 (46.8–74.7) 62.3 (45.9–95.1) 0.348
Hydroxyproline 11.3 (9.9–14.4) 13.7 (9.5–19.8) 0.111
Isoleucine 55.6 (44.0–72.5) 53.5 (33.3–66.5) 0.357
Leucine 119.1 (94.7–146.8) 114.3 (78.2–140.5) 0.636
Lysine 151.2 (119.6–229.4) 164.1 (127.3–241.5) 0.572
Methionine 28.5 (17.1–40.2) 29.2 (19.5–41.9) 0.529
Ornithine 96.1 (73.3–144.1) 97.0 (64.1–137.0) 0.792
Phenylalanine 144.8 (106.7–192.7) 160.1 (125.6–233.3) 0.153
Proline 130.4 (87.1–227.3) 158.8 (105.9–257.4) 0.330
Serine 133.4 (108.8–174.3) 116.2 (87.4–144.6) 0.076
Threonine 101.4 (65.0–118.7) 90.6 (67.6–132.1) 0.964
Tyrosine 58.5 (48.6–79.4) 68.6 (49.7–94.9) 0.183
Valine 200.0 (170.4–239.2) 184.2 (154.6–255.2) 0.357
Kynurenine 3.3 (2.1–6.8) 5.2 (3.6–7.3) 0.009
Tryptophan 28.8 (15.9–36.5) 28.1 (19.2–36.1) 0.931
Kynurenine/Tryptophan ratio 0.1 (0.1–0.3) 0.2 (0.1–0.3) 0.029
(B) Comparison of metabolites between recovery and non-recovery AKI groups

AKI
p value

Recovery (n=20) Non-recovery (n=30)
Alpha-aminobutyric acid 26.7 (15.6–37.6) 20.1 (12.0–29.0) 0.212
Arginine 58.7 (22.3–128.1) 49.9 (34.6–87.6) 0.953
Asparagine 57.1 (40.3–62.4) 51.0 (37.2–77.9) 0.663
Aspartic acid 45.2 (28.2–59.6) 34.4 (23.5–45.8) 0.109
Citrulline 15.4 (11.1–26.1) 20.2 (15.1–29.9) 0.166
Glutamic acid 134.6 (101.8–171.7) 117.4 (97.4–144.2) 0.267
Glutamine 439.3 (302.8–550.8) 454.0 (373.6–676.3) 0.322
Glycine 255.8 (233.6–396.7) 254.6 (211.0–391.1) 0.797
Histidine 60.2 (45.2–84.9) 68.4 (46.9–104.7) 0.593
Hydroxyproline 12.6 (9.6–15.9) 14.7 (9.3–30.4) 0.259
Isoleucine 55.2 (38.1–69.0) 51.9 (29.9–65.2) 0.539
Leucine 118.9 (84.6–148.6) 112.4 (77.5–141.8) 0.579
Lysine 171.5 (125.1–230.4) 160.1 (127.3–312.4) 0.539
Methionine 30.0 (19.7–38.9) 26.3 (19.5–45.4) 0.968
Ornithine 110.8 (69.4–134.9) 90.4 (59.6–155.5) 0.313
Phenylalanine 152.7 (122.2–220.4) 160.7 (133.3–260.1) 0.464
Proline 140.0 (108.6–217.7) 164.5 (95.7–304.4) 0.579
Serine 138.8 (116.0–154.6) 98.9 (76.2–131.7) 0.008
Threonine 96.9 (73.0–132.4) 82.7 (65.9–135.6) 0.722
Tyrosine 62.4 (40.1–86.0) 78.8 (51.9–109.1) 0.220
Valine 205.8 (159.6–262.7) 172.6 (142.4–245.7) 0.235
Kynurenine 4.3 (2.7–5.8) 6.6 (4.0–8.9) 0.009
Tryptophan 27.3 (20.2–35.8) 29.0 (17.4–36.9) 0.968
Kynurenine/Tryptophan ratio 0.1 (0.1–0.2) 0.2 (0.2–0.3) 0.013
AKI, acute kidney injury.
Data are presented as the median (interquartile range). Results are expressed in µmol/L.
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covery AKI group showed higher in-hospital mortality (73.3% 
vs. 15.0%, p<0.001), ICU mortality (63.3% vs. 10.0%, p<0.001), 
and 90-day mortality (66.7% vs. 20.0%, p=0.002). The Kaplan-
Meier curves also revealed that non-recovery from AKI was 
associated with lower survival (p<0.001). The survival in the 
AKI-recovery group was similar to that of the non-AKI group 
(p=0.753) (Fig. 2).

