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Abstract

Background

Accurate interpretation of chest radiographs requires years of medical training, and many

countries face a shortage of medical professionals to meet such requirements. Recent

advancements in artificial intelligence (AI) have aided diagnoses; however, their perfor-

mance is often limited due to data imbalance. The aim of this study was to augment imbal-

anced medical data using generative adversarial networks (GANs) and evaluate the clinical

quality of the generated images via a multi-center visual Turing test.

Methods

Using six chest radiograph datasets, (MIMIC, CheXPert, CXR8, JSRT, VBD, and OpenI),

starGAN v2 generated chest radiographs with specific pathologies. Five board-certified radi-

ologists from three university hospitals, each with at least five years of clinical experience,

evaluated the image quality through a visual Turing test. Further evaluations were per-

formed to investigate whether GAN augmentation enhanced the convolutional neural net-

work (CNN) classifier performances.

Results

In terms of identifying GAN images as artificial, there was no significant difference in the

sensitivity between radiologists and random guessing (result of radiologists: 147/275

(53.5%) vs result of random guessing: 137.5/275, (50%); p = .284). GAN augmentation

enhanced CNN classifier performance by 11.7%.
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Conclusion

Radiologists effectively classified chest pathologies with synthesized radiographs, suggest-

ing that the images contained adequate clinical information. Furthermore, GAN augmenta-

tion enhanced CNN performance, providing a bypass to overcome data imbalance in

medical AI training. CNN based methods rely on the amount and quality of training data; the

present study showed that GAN augmentation could effectively augment training data for

medical AI.

1. Introduction

Chest radiography is one of the most widely used medical imaging modalities in the United

States [1] as it is affordable and quick, and can rule out several critical pathological conditions

such as COVID-19 pneumonia [2–5], lung cancer [6–8], pulmonary tuberculosis [9], and

heart diseases [10]. In South Korea, the number of chest radiograph prescriptions has steadily

increased from 23 million per year in 2015 to almost 27 million in 2019 [11].

The clinical benefit of chest radiography is user dependent [12]. Chest radiography holds a

vast amount of information in a single image, which requires extensive medical training for

accurate interpretation. Training a radiologist requires years, and the number of experts who

can read chest radiographs is not increasing as rapidly as the number of prescriptions. In

many economies, this gap in the supply and demand of medical professionals is worse in medi-

cally underserved rural areas [12–14]. Due to urban migration, these areas often have elderly

populations, who are at an elevated risk of cardiovascular and pulmonary maladies that can be

screened through chest radiographs, However, due to an imbalance in the distribution of

healthcare resources, such clinical demands are rarely met. Medical artificial intelligence (AI)

can address such shortages of clinical expertise if it can be trained to achieve levels of perfor-

mance comparable to experienced physicians in interpreting specific diagnostic modalities [1].

With appropriate development and distribution of medical AI as computer-aided diagnosis

programs, the unmet needs for clinical expertise in medically underserved areas can be better

addressed [15].

With the rapid advancement of artificial intelligence, computer-aided diagnosis research

has recently bloomed [1, 11]. The same is true with the development of deep learning, which

has resulted in remarkable progress being made in the field of medical image analysis [16].

One of the predominant challenges to AI training in the medical imaging is data imbalance.

To ensure that the AI model is robust and effective, the training dataset must be extensive and

well balanced [17]; however, the amount of medical data is usually insufficient and the imbal-

ance, large [18]. In many cases, the most pernicious diseases have the lowest prevalence, lead-

ing to severe data imbalances [19], which can negatively affect model performances.

Many chest radiograph datasets are publicly available, and most are prone to data imbal-

ance. Chest X-ray 8 (CXR8), one of the largest existing open-source chest radiograph data ini-

tiatives led by the National Institute of Health, is no exception; of the 108,948 chest

anteroposterior radiographs in the dataset, 84,312 (77.39%) images had no pathologic lesions,

while only 1,062 (0.97%) images showed signs of pneumonia [20]. MIMIC-CXR, another

extensive chest radiograph dataset created by the MIT Laboratory for Computational Physiol-

ogy and Beth Israel Deaconess Medical Center, comprises 377,110 images. Of these images,

only 10,801 (2.86%) contained pulmonary masses and 25,038 (6.64%) contained evidence of

pneumonia [21].
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With the evolution of medical AI research, many data augmentation methods have been

developed to overcome such data imbalances [18]. In computer vision, common traditional

data augmentation methods include flipping, rotating, shifting, and color-transforming images

to oversample underrepresented data [17, 22], while in some medical images, including chest

radiographs, traditional augmentation has been proven to result in worse model performance

[11]. To overcome this, many novel data augmentation techniques have been developed

including generative adversarial networks (GAN).

