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Introduction: High sodium intake is associated with increased proteinuria. Herein, we investigated

whether proteinuria could modify the association between urinary sodium excretion and adverse kidney

outcomes in patients with chronic kidney disease (CKD).

Methods: In this prospective observational cohort study, we included 967 participants with CKD stages G1

to G5 between 2011 and 2016, who measured 24-hour urinary sodium and protein excretion at baseline.

The main predictors were urinary sodium and protein excretion levels. The primary outcome was CKD

progression, which was defined as a$50% decline in the estimated glomerular filtration rate (eGFR) or the

onset of kidney replacement therapy.

Results: During a median follow-up period of 4.1 years, the primary outcome events occurred in 287

participants (29.7%). There was a significant interaction between proteinuria and sodium excretion for the

primary outcome (P ¼ 0.006). In patients with proteinuria of <0.5 g/d, sodium excretion was not associated

with the primary outcome. However, in patients with proteinuria of $0.5 g/d, a 1.0 g/d increase in sodium

excretion was associated with a 29% higher risk of adverse kidney outcomes. Moreover, in patients with

proteinuria of $0.5 g/d, the hazard ratios (HRs) (95% confidence intervals[CIs]) for sodium excretion

of <3.4 and $3.4 g/d were 2.32 (1.50–3.58) and 5.71 (3.58–9.11), respectively, compared with HRs for pa-

tients with proteinuria of <0.5 g/d and sodium excretion of <3.4 g/d. In sensitivity analysis with 2 averaged

values of sodium and protein excretion at baseline and third year, the results were similar.

Conclusion: Higher urinary sodium excretion was more strongly associated with an increased risk of

adverse kidney outcomes in patients with higher proteinuria levels.
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hronic kidney disease (CKD) is a serious public
health problem, and according to the Global

Burden of Disease Study 2017, the global prevalence
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associated with an increased risk of hospitalization,
cardiovascular events, and death. Moreover, the risk of
adverse outcomes is higher in patients with more
advanced CKD.2 Therefore, correction of modifiable
risk factors is important to delay CKD progression.

In addition to pharmaceutical interventions, lifestyle
modifications are considered an important therapeutic
strategy for managing CKD. In particular, salt restric-
tion has been emphasized because of its harmful effects
on kidney health. High salt intake is highly related to
Kidney International Reports (2023) 8, 1022–1033
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hypertension3–5 and can suppress the response to
renin-angiotensin-aldosterone system (RAAS) blockers,
resulting in inadequately controlled blood pressure
(BP) in patients with hypertension.6,7 It also damages
blood vessel walls through oxidative stress and in-
flammatory reactions.8 Furthermore, high salt con-
sumption causes fluid retention, thereby increasing BP
and making it challenging to control BP.9,10 In patients
with CKD, excessive sodium intake is associated with
increased urinary protein excretion.11,12 Notably, salt
restriction can enhance the proteinuria lowering effect
of RAAS blockers.13,14 Given such unfavorable effects
of sodium, recent guidelines recommend limiting di-
etary sodium intake to <2.3 g (equivalent to salt intake
of <5.0 g) per day in patients with CKD.15,16

Although there have been growing concerns
regarding high sodium intake, studies on the relation-
ship between urinary sodium excretion and CKD pro-
gression have shown conflicting results.17 Recent
studies by our cohort investigators and a Japanese
study group showed that high urinary sodium excre-
tion was associated with a significantly increased risk
of CKD progression.18,19 However, other studies
showed no relationship between urinary sodium
excretion and kidney function decline.20–22 Notably,
recent randomized controlled trials (RCTs) with salt
restriction showed some positive results regarding BP
control and changes in proteinuria; however, these
studies were limited by small sample sizes and short-
term observations.23,24

Given that studies with dietary interventions are
challenged by many difficulties, mostly because of
attrition and compliance issues, long-term studies with
strict adherence to dietary prescriptions are not
feasible.25 Therefore, findings from prospective obser-
vation of long-term cohort studies can provide valuable
information about the association between sodium
intake and clinical outcomes. Given that high salt
intake is significantly correlated with proteinuria and
both salt and proteinuria adversely affect kidney
function,11,12,26 we wonder if the clinical implication of
urinary sodium excretion with respect to CKD pro-
gression might differ depending on proteinuria level.
Therefore, we addressed this issue using 24-hour urine
collection, a gold standard measurement for urinary
sodium, and protein excretion.
METHODS