Difference in amino acid concentrations 
The amino acids profiling using LC-MS/MS revealed that the 
KYN (5.2 vs. 3.3, p=0.009) and KYN-to-TRP ratio (K/T ratio) (0.2 
vs. 0.1, p=0.029) concentrations at D0 were significantly higher 
in the AKI group than in the non-AKI group (Table 3A). Also, 
serine (98.9 vs. 138.8, p=0.008), KYN (6.6 vs. 4.3, p=0.009), and 
K/T ratio concentration (0.2 vs. 0.1, p=0.013) at D0 were signifi-
cantly different between the non-recovery AKI group and the 
recovery-AKI group (Table 3B). Fig. 3 depicts the potential kid-
ney markers stratified by the recovery status of renal function. 
High baseline levels of lactate (p≤0.05) and KYN (p≤0.05) were 
associated with non-recovery of renal function following AKI. 
The baseline KYN-to-TRP ratio (K/T ratio) was also significantly 
higher in the non-recovery AKI group compared to the non-
AKI group (p≤0.01), although it did not differ significantly from 
the K/T ratio of the AKI-recovery group. 

 

Lactate and KYN as biomarkers for the prediction of 
AKI and renal recovery 
ROC curves were generated to compare the predictive value 
of lactate and KYN for AKI (Fig. 4A and C) and renal recovery 
(Fig. 4B and D). The AUC for predicting AKI was 0.777 (95% 
CI, 0.680–0.874) and 0.668 (95% CI, 0.545–0.790) for lactate and 
KYN, respectively. The combination of lactate and Scr yielded 
the highest AUC value (0.913; 95% CI, 0.850–0.975). The com-
bination of KYN and eGFR yielded the highest AUC value (0.792, 
95% CI, 0.697–0.887) when calculating the ROC curve using 
eGFR instead of Scr. The AUC for the prediction of renal recov-
ery was higher for KYN (0.721, 95% CI, 0.577–0.865) than that 
for lactate (0.693; 95% CI, 0.545–0.842). Moreover, the combi-
nation of lactate, KYN, and Scr yielded the highest AUC value 
(0.820; 95% CI, 0.702–0.938) when calculated based on Scr, al-
though not when based on eGFR.

Patients were divided into the high-KYN (≥4.7) and low-KYN 
(<4.7) groups (Fig. 5A) based on the optimal cut-off value. They 
were also classified into the high-lactate (≥2.0) and low-lac-
tate (<2.0) groups (Fig. 5B). The high-KYN (p=0.040) and high-
lactate (p=0.010) groups had lower survival rates compared to 
the low-KYN and low-lactate groups, respectively. 

In addition, Table 4 shows the results of the univariate and 
multivariate logistic regression analyses that estimated the ORs 
of non-recovery from AKI. In the univariate analysis, CCI, SOFA 
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score, lactate, and KYN were associated with non-recovery from 
AKI. However, none of the significant factors remained signifi-
cant following the final multivariate analysis. 

DISCUSSION

The present study observed that 59% of patients with sepsis de-
veloped AKI in the ICU, which was similar to the approximate 
11%–64% range reported by previous studies.21-26 Moreover, it 

was observed that the incidence of AKI increased with the se-
verity of sepsis. The incidence of AKI in septic shock was higher 
than that in sepsis, which was consistent with the results of pre-
vious studies.21,27 We also found that patients with septic AKI 
tended to have a higher burden of comorbidities and severity 
of illness than those without septic AKI. Organ dysfunction 
and failure, as represented by the SOFA scores, were also great-
er in patients with septic AKI. Similarly, patients with septic AKI 
had higher rates of in-hospital, ICU, and 90-day mortality. 
Moreover, recovery from AKI was identified as an important 
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factor contributing towards a favorable prognosis, which was 
consistent with the findings of previous studies.5,28,29 The surviv-
al rate of patients who recovered from AKI within 7 days was 
similar to that of sepsis without AKI. 

Amino acids profiling was used to investigate potential bio-
markers for the development and recovery of AKI following 
sepsis, using LC-MS/MS. We revealed significant differences 
in the serum lactate and KYN levels between patients with and 
without septic AKI, thus demonstrating a good predictive value 
of both markers. Furthermore, the elevation in these biomark-
ers during ICU admission was independently associated with 
a poor prognosis and poor renal recovery within 7 days. These 
markers were obtained on the day of admission to the ICU, 
which allowed early prediction of AKI development and renal 
function recovery before the Scr attained peak levels. Further-
more, the combination of lactate and Scr facilitated the maxi-
mization of the AUC value for AKI prediction, while the combi-
nation of lactate, KYN, and Scr maximized the AUC value for 
renal function recovery prediction. 