GAN is a powerful method to generate novel images without supervision [16, 23]. The algo-

rithm employs two competing ‘adversarial’ networks: generator network G(z) and discrimina-

tor network D(x) [24]. G(z) produces realistic images and attempts to deceive D(x), while D(x)

learns to better discriminate between real and fake images [25]. While G(z) seeks to minimize

the cost value function V(D, G), D(x) seeks to maximize it. Consequently, GAN learns to cre-

ate new images similar to the original ones.

Recently, a new type of GAN, conditional GAN (cGAN), was introduced [18]. cGAN can

produce guided images with specific features, using a conditional latent variable to guide the

image generation of a designated component [26]. For example, cGAN enables researchers to

produce chest radiographs with anomalies from normal images. Therefore, with cGAN, it is

now possible to generate images of pathologies with low incidence, thereby augmenting the

dataset such that rare diseases are equally represented. The idea of conditional image genera-

tion has also been applied in image-to-image translation. By providing conditional domain

information, the input image can be translated to various target domains, and the network can

learn the relevant features of multiple domains through a single model.

In this study, a repertoire of realistic chest radiographs was synthesized using image-to-

image translation; subsequently, the clinical competency of generated images was assessed

through multi-center visual Turing test by five board-certified radiologists from three univer-

sity hospitals. Furthermore, an investigation was conducted to discern whether GAN augmen-

tation enhances convolutional neural network (CNN) performances by evaluating three CNN

classifiers trained on the original and GAN-augmented datasets. Therefore, the aim of this

study was to augment imbalanced medical data using generative adversarial networks and

evaluate the clinical quality of the generated images via a multi-center visual Turing test.

2. Methods

This study was HIPAA compliant. Per the Office for Human Research Protections

(45CFR46.102), publicly available data do not require Institutional Review Board (IRB) review.

Nevertheless, Seoul National University Hospital IRB reviewed the study protocol and the

need for informed consent was waived (IRB number E-2211-041-1375).

This study comprised two major tasks: first, publicly available datasets were used to train

GAN to synthesize realistic chest radiographs; and second, the generated images were evalu-

ated through 1) a multi-center visual Turing test and 2) the performance metrics of the CNN-

based classifier trained on original and GAN-augmented dataset.

2.1 Image synthesis

2.1.1 Dataset. Six publicly available chest radiograph datasets were used for both the

GAN and CNN-based classifiers, namely ChestX-ray 8, MIMIC-CXR, CheXpert, JSRT, VBD,

and OpenI. The details of the datasets used in this study are presented below in Table 1.

Of these six datasets, one (OpenI) was reserved to construct a separate test set, while the

other five were used to construct the training/validation set to train the GAN and CNN-based

classifiers. To represent cardiac, pulmonary, and neoplastic pathologies, pleural effusion
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(pulmonary), cardiomegaly (cardiac), and lung mass (neoplastic) were used as disease labels.

Images with unique labels (only one positive disease label) were obtained. The distribution of

labels in the primary repertoire of raw data is presented in Table 2.

The cumulative training/validation dataset consisted of 1,560 radiographs in the lung mass

class, 672 in the effusion class, 260 in the cardiomegaly class, and 3,230 in the no pathological

findings class. The separate test set, extracted from the OpenI dataset, consisted of 97 in the

lung mass class, 96 in the effusion class, 297 in the cardiomegaly class, and 1,379 in the no

pathological findings class. The distribution of labels in the training/validation/test sets is pre-

sented in Table 3.

2.1.2 Data pre-processing. Using in-house U-Net-based lung segmentation software,

each image in the cumulative dataset was processed to yield a square region of interest that

contained lung fields only. The cropped images were converted to 256 by 256 pixels and auto-

contrasted after which they were filtered with global contrast factor (GCF) threshold before

training the GAN- and CNN-based classifiers. This process is illustrated in Fig 1.

2.1.3 Traditional augmentation. To construct the first of the two augmented datasets,

the original cumulative dataset was augmented using traditional augmentation methods, such

as geometric rotation, flipping, cropping, and scaling. The augmentation process included ran-

dom rotation between −10 and 10 degrees, random linear translation between −10 and 10 pix-

els, horizontal flipping, random scaling between factors 0.85 and 1.15, and random contrast

between 90% and 110%. The conventional augmentation schemes employed in this study are

widely used in computer vision research [17], yet have been reported to result in overfitting

Table 1. Details of datasets included in this study.