Study Participants

The Korean Cohort Study for Outcome in Patients with
CKD is a prospective nationwide cohort study. Patients
aged between 20 and 75 years with CKD stages G1 to
G5 who had not undergone kidney replacement
Kidney International Reports (2023) 8, 1022–1033
therapy were enrolled in the study. Participants from
the Korean Cohort Study for Outcome in Patients with
CKD study voluntarily provided informed consent and
were recruited from 9 university-affiliated tertiary care
hospitals throughout Korea between 2011 and 2016.
The protocol summary was registered at ClinicalTrials.
gov (NCT01630486). In total, 2238 participants were
included in the Korean Cohort Study for Outcome in
Patients with CKD cohort. We excluded 31 participants
who were lost to follow-up after their first visit and 5
participants with inadequate 24-hour urine volume
(<500 ml). In addition, participancts without baseline
demographic data including body mass index (n ¼ 2),
systolic BP (n ¼ 2) and participants without baseline
hemoglobin (n¼ 2), albumin (n¼ 9), phosphate (n¼ 2),
or total cholesterol (n ¼ 5) data were excluded. More-
over, participants without 24-hour urine data for pro-
tein (n ¼ 293), sodium (n ¼ 39), and potassium (n ¼
875) at baseline were excluded. We further excluded 6
participants with extreme urine sodium excretion (24-
hour urine <20 mEq/d or >1000 mEq/d). Finally, 967
patients were included in the study (Figure 1).
Data Collection and Measurements

Baseline demographic data and medical history,
including age, sex, education, economic status, smok-
ing status, alcohol consumption, primary renal disease,
history of hypertension, and diabetes, Charlson co-
morbidity index, and medication use were documented
at enrollment. Anthropometric data, including height
and body weight (BW), were recorded. BP measure-
ments were performed during clinic visits after 5 mi-
nutes of rest, in a sitting position using an electronic
sphygmomanometer. Dietary protein intake (DPI) was
measured at baseline and was defined as the estimated
DPI/BW (g/d/kg BW). Estimated DPI was calculated
using the following formula: 6.25 � (24-hour urinary
urea [mg/d]/1000 þ 0.03 � BW [kg]) þ (24-hour uri-
nary protein [mg/d]/1000). The recommended level was
a DPI of $ 0.8 g/d/kg BW.27,28

Blood samples were obtained after overnight fasting
for laboratory measurements, including hemoglobin,
creatinine, albumin, total cholesterol, triglycerides,
high-density lipoprotein-cholesterol, low-density lipo-
protein-cholesterol, and electrolytes. We evaluated
urinary sodium and protein excretion using 24-hour
urine collected at baseline. All participants were
instructed to discard the first urine of the day and
collect urine over the following 24 hours in standard
containers. The total volume collected was measured.
The 24-hour urine samples were repeatedly collected at
the third year. Serum creatinine was measured using an
isotope-dilution mass spectrometry–traceable method,
1023
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Figure 1. Flow diagram of the study cohort. KNOW-CKD, Korean Cohort Study for Outcome in Patients with CKD.
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and the estimated glomerular filtration rate (eGFR) was
calculated using the CKD Epidemiology Collaboration
equation.

Main Predictors

The main predictors of this study were the baseline
24-hour urinary sodium and protein excretion levels.
Severe proteinuria was defined as a daily protein
excretion of $0.5 g/d. We further assessed exposure
measures using the average of 24-hour urinary sodium
and protein excretion at baseline and the third year
(Supplementary Figure S1). Measured 24-hour urinary
sodium excretion was used to estimate the daily salt
intake based on the assumption that >90% of all salt
ingested was excreted through urine.29,30 Significant
urinary sodium excretion was defined as the partici-
pant’s median sodium excretion of 3.4 g/d. The par-
ticipants were divided into the following 4 groups
based on the median concentrations of proteinuria of
0.5 g/d and sodium excretion of 3.4 g/d: low protein
and low sodium excretion (group 1), low protein and
high sodium excretion (group 2), high protein and low
sodium excretion (group 3), and high protein and high
sodium excretion (group 4).

Study Outcomes

The primary outcome of our study was the CKD pro-
gression, which was defined as a $50% decline in
eGFR or the development of CKD G5 requiring kidney
replacement therapy. Survival time was defined as the
time from enrollment to the date of the primary
outcome event occurrence. Patients who were lost to
follow-up were censored at the time of their last ex-
amination. Furthermore, mortality outcome was
analyzed according to urinary protein and sodium
1024
excretion. The study observations were closed on
March 31, 2020. Patients with CKD G3 or higher were
under close observation and were followed up at 1
month to 3 month intervals. If study outcome events
occurred during the follow-up period, they were re-
ported upon the occurrence of events by each partici-
pating center. The events were defined if at least 2
consecutive measurements of$50% eGFR decline were
ascertained and the first day of occurrence was desig-
nated as the study end point. Then, Korean Cohort
Study for Outcome in Patients with CKD investigators
cross-checked among centers if the outcome events
were true.

