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INTRODUCTION

The advent of next-generation sequencing has enabled the 
bulk analysis of unculturable microorganisms. Therefore, 
studies on the gut microbes pertaining to the etiology of 
colorectal cancer (CRC) have been actively conducted us-
ing fecal samples [1,2]. However, limited studies have been 
conducted on the analysis of extracellular vesicles (EVs) se-
creted by gut microbes in patients with CRC. Bacteria-de-
rived EVs are secreted by bacteria for communication with 
other bacteria and host cells [3]. They are composed of var-
ious substances such as proteins, lipids, and nucleic acids. 
As the amount of EVs varies depending on the extracellular 
environment, it is considered that EVs reflect the activity of 
bacteria. Bacteria-derived EVs also contain bacterial DNA. 
Therefore, rather than using the bacterial DNA in feces, DNA 
analysis of filtered bacterial EVs can indirectly reveal bacteri-
al activity. Considering the recent claim that the activity and 
metabolites of gut microbes, rather than the composition 
of gut microbes, are more important in the pathogenesis of 
CRC [4], the analysis of bacteria-derived EVs has a greater 
potential than microbiome analysis.

Additionally, some EVs generated by the gut microbes 
circulate throughout the body via the colonic mucosa and 
vascular system of the host  [5]. They are then eventually 
excreted in the urine. The convenience of collecting urine 
compared with other bodily fluids makes it an ideal source 
of bacteria-derived EVs to analyze the interaction between 
the gut microbes and the host. Therefore, we evaluated the 

gut microbiome using EVs extracted from the urine of pa-
tients with CRC to determine whether gut microbe-derived 
EVs could be a potential biomarker for the diagnosis of CRC.

METHODS

Patients
Patients recently diagnosed with CRC at the Seoul National 
University Bundang Hospital (Seongnam, Republic of Korea) 
and Chung-Ang University College of Medicine (Seoul, Re-
public of Korea) were prospectively enrolled in this study. 
The exclusion criteria were as follows: (1) patients with a his-
tory of other malignancies; (2) pregnant women; and (3) pa-
tients who were taking antibiotics or probiotics in the past  
3 months. Early and late stages of CRC were defined as 
stages I–III and stage IV, respectively. Proximal CRC was de-
fined as cancer located between the cecum and splenic flex-
ure; distal CRC was defined as cancer located between the 
splenic flexure and rectum. Urine of the patients was collect-
ed before initiating treatment and frozen at −70°C. Control 
urine samples were obtained from a cohort of healthy indi-
viduals with abdominal symptoms but diagnosed as negative 
for irritable bowel syndrome. Data on the clinical risk factors 
for CRC, such as smoking history, alcohol consumption 
history, and body mass index, were collected from all sub-
jects [6]. This study was approved by the Institutional Review 
Board of Seoul National University Bundang Hospital (IRB 
No: B-1708/412-301) and Chung-Ang University Hospital  
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Figure 1. Taxonomic composition (A-D) and principal coordinate analysis (E-H) of the gut microbiome derived from the urine extracel-
lular vesicles of patients with colorectal cancer and healthy controls. (A) Phylum level, (B) family level, (C) genus level, (D) alpha-diversity,  
(E) UniFrac distance, (F) weighted-UniFrac distance, (G) Bray-Curtis dissimilarity, and (H) Jacaard distance. CRC, colorectal cancer; OTU, op-
erational taxonomic unit. ap ≤ 0.0001.
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(IRB No: 1772-001-290). A written informed consent to par-
ticipate in this study was obtained from all participants.

Isolation of EVs and extraction of DNA
Bacterial EVs were isolated from the urine of each patient 
following the procedure described previously  [7]. Briefly, 
each urine sample was centrifuged at 10,000 × g for 10 
minutes at 4°C and filtered through a 0.22-µm membrane 
filter to remove bacteria and foreign particles. The isolated 
EVs were then boiled at 100°C for 40 minutes, centrifuged 

at 13,000 rpm for 30 minutes at 4°C, and the supernatant 
was collected. DNA was extracted using the DNeasy Power-
Soil Kit (QIAGEN, Hilden, Germany) and quantified using the 
QIAxpert system (QIAGEN).