Name Institution # of Images Geographic Region Year

ChestX-ray8 [20] NIH 112,120 Northeast USA 2017

CheXpert [27] Stanford University 223,414 Western USA 2019

MIMIC-CXR [21] MIT 377,095 Northeast USA 2019

JSRT [28] JSRT 247 Japan 2000

VinDr-CXR [29] VinBrain Group 15,000 Vietnam 2020

OpenI [30] Indiana University 7,470 Northeast USA 2016

https://doi.org/10.1371/journal.pone.0279349.t001

Table 2. Distribution of labels of included datasets.

CXR8 MIMIC CheXPert JSRT VBD OpenI Total Labels

Mass 755 220 1,839 154 289 97 3,354

Effusion 2,111 966 819 - 302 96 4,294

Cardiomegaly 3,011 363 327 - 1,112 297 5,110

No Findings 59,891 4,042 2,502 93 10,607 1,379 78,514

Total Images 65,768 5,591 5,487 247 12,310 1,869 91,272

https://doi.org/10.1371/journal.pone.0279349.t002

Table 3. Distribution of labels of the train/validation/test set.

Train/Validation (%) Augmented Train/Validation (%) Test (%)

Lung Mass 1,560 (27.3) 3,230 (25.0) 83 (5.2)

Effusion 672 (11.7) 3,230 (25.0) 71 (4.4)

Cardiomegaly 260 (4.5) 3,230 (25.0) 212 (13.3)

No Findings 3,230 (56.4) 3,230 (25.0) 1,232 (77.1)

Total 5,722 (100.0) 12,920 (100.0) 1,598 (100.0)

https://doi.org/10.1371/journal.pone.0279349.t003
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[19] or computational burden without performance enhancement [22]. Traditional augmenta-

tion has been reported to occasionally result in worse performance metrics [22]. The dataset

was augmented such that the underrepresented positive label classes would be balanced with

the ‘no findings’ class. The data distribution for the augmented sets is presented in Table 3.

2.1.4 GAN augmentation. GAN employ two neural networks to create plausible synthetic

data that retains the critical features of the original data [23]. Recent developments in GAN

research have resulted in impressive levels of image generation using image-to-image transla-

tion. In image-to-image translation, the network learns to map a feature from input x onto a

target output y; therefore, one can expect to generate an image with the desired disease label

from a normal input image [26]. In this study, a unified conditional GAN, StarGAN v2, was

used to perform GAN augmentation.

StarGAN v2 was trained to create (i) a cardiomegaly class from the normal class, (ii) an

effusion class from the normal class, and (iii) a lung mass class from the normal class. As

shown in Fig 2, the image styles of each class were transferred using instance normalization

layers managed by the conditional encoder. The object structure and texture information were

analyzed separately to generate the combined images after which the geometric information of

the object was encoded using ResNet-like encoders (ResBlk) while low-level features of the tex-

ture information were extracted using style encoders. Subsequently, each AdaInResBlk block

containing AdaIn modules modulated the learned geometric representation by cues received

from the style encoder. To quantitatively evaluate the quality of the generated images, the dif-

ferences between the two distributions in the high-dimensional feature space of an Incep-

tionV3 classifier with a Fréchet inception distance score were measured. The augmentation

process is illustrated in Fig 2, whereas the data distribution for the augmented set is presented

in Table 3.

2.2 Experiments

2.2.1 Visual Turing test. Five board-certified radiologists from three different university

hospitals, each with at least five years of clinical experience, independently assessed the quality

Fig 1. Chest radiography synthesis workflow.

https://doi.org/10.1371/journal.pone.0279349.g001
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of GAN-generated chest radiographs. Each radiologist was given a set of 103 chest radiographs

(55 GAN-generated and 48 real) and had to decide whether each image was real or artificial

using visual analysis without a time limit. Each radiologist was blinded to the composition of

the test set. The mean accuracy, sensitivity, specificity, F1-score, and Matthews correlation coef-

ficient (MCC) of the five experts were calculated. Mann-Whitney U test was used to evaluate

whether the mean of the expert performance was better than random guessing. McNemar test

was used to investigate whether each expert response was significantly different from random.