Statistical Analyses

Continuous variables are presented as means and
standard deviations, whereas categorical variables are
presented as counts and proportions. Variables with
skewed distribution are presented in medians with
interquartile ranges and compared using the Kruskal–
Wallis test. The Kolmogorov–Smirnov test was used
to confirm the normality of the distribution. First, we
investigated the relationship among urinary sodium
excretion, proteinuria, and other parameters using
Pearson’s correlation coefficient. The linear correlation
between urinary sodium excretion and proteinuria was
examined using multivariable linear regression anal-
ysis. Variables with a significance level of 0.1 in the
univariate analysis were used for the multivariate
analysis. Cox proportional hazard regression models
were used after incremental adjustments to investigate
the association between urinary sodium and protein
excretion and the risk of primary outcomes. For pri-
mary outcome analysis of CKD progression, we
employed cause-specific models, where death that
Kidney International Reports (2023) 8, 1022–1033
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occurred before reaching the kidney outcome was
considered a competing risk and thus censored. Model
1 presents the HR adjusted for participant’s de-
mographic, social, and medical characteristics,
including age, sex, body mass index, smoking status
(never, current, or former), primary renal disease,
Charlson comorbidity index, DPI, and participating
centers. Model 2 was further adjusted for systolic BP
and laboratory parameters, including hemoglobin,
phosphate, eGFR, albumin, total cholesterol, natural
log-transformed 24-hour urinary potassium excretion,
and natural log-transformed 24-hour urinary creatinine
excretion. Model 3 was further adjusted for medica-
tions (diuretics, RAAS blockers, and calcium channel
blockers) to fully adjust for confounding factors asso-
ciated with adverse kidney outcomes. Adjusted cu-
mulative incidence curves and cubic spline curves for
the primary outcome events were employed. Cubic
spline curves were employed using 4 knots, with the
first knot as a reference. Statistical significance of
nonlinearity was tested by comparing the spline curve
with the linear curve and that of linearity was tested
by comparing the linear curve with the model
including only the covariates. Likelihood ratios tests
were used for goodness-of-fit of both linear and
nonlinear models. Further spline curves according to
protein excretion subgroups were conducted to visu-
alize the association between urinary sodium excretion
and primary outcome. A sensitivity analysis was per-
formed to test the robustness of our findings using
multiple measures of urinary sodium and protein
excretion. For this analysis, we used average values of
24-hour urinary sodium and protein excretion
measured at baseline and the third year. Finally, we
further analyzed the association of the primary out-
comes with different cut-off values of urinary sodium
excretion (4.0 g/d) and proteinuria (1.0 g/d). All sta-
tistical analyses were performed using STATA version
15. (Stata Corporation, College Station, TX, USA).

Ethics Statement

All study procedures were performed in accordance
with the Declaration of Helsinki guidelines, and the
study protocol was approved by the institutional re-
view boards of the participating clinical centers. The
centers participating in this study were as follows:
Seoul National University Hospital (1104-089-359),
Seoul National University Bundang Hospital (B-1106/
129-008), Yonsei University Severance Hospital (4-
2011-0163), Kangbuk Samsung Medical Center (2011-
01-076), Seoul St Mary’s Hospital (KC11OIMI0441), Gil
Hospital (GIRBA2553), Eulji General Hospital (201105-
01), Chonnam National University Hospital (CNUH-
2011-092), and Pusan Paik Hospital (11-091).
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RESULTS

Baseline Characteristics

The baseline characteristics of the 967 participants ac-
cording to the 4 groups based on the 24-hour urinary
sodium and protein excretions are presented in Table 1.
The mean age was 55.4 � 11.8 years, and 604 (62.5%)
participants were men. The mean eGFR was 52.7 � 29.7
ml/min per 1.73 m2, and the median proteinuria was
0.56 (interquartile range, 0.19–1.57) g/d. The distri-
bution of the 24-hour urinary sodium and protein
excretion is shown in Supplementary Figure S2.
Because 24-hour urinary protein excretion data showed
a skewed distribution, natural logarithm trans-
formation was performed in our analysis. Among pa-
tients with 24-hour urinary protein excretion of <0.5
g/d, BP and eGFR were higher in patients with sodium
excretion of $3.4 g/d than in those with sodium
excretion of <3.4 g/d. These findings were similar
among patients with a 24-hour protein excretion
of $0.5 g/d. Accordingly, the number of BP medica-
tions increased in patients with higher urinary excre-
tion of protein and sodium. On the contrary, there were
more patients without BP medications in lower protein
and sodium excretion groups. Protein intake, assessed
by DPI was higher in patients with higher urinary
sodium excretion.

Relationship Between Urinary Sodium

Excretion and Proteinuria

Next, we examined the correlation among 24-hour uri-
nary sodium excretion, proteinuria, and other key pa-
rameters. We found that urinary sodium excretion
positively correlated with proteinuria (g ¼ 0.133; P <
0.001), systolic BP (g ¼ 0.075; P ¼ 0.019), and eGFR
(g ¼ 0.149; P < 0.001). Multiple linear regression
analysis after adjustment for these factors showed that
24-hour sodium excretion was independently associated
with proteinuria (coefficient ¼ 0.119; P ¼ 0.001). In
other words, 24-hour urinary sodium excretion
increased by 0.82 g per a 1 g increase in proteinuria
(Supplementary Table S1 and Supplementary Figure S3).