Bacterial metagenomic analysis using DNA 
from EVs
Bacterial genomic DNA was amplified using primers 16S_
V3_F (5'- TCGTCGGCAGCGTCAGATGTGTATAAGAGACA 
GCCTACGGGNGGCWGCAG -3') and 16S_V4_R (5'- GTCTCG 

Figure 1. Continued.
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TGGGCTCGGAGATGTGTATAAGAGACAGGACTACH-
VGGGTATCTAATCC-3'), which are specific for the V3–V4 
hypervariable regions of the 16S rRNA gene. The libraries 
were prepared using the polymerase chain reaction prod-
ucts according to the MiSeq System guide (Illumina, San 
Diego, CA, USA) and quantified using QIAxpert (QIAGEN). 
Each amplicon was then quantified, equimolar ratio adjust-
ed, pooled, and sequenced on MiSeq (Illumina) according to 
the manufacturer’s recommendations.

Analysis of microbiome derived from EVs
Paired-end reads that matched the adapter sequences were 
trimmed using Cutadapt version 1.1.6 with a minimum over-
lap of 11 bases, maximum error rate of 15%, and minimum 
length of 10 bases [8]. The resulting FASTQ files containing 
paired-end reads were merged using CASPER version 0.8.2 
with a mismatch ratio of 0.27 and quality filtered using the 
Phred (Q) score-based criteria described by Bokulich [9,10]. 
The reads shorter than 350 bp and longer than 550 bp after 
merging were discarded. To identify the chimeric sequenc-
es, a reference-based chimera detection step was conducted 
using VSEARCH version 2.3.0 against the SILVA gold data-
base [11,12]. The sequence reads were clustered into oper-
ational taxonomic units (OTUs) using VSEARCH with open 
clustering algorithm under a threshold of 97% sequence 
similarity. The representative sequences of the OTUs were 
finally classified using the SILVA 132 database with UCLUST 
(parallel_assign_taxonomy_uclust.py script in the QIIME ver-
sion 1.9.1) under default parameters [13].

Statistical analyses
Group comparisons for diversity metrics were conducted 
and graphed using R version 3.6.3 (R Foundation for Sta-
tistical Computing, Vienna, Austria). Alpha-diversity indices 
(observed OTUs, Shannon index, and phylogenetic diversity) 
were compared through the decimal log-transformed rela-
tive abundance of the microbiome between groups using 
Wilcoxon rank sum test (R package “microbiome” version 
1.9.19). Group distances for beta-diversity indices (weight-
ed-UniFrac metric, unweighted UniFrac metric, Bray-Curtis 
dissimilarity, and Jacaard distance) were generated through 
the permutational analysis of variance (PERMANOVA) using 
1000 Monte Carlo permutations (R packages “phyloseq” 
version 1.30.0 and “vegan” version 2.5.6); principal coordi-
nate analysis (PCoA) plots were generated for visualization. 
Discriminate taxa (abundance > 0.1%) between the groups 

were identified using Welch’s t test. Adjusted p values con-
trolling the false discovery rate were reported where appro-
priate. Results were considered significant when p values 
were less than 0.05.

RESULTS

Baseline characteristics of the subjects
The CRC group consisted of older individuals and predomi-
nantly male compared with the control group (Supplemen-
tary Table 1). The proportion of subjects with a history of 
smoking and alcohol consumption was also significantly 
higher in the CRC group than in the control group.

Evaluation of the gut microbiome from the 
urine-derived EVs
The 16S rRNA sequencing data were obtained from 207 urine 
samples (91 patients with CRC and 116 healthy controls). 