To assess whether the GAN-generated images were not only realistic but also clinically

informative, the radiologists were further assigned to two classification tasks. For the first task,

the radiologists classified 103 actual chest radiographs into four classes: effusion, cardiomegaly,

lung mass, and no findings. The second task was identical to the first, except that it was con-

ducted using GAN-generated images. The mean accuracies of the five experts were calculated

for each task.

2.2.2 Training CNN classifier. To develop and evaluate the performance of the chest

radiograph classifier, four CNN networks were used, namely ResNet50, VGG16, InceptionV3,

and DenseNet121. Moreover, we trained SqueezeNet and MobileNetV2 to check the perfor-

mance of shallow CNN models. Each network was trained on three train/validation sets: the

original dataset, the traditionally augmented dataset, and the GAN-augmented dataset. Pre-

trained ImageNet models were used to customize the classifiers and for each pre-trained net-

work, the last fully connected layer was modified to match the number of classes (four). The

models were trained with a batch size of 16 and a SGD optimizer with a learning rate of 1×
(10)-4. To avoid overfitting, we enabled the early stopping with patience = 10. The output lay-

ers of models includ the softmax activation function and the categorical cross-entropy loss

function. The architectures of networks are described in S1 Fig in File. After training, the mod-

els were evaluated using a test set with a separate chest radiograph dataset (OpenI). The learn-

ing curves of the evaluated CNN classifiers are shown in S2 Fig in S1 File.

2.2.3 Training GAN. StarGANv2 was trained using the Adam optimizer with momentum

parameters β_1 = 0 and β_2 = 0.99 at a learning rate of 1×(10)-4 for the generator, discrimina-

tor, and style encoder, and 1× (10)-6 for the mapping network. The total loss function consists

of adversarial loss, style reconstruction loss, style diversification loss, and cycle consistency loss

to preserve source characteristics. The training phase required approximately 250,000 itera-

tions (141 hours) with a batch size of 8 on a NVIDIA DGX A100×2 (122 GB RAM) GPU.

Fig 2. Generative adversarial networks architecture.

https://doi.org/10.1371/journal.pone.0279349.g002
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3. Results

In this section, an analysis on the quality of the GAN-generated radiographs and whether

GAN augmentation enhances the CNN-based classifier performance is presented. The syn-

thetic radiographs generated by the GAN are shown with the actual images in Fig 3.

3.1 Visual Turing test

In the visual Turing test, the radiologists were asked to distinguish GAN-generated radio-

graphs from actual images. The mean accuracy of the five radiologists was 66.2%, which was

higher than that of random guessing (341/515, 66.2% vs. 257.5/515 50.0%, respectively,

P = 0.006). However, in terms of identifying GAN-generated images as artificial, there was no

significant difference in the sensitivity of the radiologists and random guessing (147/275,

57.8% vs. 137.5/275, 50.0%, respectively, P = .284). A McNemar test found that only three of

the five radiologists (R3, R4, and R5; P = .002, 0.014, <0.001, respectively) performed better

than random guessing. The average MCC value was 0.351, ranging from 0.184 to 0.549. The

results presented are given in Table 4.

The radiologists were then given two image sets, one with 103 actual chest radiographs and

another with 103 GAN-generated radiographs, and asked to classify each image. Each dataset

equally contained three disease classes (cardiomegaly, pleural effusion, lung mass), and one

normal class.

Results showed that the experts performed better on GAN-generated images than actual

radiographs, (average accuracy 73.7% vs 58.6%, P<0.01), with the mean accuracy differing sig-

nificantly in larger pathology classes (cardiomegaly and pleural effusion) but not in smaller

lesions (lung mass) or normal images. The resulting metrics for the multiclass classification

task can be found in Table 5. A possible explanation for this interesting gap in accuracy is pre-

sented in the discussion section.

Fig 3. (A) Real images and (B) GAN-generated images.

https://doi.org/10.1371/journal.pone.0279349.g003

Table 4. Visual Turing test result metrics.

Accuracy (%) Precision (%) Recall (%) F1-score MCC

R1 59.2 60.3 69.1 0.644 0.184

R2 77.7 80.8 76.4 0.785 0.549

R3 67.0 81.8 49.1 0.614 0.387

R4 69.9 81.6 56.4 0.667 0.428

R5 57.3 67.7 38.2 0.488 0.208

https://doi.org/10.1371/journal.pone.0279349.t004
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3.2 CNN performance

Four CNN-based classifiers, each with a ResNet50, VGG16, InceptionV3, and DenseNet121

backbone, were trained and evaluated. Each classifier was trained on three different train/vali-

dation sets, namely the original cumulative train/validation set before augmentation, tradi-

tional augmentation (TA), and GAN augmentation. The augmentation amplitudes are

presented in Table 3.