Association of Urinary Sodium and Protein

Excretion With Adverse Kidney Outcomes

During 3948.2 person-years of follow-up (median, 4.1
years), the primary outcome occurred in 287 (29.7%)
participants (72.7 per 1000 person-years). The number
of event occurrences in groups ranging from 1 to 4
were 33 (13.8 %), 18 (8.5 %), 109 (45.0 %), and 127
(446.5 %), with the corresponding incidence rates of
30.5, 17.6, 129.6, and 126.8 per 1000 person-years
(Table 2), respectively. Moreover, death events
occurred in 9 (3.1%), 11 (5.2 %), 19 (7.9%), and 10
(3.7%) in groups ranging from 1 to 4, with the
1025



Table 1. Baseline characteristics of patients according to the 24-hour urinary sodium and protein excretion

Characteristics Total (N [ 967)

24-hour urinary protein excretion

< 0.5 g/d ‡ 0.5 g/d

24-h urinary sodium excretion

Low <3.4 g/d High ‡3.4 g/d Low <3.4 g/d High ‡3.4 g/d

(n [ 239) (n [ 213) (n [ 242) (n [ 273)

Demographic data

Age, y 55.4 � 11.8 54.4 � 13.6 56.1 � 11.0 54.8 � 11.5 56.2 � 10.9

Female, n (%) 363 (37.5) 117 (49.0) 64 (30.0) 102 (42.1) 80 (29.3)

Systolic BP, mm Hg 127.1 � 15.3 124.8 � 13.4 125.7 � 14.2 127.6 � 16.2 129.5 � 16.5

Diastolic BP, mm Hg 76.8 � 11.0 76.6 � 10.3 76.8 � 10.9 75.9 � 10.5 77.9 � 12.0

Body mass index, kg/m2 24.8 � 3.4 23.9 � 3.2 25.4 � 3.4 24.2 � 3.2 25.7 � 3.3

Economic status, n (%)

Low 233 (24.6) 56 (23.5) 40 (19.2) 57 (23.8) 80 (30.4)

Middle 487 (51.3) 122 (51.3) 104 (50.0) 132 (55.0) 129 (49.0)

High 229 (24.1) 60 (25.2) 64 (30.8) 51 (21.3) 54 (20.5)

Primary renal disease, n (%)

Diabetic nephropathy 268 (27.7) 35 (14.6) 34 (16.0) 104 (43.0) 95 (34.8)

Hypertensive nephropathy 187 (19.3) 54 (22.6) 58 (27.2) 23 (9.5) 52 (19.0)

Glomerulonephritis 291 (30.1) 57 (23.8) 43 (20.2) 97 (40.1) 94 (34.4)

Polycystic kidney disease 126 (13.0) 70 (29.3) 45 (21.1) 5 (2.1) 6 (2.2)

Others 95 (9.8) 23 (9.6) 33 (15.5) 13 (5.4) 26 (9.5)

Comorbidities

Hypertension, n (%) 925 (95.7) 218 (91.2) 199 (93.4) 238 (98.3) 270 (98.9)

Diabetes, n (%) 374 (38.7) 60 (25.1) 69 (32.4) 115 (47.5) 130 (47.6)

Myocardial infarction, n (%) 26 (2.7) 8 (3.3) 3 (1.4) 6 (2.5) 9 (3.3)

Congestion heart failure, n (%) 19 (2.0) 3 (1.3) 4 (1.9) 3 (1.2) 9 (3.3)

Cerebrovascular disease, n (%) 56 (5.8) 11 (4.6) 17 (8.0) 14 (5.8) 14 (5.1)

DPI $ 0.8g/d/kg, n (%) 718 (74.3) 146 (61.1) 183 (85.9) 146 (60.3) 243 (89.0)

Laboratory parameters

Hemoglobin, g/dl 12.9 � 2.1 13.0 � 1.9 13.7 � 1.9 12.3 � 2.0 12.9 � 2.2

Sodium, mmol/l 140.8 � 2.5 140.8 � 2.4 140.8 � 2.3 140.5 � 2.6 141.0 � 2.7

Potassium, mmol/l 4.7 � 0.6 4.6 � 0.5 4.6 � 0.5 4.8 � 0.6 4.7 � 0.6

Chloride, mmol/l 105.2 � 3.5 104.8 � 3.1 104.5 � 3.2 105.3 � 3.7 105.8 � 3.8

Phosphate, mg/dl 3.7 � 0.7 3.6 � 0.6 3.4 � 0.6 3.9 � 0.8 3.7 � 0.6

eGFR, ml/min per 1.73 m2 52.7 � 29.7 58.3 � 30.2 62.0 � 27.2 42.6 � 27.6 49.5 � 29.7

Albumin, g/dl 4.2 � 0.4 4.4 � 0.3 4.4 � 0.3 4.0 � 0.5 4.0 � 0.5

Total cholesterol, mg/dl 172.7 � 40.4 168.0 � 37.5 173.1 � 34.0 175.7 � 44.1 173.9 � 43.8

Triglyceride, mg/dl 161.5 � 100.4 145.2 � 94.2 151.7 � 83.9 165.7 � 104.6 179.6 � 110.6