Although several studies13,16,30-33 have focused on plasma KYN 
as a potential biomarker of various biological processes, the as-
sociation between KYN and renal function recovery prediction 
in septic AKI has not been well-established. The present study 
found that higher concentrations of KYN were associated with 
both AKI development and failure to recover following sepsis. 
This association could be related to the increased production 
and decreased elimination of KYN. Pro-inflammatory cyto-
kines that contribute to the development of kidney injury and 
repair in sepsis may be responsible for KYN elevation in septic 
AKI owing to the up-regulation of the KYN metabolism.8,34,35 
Another possible explanation for the association between KYN 
elevation and septic AKI is impairment in excretion,11 since re-
nal excretion is the main route of KYN elimination.36 

The K/T ratio, which represents the activity of indoleamine 
2,3-dioxygenase, has been suggested as an indicator of TRP ca-
tabolism, and is known to be associated with the diagnosis of 

sepsis and other diseases.15,16 We also showed that the K/T ratio 
could differentiate between non-AKI and AKI. However, the 
K/T ratio showed poor association with renal function recov-
ery. Considering that the overall trend was consistent with the 
existing assumptions, we hypothesized that this limitation may 
be attributed to the small sample population. 

This study also revealed that lactate may serve as a highly pre-
dictive biomarker for AKI development and renal function re-
covery. This finding was consistent with previous studies that 
demonstrated that serum lactate levels at ICU admission were 
associated with the occurrence of AKI in critically ill patients 
with sepsis.37,38 Hsu and Hsu39 also investigated the correlation 
between serum lactate levels and septic AKI in patients admit-
ted to the emergency departments for sepsis. Hyperlactatemia 
may arise from tissue hypoperfusion and anerobic glycolysis in 
sepsis-induced AKI.40,41 However, the pathogenesis of AKI in 
sepsis is distinct and relatively more heterogeneous than that of 
AKI of other etiologies.42,43 Growing evidence supports that in-
flammation, diffuse micro-circulatory flow irregularities, and 
aerobic glycolysis secondary to stress are also pathophysiologic 
mechanisms associated with sepsis-induced AKI.39,44,45 There-
fore, further studies are needed to investigate the role of lactate 
in predicting septic AKI.

There were certain limitations to our study. First, this study 
was based on a single-center trial, and the results may not be 
generalizable to other settings. Second, the study enrolled pa-
tients from the medical ICU and excluded surgical patients. 
Third, other metabolites of the TRP pathway, such as kynure-
nate, quinolinate, and xanthurenate, were not evaluated in the 
study. The combination of more biomarkers could enhance the 
accuracy of the predictive power for the detection of septic AKI 
and renal function recovery. Moreover, additional urinary test-
ing may be helpful, considering that the main route of KYN 
elimination is renal excretion. Lastly, this study only utilized 
data from the day of admission to the ICU without investigating 
the changes in serum biomarkers over time. The lactate and 

Table 4. Univariate and Multivariate Logistic Regression Analyses for Non-Recovery from AKI

Variables
Unadjusted Adjusted

OR 95% CI p value OR 95% CI p value
Age at diagnosis, yr 1.007 0.967–1.048 0.748 0.984 0.927–1.044 0.593
Sex, male 1.413 0.447–4.473 0.556 1.309 0.223–7.695 0.766
Body mass index, kg/m2 1.062 0.932–1.209 0.367
CCI 1.291 1.013–1.645 0.039 1.274 0.932–1.742 0.129
SOFA 1.229 1.017–1.485 0.033 1.187 0.902–1.563 0.222
APACHE II 1.015 0.951–1.083 0.660
Lactate ≥2.0 mmol/L 4.000   1.143–13.995 0.030 3.076   0.633–14.947 0.164
Procalcitonin, ng/mL 1.004 0.988–1.020 0.651
Hydroxyproline 1.050 0.988–1.115 0.115
Serine 0.987 0.973–1.001 0.065 0.979 0.957–1.002 0.071
Kynurenine ≥4.7 umol/L 4.333   1.298–14.471 0.017 4.829   0.823–28.351 0.081
AKI, acute kidney injury; CCI, Charlson Comorbidity Index; SOFA, Sequential Organ Failure Assessment; APACHE II, Acute Physiology And Chronic Health Evalua-
tion II; OR, odds ratio; CI, confidence interval.
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KYN levels analyzed in this study were measured immediately 
after admission to the ICU, and have value as early predictors. 
Further studies are needed to identify the differences between 
the levels of the respective biomarkers at various time points to 
permit a more accurate analysis of the association of these bio-
markers. 

In conclusion, this study suggested that serum lactate and 
plasma KYN could be utilized as reliable predictive biomarkers 
for the diagnosis and recovery of AKI in sepsis. Our data also 
indicated that lactate and KYN were associated with mortality. 
We believe that the findings of the current study could have sub-
stantial clinical implications; however, further research is war-
ranted to validate our findings. Patients with sepsis who are not 
likely to recover from AKI based on the lactate and KYN con-
centrations may require more careful treatment strategies, such 
as closer follow-ups, and restricted exposure to nephrotoxic 
drugs or radiocontrast agents. 
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