Table 1. Relative abundances of the gut microbiota in urine 

extracellular vesicles

Taxon
Log2 fold  
t statistic

p value for 
FDR

Phylum Firmicutes 2.36 0.017

Family Staphylococcaceae 2.36 0.037

Genus Staphylococcus 2.36 0.037

Phylum Bacteroidetes −4.60 0.001

Family Bacteroidaceae −4.60 0.002

Genus Bacteroides −4.60 0.002

Phylum Actinobacteria 3.16 0.005

Phylum Proteobacteria 2.66 0.010

Family Moraxellaceae 2.38 0.037

Genus Acinetobacter 2.83 0.013

Species Acinetobacter  
radioresistens

2.83 0.012

Genus Enhydrobacter −2.45 0.024

Phylum Verrucomicrobia −3.01 0.005

Family Akkermansiaceae −3.01 0.011

Genus Akkermansia −3.01 0.013

The change of column (log2 fold) represents the multiplicative 
change in taxa abundance from colorectal cancer (CRC) to 
control. Negative numbers represent a trend of decreasing 
abundance in CRC group compared with control group.
FDR, false discovery rate.
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Figure 2. Taxonomic composition (A-D) and principal coordinate analysis (E-H) of the gut microbiome derived from the urine extracellular 
vesicles of patients with early and late colorectal cancer. (A) Phylum level, (B) family level, (C) genus level, (D) alpha-diversity, (E) UniFrac 
distance, (F) weighted-UniFrac distance, (G) Bray-Curtis dissimilarity, and (H) Jacaard distance. CRC, colorectal cancer; OTU, operational 
taxonomic unit. ap ≤ 0.05.
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The gut microbiome from the urine-derived EVs was com-
pared at the phylum, family, and genus levels (Fig. 1A-1C).  
The CRC group showed a significant enrichment of the phy-
la Firmicutes (p = 0.017), Actinobacteria (p = 0.005), and 
Proteobacteria (p = 0.010) compared with the control group 
(Table 1). In contrast, the phyla Bacteroidetes (p = 0.001) 
and Verrucomicrobia (p = 0.005) were relatively depleted in 
the CRC group compared with those in the control group. 
At the genus level, Staphylococcus (p = 0.037) and Acineto-
bacter (p = 0.012) were significantly more abundant in the 

CRC group than in the control group. However, Bacteroides 
(p = 0.002), Enhydrobacter (p = 0.024), and Akkermansia  
(p = 0.013) were significantly less abundant in the CRC 
group than in the control group.

Twenty-two patients in the CRC group who had missing 
values for clinical factors were excluded because we could 
not adjust these factors to analyze the diversity of gut micro-
biome. Therefore, the analysis of alpha- and beta-diversity 
was performed in 69 patients with CRC and 116 healthy 
controls. The median of the observed OTUs was 222 (in-
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Figure 3. Taxonomic composition (A-D) and principal coordinate analysis (E-H) of the gut microbiome derived from the urine extracellu-
lar vesicles of patients with proximal and distal colorectal cancer. (A) Phylum level, (B) family level, (C) genus level, (D) alpha-diversity, (E) 
UniFrac distance, (F) weighted-UniFrac distance, (G) Bray-Curtis dissimilarity, and (H) Jacaard distance. CRC, colorectal cancer; OTU, opera-
tional taxonomic unit.
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terquartile range [IQR], 154 to 259) in the control group 
and 140 (IQR, 117 to 169) in the CRC group (p < 0.001) 
(Fig. 1D). The alpha-diversity of the CRC group was sig-
nificantly lower than that of the control group (Shannon 
index, p < 0.001; and phylogenetic diversity, p < 0.001). 
The beta-diversity between the control and CRC groups 
was significantly different in all metrics (UniFrac distance,  
p < 0.001; weighted- UniFrac distance, p < 0.001; Bray-Cur-
tis dissimilarity, p < 0.001; and Jacaard distance, p < 0.001) 
(Fig. 1E-1H). Axis 1 could account for 7.0% to 26.4% of 

the variance in microbiomes between the CRC and control 
groups in the PCoA.

Differences in the gut microbiome according 
to the stage and location of CRC
The proportions of early and late stages of CRC were 87% 
and 13%, respectively. The composition of the gut micro-
biome in the urine-derived EVs at the phylum, family, and 
genus levels was not significantly different between the 
early- and late-stage-CRC groups (Fig. 2A-2C). A compar-
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ison of indices of alpha-diversity between patients with ear-
ly- and late-stage CRC showed conflicting results (Fig. 2D). 
The number of observed OTUs and Shannon index of the 
late-stage-CRC group were significantly higher than those 
of the early-stage-CRC group (p = 0.017 and p = 0.016, re-
spectively). However, the phylogenetic diversity of these two 
groups was not significantly different (p = 0.113). More-
over, there was no significant difference in beta-diversity 
between the early- and late-stage-CRC groups (Fig. 2E-2H).

The proportions of the proximal and distal locations of 
CRC were 29% and 71%, respectively. The composition of 
the gut microbiome (Fig. 3A-3C), alpha-diversity (Fig. 3D), 
and beta-diversity (Fig. 3E-3H) did not differ according to 
the location of CRC (proximal CRC vs. distal CRC).

DISCUSSION

In this study, we found that the alpha-diversity of the gut 
microbiome in the CRC group was significantly lower than 
that in the control group, similar to the results of previous 
studies that evaluated the gut microbiome using feces [1,2]. 
These findings suggest that the decrease in the protective 
function offered by various gut microbes may be involved in 
the pathogenesis of CRC.