HDL-C, mg/dl 48.3 � 14.5 49.3 � 15.8 48.6 � 13.4 48.2 � 15.0 47.3 � 13.9

LDL-C, mg/dl 96.1 � 32.2 91.3 � 29.1 99.3 � 29.7 97.9 � 34.1 96.1 � 34.7

Urinary parameters

Urine volume, ml 1840.0 (1450.0–2250.0) 1535.0 (1100.0–2000.0) 2000.0 (1630.0–2495.0) 1595.0 (1285.0–1900.0) 2080.0 (1800.0–2600.0)

Urine protein, g/d 0.56 (0.19–1.58) 0.17 (0.10–0.28) 0.18 (0.11–0.36) 1.34 (0.73–2.47) 1.67 (0.90–3.82)

Urine creatinine, g/d 1.17 (0.89–1.47) 0.99 (0.78–1.28) 1.33 (1.08–1.61) 1.00 (0.78–1.25) 1.30 (1.05–1.60)

Urine sodium, g/d 3.40 (2.46–4.51) 2.44 (1.79–2.88) 4.46 (3.86–5.34) 2.50 (1.86–2.97) 4.53 (3.90–5.47)

Urine potassium, g/d 1.95 (1.44–2.57) 1.59 (1.25–2.11) 2.34 (1.77–2.87) 1.56 (1.17–2.11) 2.30 (1.87–2.96)

Urine chloride, g/d 2.25 (3.78–6.93) 3.78 (2.87–4.72) 6.93 (6.19–8.32) 3.87 (2.77–4.55) 6.93 (6.01–8.65)

Use of medications

RAAS blocker, n (%) 832 (86.0) 195 (81.6) 175 (82.2) 219 (90.5) 243 (89.0)

Diuretics, n (%) 309 (32.0) 55 (23.0) 62 (29.1) 93 (38.4) 99 (36.3)

Calcium channel blockers, n (%) 392 (40.5) 83 (34.7) 80 (37.6) 99 (40.9) 130 (47.6)

Number of BP medications, n (%)

0 102 (10.5) 42 (17.6) 31 (14.6) 14 (5.8) 15 (5.5)

1 312 (32.3) 81 (33.9) 66 (31.0) 83 (34.3) 82 (30.0)

2 272 (28.1) 60 (25.1) 63 (29.6) 67 (27.7) 82 (30.0)

3 185 (19.1) 39 (16.3) 37 (17.4) 50 (20.7) 59 (21.6)

$4 96 (9.9) 17 (7.1) 16 (7.5) 28 (11.6) 35 (12.8)

BP, blood pressure; DPI, dietary protein intake; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; RAAS,
renin-angiotensin-aldosterone system.
Data are presented as mean � SD, number (percentage), or median (interquartile range).
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Table 2. Outcome event rates according to the 24-hour urinary sodium and protein excretion

Outcomes Total (N [ 967)

Proteinuria <0.5 g/d
Urine sodium
<3.4 g/d

Proteinuria <0.5 g/d
Urine sodium
‡3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium
<3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium
‡3.4 g/d

(n [ 239) (n [ 213) (n [ 242) (n [ 273)

Primary outcome

Number of person-y 3948.2 1083.6 1021.7 841.2 1001.8

Number of events (%) 287 (29.7) 33 (13.8) 18 (8.5) 109 (45.0) 127 (46.5)

Incidence rate 72.7 30.5 17.6 129.6 126.8

All-cause mortality

Number of person-y 4648.7 1160.6 1055.9 1117.8 1314.4

Number of events (%) 49 (5.1) 9 (3.1) 11 (5.2) 19 (7.9) 10 (3.7)

Incidence rate 10.5 7.8 10.4 17.0 7.6

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.
The primary outcome was defined as CKD progression, which was defined as the first occurrence of a 50% decline in eGFR from the baseline value, or the onset of kidney failure with
replacement therapy, and the analysis was performed using a cause-specific model by censoring the death event that occurred before reaching the kidney outcome.
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corresponding incidence rates of 7.8, 10.4, 17.0, and 7.6
per 1000 person-years, respectively.

In the Cox proportional hazard model, high sodium
excretion was associated with a higher risk of the
primary outcomes (Table 3). There was a significant
interaction between proteinuria and sodium excretion
for adverse kidney outcomes (P ¼ 0.006). We explored
this association separately depending on the protein-
uria level. In patients with proteinuria of <0.5 g/d,
sodium excretion was not associated with the primary
outcome (adjusted HR per 1.0 g/d of sodium excretion,
1.03; 95% CI, 0.76–1.40). In addition, the risk of kid-
ney outcomes did not differ between patients with
sodium excretion of <3.4 and $3.4 g/d (HR, 1.11; 95%
CI, 0.60–2.07) (Table 4). In contrast, when proteinuria
was$0.5 g/d, the HR associated with 1.0 g/d of sodium
excretion was 1.29 (95% CI, 1.15–1.46). Moreover, in
patients with proteinuria of $0.5 g/d, the HRs (95%
CIs) for sodium excretion of <3.4 and $3.4 g/d were
2.32 (1.50–3.58), and 5.71 (3.58–9.11), respectively,
Table 3. Hazard ratios for primary outcomes based on the baseline
24-hour urinary sodium and hazard ratio per 1.0g/d of urinary sodium
excretion
Primary outcome HR (95% CI) P value