The classifiers were then tested on a test set comprising a separate dataset (OpenI) to deter-

mine the external validity of the models. The ResNet50 model outperformed the other two

classifiers, achieving 83.9% accuracy after GAN augmentation. This model also benefited the

most from GAN augmentation, with a 6.6% increase in performance from 78.7% to 83.9%.

After GAN augmentation, the accuracy of this model was comparable to that of radiologists.

The performance metrics for the multiclass classification are listed in Table 6 and the perfor-

mance of shallow CNN models could be found in S1 and S2 Tables in S1 File.

In a binary classification task, wherein the classifier determined whether an image was nor-

mal (without any pathologic findings) or abnormal (with any pathologic finding), the effect of

GAN augmentation was more evident. The ResNet50 model also outperformed the other two

classifiers, with an AUROC of 0.871. This model benefited the most from GAN augmentation,

increasing its AUROC by 8.6% from 0.802 to 0.871. The performance metrics of binary classi-

fication are listed in Table 7 and the receiver operating characteristic (ROC) curves of the

ResNet50 model are shown in Fig 4.

4. Discussion

This study addressed two distinct questions: firstly, whether the generated radiographs deemed

realistic to the medical experts, and secondly, whether the GAN-based data augmentation

improved the performance of the in-house medical AI.

An open-source, heterogeneous group of chest radiograph datasets was used to ensure that

the proposed GAN model was robust to different acquisition parameters of various X-ray

machines. As shown in Fig 3, the model produced a realistic repertoire of chest radiographs.

Considering that data heterogeneity may result in the production of imperfect chest radio-

graphs, the quality of the generated images was evaluated by asking radiologists working at

Table 5. Classification accuracy by lesion and image type.

Actual Images GAN-Generated Images P-value

Lung Mass 0.385 0.253 0.056

Effusion 0.613 0.808 < .001**
Cardiomegaly 0.483 0.835 < .001**
No Findings 0.887 0.819 0.122

Average 0.586 0.737 < .001**
https://doi.org/10.1371/journal.pone.0279349.t005

Table 6. Multiclass classification accuracy performance of each CNN classifier.

Original TA GAN

ResNet50 78.7% 77.5% 83.9%

VGG16 77.7% 80.1% 82.2%

InceptionV3 70.6% 65.2% 75.0%

DensenNet121 72.9% 68.7% 79.3%

https://doi.org/10.1371/journal.pone.0279349.t006
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university hospitals with at least five years of clinical experience to determine whether a given

image was real or AI-generated.

As shown in Table 4, radiologists could distinguish GAN-generated images from real

images with a 66.2% accuracy. Although this accuracy is better than random guessing, the sen-

sitivity, or the accuracy of correctly telling a GAN-generated image apart, was not significantly

different from random guessing. Furthermore, the responses from two of the five radiologists

were not significantly different from random guessing, according to the McNemar test. This

illustrates that the synthesized images appeared realistic to medical experts.

Table 7. Binary classification performance of each CNN classifier.

Accuracy Precision Recall F1-score MCC AUROC

ResNet50 Original 0.845 0.609 0.899 0.726 0.646 0.802

TA 0.865 0.661 0.842 0.740 0.659 0.823

GAN 0.901 0.725 0.913 0.808 0.751 0.871

VGG16 Original 0.842 0.603 0.910 0.725 0.647 0.717

TA 0.844 0.600 0.959 0.738 0.671 0.755

GAN 0.862 0.630 0.962 0.761 0.699 0.828

InceptionV3 Original 0.795 0.533 0.828 0.649 0.538 0.697

TA 0.762 0.488 0.809 0.608 0.482 0.690

GAN 0.824 0.579 0.850 0.689 0.593 0.741

DenseNet121 Original 0.859 0.663 0.781 0.718 0.628 0.726

TA 0.825 0.569 0.962 0.715 0.644 0.718

GAN 0.879 0.793 0.637 0.706 0.637 0.741

https://doi.org/10.1371/journal.pone.0279349.t007

Fig 4. ROC curves of classifiers. (A) ResNet50, (B) VGG16, (C) InceptionV3, and (D) DenseNet121.

https://doi.org/10.1371/journal.pone.0279349.g004
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Subsequently, an evaluation was conducted on the performance of medical experts on mul-

ticlass classification of pathologies on both real and GAN-generated images. Here, the average

accuracy was 58.6% for actual images and 73.7% for GAN-generated images (Table 5). The

apparent gap in performance is perplexing and raises the question of how the radiologists per-

formed better on the AI-generated image set.