Multivariable adjusteda without proteinuria 1.22 (1.10–1.36) <0.001

Multivariable adjusted with proteinuria 1.18 (1.06–1.32) 0.003

HR per 1.0 g/d of urinary
sodium excretion

Proteinuria <0.5 g/d Proteinuria ‡0.5 g/d

HR (95% CI) P value HR (95% CI) P value

1.03 (0.76–1.40) 0.852 1.29 (1.15–1.46) <0.001

BMI, body mass index; CCB, calcium channel blocker; CCI, charlson comorbidity index;
CI, confidence interval; CKD, chronic kidney disease; DPI, dietary protein intake; eGFR,
estimated glomerular filtration rate; HR, hazard ratio; RAAS, renin-angiotensin-
aldosterone system.
aThe multivariable model was adjusted for age, sex, BMI, smoking history, systolic blood
pressure, primary renal disease, CCI, DPI, hospital center, hemoglobin, phosphate,
eGFR, albumin, total cholesterol, natural log-transformed 24-hour urine potassium,
natural log-transformed 24-hour urine creatinine, and medications, including RAAS
blockers, CCB, and diuretics.
The primary outcome was defined as CKD progression, which was defined as the first
occurrence of a 50% decline in eGFR from the baseline value, or the onset of kidney
failure with replacement therapy, and the analysis was performed using a cause-
specific model by censoring the death event that occurred before reaching the kid-
ney outcome.
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compared with HRs for patients with proteinuria
of <0.5 g/d and sodium excretion of <3.4 g/d (Table 4).
In the cumulative incidence curve analysis, the cu-
mulative primary outcome was significantly higher in
group 3 and 4 compared with the other groups
(Figure 2). Further cubic spline curves showed a linear
association of urinary sodium excretion with adverse
kidney outcome (Supplementary Figure S4). However,
this relationship was observed only for patients with
proteinuria $0.5 g/d (Supplementary Figure S5). We
analyzed risk of mortality according to proteinuria and
sodium excretion but the HRs did not differ among the
4 groups (Supplementary Table S2).

Sensitivity Analyses

We performed a sensitivity analysis in 465 patients
with 2 average measurements of 24-hour urinary so-
dium and protein excretion at baseline and the third
year. In line with the primary analysis, groups 3 and 4
had a 4.8-fold (HR, 4.77; 95% CI, 2.00–11.38) and a
12.6-fold (HR, 12.6; 95% CI, 4.91–33.34) higher risk of
the primary outcome, respectively, than group 1. The
risk did not differ between groups 1 and 2 (Table 5).
Further sensitivity analysis was performed using
different cut-off values of baseline 24-hour urine so-
dium. This cut-off was determined by a cubic spline
curve showing that the risk began to increase from the
point of 24-hour urinary sodium excretion of $4.0 g/
d (Supplementary Figure S4). In this analysis, a higher
proteinuria cut-off of 1.0 g/d was used. The results
showed a significantly higher risk of primary outcomes
in groups 3 and 4 than in group 1 (Supplementary
Table S3 and Supplementary Table S4).

DISCUSSION

In this study, we investigated the association of 24-
hour urinary sodium and protein excretion with the
risk of adverse kidney outcomes. There was a signifi-
cant positive interaction between 24-hour urinary
1027



Table 4. Hazard ratios for primary outcome based on baseline 24-hour urinary sodium and protein excretion

Models

24-hour urine protein and sodium excretion category

Proteinuria <0.5 g/d
Urine sodium <3.4 g/d

Proteinuria <0.5 g/d
Urine sodium ‡3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium <3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium ‡3.4 g/d

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Model 1 Reference 0.69 (0.38–1.24) 0.213 4.22 (2.77–6.42) <0.001 5.82 (3.82–8.88) <0.001

Model 2 Reference 1.19 (0.64–2.20) 0.577 2.33 (1.51–3.59) <0.001 5.94 (3.73–9.48) <0.001

Model 3 Reference 1.11 (0.60–2.07) 0.730 2.32 (1.50–3.58) <0.001 5.71 (3.58–9.11) <0.001

BMI, body mass index; CCB, calcium channel blocker; CCI, charlson comorbidity index; CI, confidence interval; CKD, chronic kidney disease; DPI, dietary protein intake; eGFR, estimated
glomerular filtration rate; HR, hazard ratio; RAAS, renin-angiotensin-aldosterone system.
Model 1: age, sex, BMI, smoking history, primary renal disease, CCI, DPI, and hospital center.
Model 2: model 1 plus systolic blood pressure and laboratory parameters, including hemoglobin, phosphate, eGFR, albumin, total cholesterol, natural log 24-hour urine potassium, and
natural log 24-hour urine creatinine.
Model 3: model 2 plus medications, including RAAS blockers, CCB, and diuretics.
The primary outcome was defined as CKD progression, which was defined as the first occurrence of a 50% decline in eGFR from the baseline value, or the onset of kidney failure with
replacement therapy, and analysis was performed using a cause-specific model by censoring the death event that occurred before reaching the kidney outcome.
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sodium and protein excretion. We found that sodium
excretion was not associated with adverse kidney
outcomes in patients with proteinuria of <0.5 g/d.
However, this association was significant in patients
with proteinuria of $0.5 g/d. In patients with higher
proteinuria, the magnitude of the HR was greater in
those with urinary sodium excretion of $3.4 g/d than
in those with sodium excretion of <3.4 g/d. Additional
analysis of the average sodium and protein excretion
also confirmed these findings. Our findings suggest that
high sodium excretion may be more meaningful,
particularly in the presence of severe proteinuria with
respect to adverse kidney outcomes.

Previous studies have shown that high salt intake is
significantly related to elevated BP and an increased risk
of cardiovascular events, including congestive heart
failure, myocardial infarction, and stroke.4,5,31 Given
that cardiovascular events are the leading cause of death
Figure 2. Cumulative incidence curve for primary outcomes according to

1028
in patients with CKD, salt restriction is the first-line
lifestyle modification in these patients. Notably, most
studies on the association between salt intake and clin-
ically hard outcomes are observational studies and there
have been few RCTs on this issue. Most RCTs to date
have examined the effects of salt restriction on BP
control, and long-term RCTs on the effects of dietary
intervention on cardiovascular disease and mortality are
scarce. Although several meta-analyses favored lower
sodium intake with respect to cardiovascular events,22,32

these were based on combined cohort studies and post
hoc analyses of RCTs on BP control that reported car-
diovascular outcomes and death. Unfortunately, ne-
phrologists are facing the same debate in the field of
cardiology because the causal relationship between salt
intake and adverse kidney outcomes remains contro-
versial in patients with CKD.17–21,33 Nevertheless, many
guidelines for CKD care have adopted the
the baseline 24-hour urinary sodium and protein excretion.

Kidney International Reports (2023) 8, 1022–1033



Table 5. Hazard ratios for the primary outcomes based on the 2 average measurements of the mean 24-hour urinary sodium and protein
excretion

Models

24-hour urine protein and sodium excretion category

Proteinuria <0.5 g/d
Urine sodium <3.4 g/d

Proteinuria <0.5 g/d
Urine sodium ‡3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium <3.4 g/d

Proteinuria ‡0.5 g/d
Urine sodium ‡3.4 g/d

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Sensitivity Analysisa

Model 1 Reference 0.58 (0.17–1.99) 0.386 6.77 (2.84–16.13) <0.001 10.47 (4.26–25.70) <0.001

Model 2 Reference 0.84 (0.23–3.03) 0.784 4.95 (2.10–11.66) <0.001 12.51 (4.89–32.00) <0.001

Model 3 Reference 0.72 (0.20–2.55) 0.606 4.77 (2.00–11.38) <0.001 12.60 (4.91–32.34) <0.001

BMI, body mass index; CCB, calcium channel blocker; CCI, charlson comorbidity index; CI, confidence interval; CKD, chronic kidney disease; DPI, dietary protein intake; eGFR, estimated
glomerular filtration rate; HR, hazard ratio; RAAS, renin-angiotensin-aldosterone system.
aSensitivity analysis: Mean urine sodium excretion was calculated using the average urine sodium excretion at baseline and 3 years later.
Model 1: age, sex, BMI, smoking history, primary renal disease, CCI, DPI, and hospital center.
Model 2: model 1 plus systolic blood pressure and laboratory parameters, including hemoglobin, phosphate, eGFR, albumin, total cholesterol, natural log of average 24-hour urine
potassium, and natural log of average 24-hour urine creatinine.
Model 3: model 2 plus medications, including RAAS blockers, CCB, and diuretics.
The primary outcome was defined as CKD progression, which was defined as the first occurrence of a 50% decline in eGFR from the baseline value, or the onset of kidney failure with
replacement therapy, and the analysis was performed using a cause-specific model by censoring the death event that occurred before reaching the kidney outcome.
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recommendation of salt restriction, as suggested by the
World Health Organization and other European and
American cardiology guidelines.16,34,35

It is unclear why many observational studies have
yielded conflicting results. One possible explanation for
these discrepant findings is errors in the measurement of
sodium intake. In clinical practice, questionnaires, spot
urine samples, and single 24-hour urine samples are used
to assess sodium intake. However, these methods have
several limitations that lead to measurement errors.
Although questionnaires can assess a participant’s long-
term dietary intake, they can inaccurately estimate the
sodium intake of all nutrients and foods.36,37 In addition,
formulas such as Kawasaki, Tanaka, and INTERSALT are
commonly used to calculate sodium intake based on spot
urine sodium; however, these methods are biased with
overestimation at lower levels and underestimation at
higher levels of sodium intake.38,39 Because >90% of
ingested salt is eliminated by the kidney,29,30 24-hour
urinary sodium excretion has been the gold standard
for estimating salt intake. However, owing to the high
variability of salt consumption, this method also has a
limitation in evaluating the dietary habits of individual
patients by a single urine collection.40 In fact, sodium
intake or excretion may be confounded by other factors
such as proteinuria severity, protein intake, or the use of
diuretics. Nevertheless, our study has the strength of
using 24-hour urinary sodium excretion to estimate so-
dium intake. In support of our findings, the Chonic Renal
Insufficiency Cohort Study investigators also showed
that higher urinary sodium excretion using 24-hour
urine collection was associated with significantly
increased risk of CKD progression.41 Furthermore, we
used the average of 2 measurements of the 24-hour uri-
nary sodium and protein excretion to reduce individual
variability and enhance the accuracy of sodium intake.
We believe that our analytical approach can reveal the
Kidney International Reports (2023) 8, 1022–1033
association between urinary sodium and protein excre-
tion and adverse kidney outcomes.