As shown in Table 5, the radiologists diagnosed pleural effusion and cardiomegaly signifi-

cantly better. However, diagnostic performance on lung mass and normal images did not dif-

fer significantly across the two groups. This discrepancy may be explained by the lesion size.

Lung masses are small masses within the lung parenchyma that are less than 3 cm in size, and

pleural effusion is the collection of fluid at the bottom of the thorax, seen as blunted costophre-

nic angles on radiographs. Cardiomegaly can be detected by the enlargement of heart shadow

over 60% of the thoracic width. Cardiomegaly and pleural effusion are both large lesions and

present distinct features that GAN can detect. Because the GAN generator learns to replicate

distinct features of an image to convince the discriminator that the image is real, large features

that strongly represent the real pathology may be reinforced, making the GAN generate radio-

graphs with pathologies easier to classify.

Tables 6 and 7 show that GAN augmentation enhanced CNN classifier performance signifi-

cantly. This result is noteworthy because it showed that GAN augmentation of existing clinical

datasets could improve the medical AI aided diagnostic performance. In all of the CNN classi-

fier models, training on GAN augmented dataset improved medical AI performance. Because

CNN based model performances rely on the amount and quality of trainable data, the present

result proposes a possibility of improving existing computer aided diagnosis programs. If med-

ical doctors were to use medical AI aided diagnosis algorithms, they would benefit from AI’s

that show better performance by training on GAN augmented dataset. Additionally, the shal-

low CNN models also show increased performance with GAN augmented dataset (S1 and S2

Tables in S1 File), despite the relatively small parameters. These results show that GAN aug-

mentation could have a potentially meaningful role in future lightweight CNN model research.

These findings suggest two distinct strengths of GAN augmentation for chest radiographs.

Firstly, GAN-generated images retain most clinical features and are difficult to distinguish

from real images, even by clinical experts. Secondly, while GAN-generated images are similar

to real images, they also emphasize important clinical attributes, such as pathological radiolog-

ical signs. While these strengths may serve to enhance the overall performance of medical AI,

they can also serve to reproduce medical data with distinct features for human educational

purposes. In their 2018 research, Finlayson et al. proposed a similar GAN-based training tool

for medical education [31]. GAN images may serve as effective augmentation, especially in

low-data regimes such as medical fields.

This study has limitations. Firstly, the chest radiographs used were 256 × 256 pixels. In clini-

cal settings, radiologists have access to powerful diagnostic software and images that are at least

2048 × 2048 pixels in size, however, this is only a technical limitation. The resolution of gener-

ated radiographs can be expanded with more powerful computing resources. Meanwhile, the

medical experts achieved competent classification accuracy even with the current resolution.

Another limitation is that the research employed only public-domain datasets. The public data-

sets employed in this study are prone to data ambiguity because many of them used classification

algorithms instead of manual annotation during labeling. Samples from the datasets, however,

have been cross-checked by human experts to ensure that they are of competent clinical quality.

This research used GAN to produce chest radiographs that not only improved AI perfor-

mance but were also convincing as real images to board-certified radiologists. From here,

there are plans to extend the research to other imaging modalities with imbalanced datasets,

such as rare brain tumors or pediatric cancer.
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5. Conclusion

The proposed GAN produced realistic chest radiographs that appeared realistic to experienced

radiologists; in the visual Turing test, there was no significant difference in the sensitivity of

identifying GAN images as artificial between radiologists and random guessing. Radiologists

effectively classified chest pathologies with the synthesized radiographs, suggesting that the

GAN images contained adequate clinical information for diagnosis. The multi-center visual

Turing test found that GAN tends to emphasize larger lesions better than smaller pathologies.

To the best of our knowledge, this finding has not been reported before in medical image anal-

ysis using GAN. CNN based classifiers rely on the amount and quality of training data, and

therefore the result of the present study is noteworthy because it showed that GAN augmenta-

tion could effectively augment training data for medical AI. Augmentation through the synthe-

sized images significantly enhanced CNN classifier performance, providing a successful means

to overcome data imbalance in medical image analysis.
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