Proteinuria may modify the association between so-
dium intake and kidney outcomes. In the Modification
of Diet in Renal Disease study, stratified analysis by
proteinuria and sodium excretion showed that higher
urine sodium was associated with an increased risk of
kidney failure in patients with baseline proteinuria
of <1 g/d and lower risk of kidney failure in those with
baseline proteinuria of $1 g/d when urinary sodium
excretion was <3 g/d.42 In addition, in the post hoc
analysis of the Ramipril Efficacy in Nephropathy trials,
an increase in dietary sodium intake per 100 mmol/g
was associated with a 61% increased risk of kidney
failure requiring kidney replacement therapy. However,
this association was markedly attenuated and became
nonsignificant after adjusting for proteinuria.43 Inter-
estingly, these findings are not in agreement with our
study. We showed that in patients with proteinuria
of $0.5 g/d, sodium excretion was synergistically
associated with a significantly increased risk of adverse
kidney outcomes, whereas this association was not seen
when proteinuria was <0.5 g/d. The discrepant findings
among studies can be explained by greater salt sensi-
tivity in East Asians compared to that in Western
Caucasians.44 Generally, Asians consume more salt than
Western populations,45 and there is evidence that the
increased frequency of salt sensitivity in Japanese is
partly related to increased frequencies of variants in
some genes such as RAS.46 Our findings can be sup-
ported by the findings from the large-scale, epidemio-
logical Prospective Urban Rural Epidemiology study,
showing that the association between systolic BP and
sodium intake was the strongest for sodium excretion of
>5.0 g/d and this association was weaker when Chinese
individuals were excluded.3,47 Therefore, given that
patients with CKD are more salt-sensitive,48 patients
1029



CLINICAL RESEARCH HJ Kim et al.: Urine Sodium Excretion and CKD Progression
with higher sodium and protein excretion are more
likely to have higher BP, resulting in more kidney
injury.

Although the causality is uncertain, the harmful as-
sociation of salt with adverse kidney outcomes can be
explained by several mechanisms, as previously pro-
posed. High salt intake increases BP and proteinuria by
activating the RAAS, which attenuates the proteinuria
lowering effects of RAAS blockers.7,49 Moreover, high
salt intake increases glomerular capillary pressure, gen-
erates reactive oxygen species, and promotes inflamma-
tion of local tissues and endothelial dysfunction.9 All of
these mechanisms increase proteinuria and eventually
deteriorate kidney function. There is also experimental
evidence that dietary salt directly causes kidney damage
by overexpressing transforming growth factor-beta,
which ultimately leads to kidney fibrosis.50,51

Our study has several limitations. First, because
this study is an observational study, the causality is
uncertain and potential confounding factors might not
be completely controlled. In addition, there were
substantial missing data for 24-hour urinary potas-
sium excretion, which might cause selection bias.
However, this study included patients with CKD
alone, employed rigorously adjusted models, and
showed consistent findings using various analytical
methods. Second, a single measurement of 24-hour
urinary sodium excretion may not adequately reflect
the general dietary pattern. Multiple 24-hour urine
collections can minimize measurement errors; howev-
er, this method is burdensome and time-consuming.
Nevertheless, we performed a sensitivity analysis us-
ing 2 measurements of sodium excretion at baseline
and the third year and found a similar association with
the primary analysis. Third, because 24-hour urine
collection is time-consuming, patients might not
follow the standard collection protocol. Our research
nurses deliberately explained urine collection and
informed the participants to collect every drop of
urine over 24 hours. Fourth, we did not perform
detailed dietary surveys such as 24-hour recall and
food questionnaires; thus, we could not adjust for
other dietary factors. However, these methods cannot
account for day-to-day variation and require multiple
surveys to accurately assess diet patterns.37 Moreover,
24-hour urinary excretion is a more accurate measure
of salt intake than dietary surveys. Lastly, there are
vast differences in salt intake and dietary patterns
worldwide. Therefore, the inclusion of Koreans alone
may limit the generalizability of our findings to other
racial and ethnic groups.

In conclusion, high sodium excretion is significantly
associated with an increased risk of adverse kidney
outcomes in patients with CKD. This association was
1030
not observed in patients with lower proteinuria but
was more prominent in those with higher proteinuria.
Our findings provide new insights into the relationship
between salt intake and kidney outcomes in clinical
practice.
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