As expected, the beta-diversity between the control and 
CRC groups was significantly different. This finding was 
highly robust as it was evidenced using quantitative metrics 
(weighted-UniFrac metric and Bray-Curtis dissimilarity) and 
qualitative metrics (unweighted UniFrac metric and Jaca-
ard distance) [14]. Specifically, at the genus level, while the 
abundance of Staphylococcus and Acinetobacter was high-
er in the CRC group, that of Bacteroides, Enhydrobacter, 
and Akkermansia was lower in the CRC group than in the 
control group. Some studies have suggested an association 
between certain Staphylococcus species and CRC [15,16]. In 
addition, it has been reported that a high-fat diet, which is 
associated with the development of CRC, increases Staph-
ylococcus abundance in mice  [17]. Nonetheless, Acine-
tobacter is one of the most predominant genera in rectal 
cancers  [18] and is associated with the development of 
metachronous adenoma in patients with CRC following sur-
gery [19]. The association between the depletion of Akker-
mansia in the intestine and the development of CRC is also 
well-known. A previous study suggested that EVs derived 
from Akkermansia muciniphila prevent the progression of 

colitis in a mouse model  [20]. Moreover, previous studies 
have reported conflicting results regarding the association 
between Bacteroides and CRC. For example, Bacteroides 
can produce short-chain fatty acids, which play protective 
roles in the pathogenesis of CRC [21], whereas the risk of 
CRC increases in patients with bacteremia from Bacteroides 
fragilis [22]. However, we could not find similar studies re-
porting the association between Enhydrobacter and CRC; 
hence, further studies are needed to elucidate whether this 
result is meaningful.

The number of observed OTUs reported in this study was 
not different from that reported in studies that analyzed the 
gut microbiome in feces, thereby affirming that the EVs se-
creted by gut microbes partially enter the blood circulation 
and are eventually detected in the urine  [5]. The phylum 
Firmicutes accounted for the highest proportion of microbes 
in both control and CRC groups. This is consistent with the 
results of previous microbiome research using feces  [23]. 
Interestingly, even in the control group, Proteobacteria ac-
counted for a higher proportion than Bacteroidetes (17.1% 
vs. 16.4%). Considering that the proportion of Proteobac-
teria in normal feces is approximately 4% [24], this is a re-
markable result. Contrary to most microbes in the colon, 
which are obligate anaerobes, members of Proteobacteria 
are facultative anaerobes. As Proteobacteria members can 
tolerate oxidative stress from enterocytes, they are more 
abundant in the colon mucosa than in feces compared with 
other phyla. Proteobacteria members can easily invade the 
blood. Representative gastrointestinal pathogens can cause 
bloodstream infection, such as Escherichia and Klebsiella, 
belonging to this phylum. Among the various organs in the 
human body, the colon is the most significant habitat for 
the microbiome. Therefore, we believe that EVs in the urine 
excreted from blood primarily reflect the microbiome from 
the colon mucosa; this is the basic premise of studies similar 
to ours [7,25]. In addition, we suggest that this abundant 
Proteobacteria in the urine originated from the colon muco-
sa. However, in the vascular system, there may be bacterial 
EVs from all human body sites. Given that Proteobacteria 
is also common in the oral cavity and skin [26], we cannot 
rule out the possibility that microbes of this phylum are from 
other human body sites.

There was no significant difference in beta-diversity be-
tween the early and late stages of CRC; we could not iden-
tify specific taxa that were enriched or depleted according 
to the stage of CRC. It is not clear whether gut microbiome 
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composition differs according to the stage of CRC. One 
study reported that some genera were more abundant in 
the feces of patients with early-stage CRC than in the fe-
ces of patients with late-stage CRC [27]. However, another 
study demonstrated no such microbial changes  [28]. Our 
previous study showed that microbial composition, even-
ness, and diversity were significantly different between the 
early and late stages of CRC in feces and fecal EVs [29]. It is 
challenging to explain why the results of microbial analyses 
using different types of samples are inconsistent with each 
other. However, we consider this phenomenon as evidence 
to support that urine EVs are not a simple alternative for fe-
ces and fecal EVs to evaluate gut microbiota in patients with 
CRC. Further studies are needed to explore the association 
between gut microbiota and early- and late-stage CRC.

A conventional adenoma-carcinoma sequence is the dom-
inant pathway for carcinogenesis of distal CRC; in contrast, 
microsatellite instability and CpG island methylator pheno-
type contribute to the carcinogenesis of proximal CRC [30]. 
Therefore, it has been suggested that the gut microbiome 
may differ between proximal and distal CRC [31,32]. How-
ever, in the present study, there was no difference in alpha- 
and beta-diversity of the gut microbiome according to the 
location of CRC. As already mentioned, the composition of 
the gut microbiome derived from urine-EVs can differ from 
that of fecal samples; hence, it is difficult to directly com-
pare the results of our study with those of previous studies. 
Therefore, more studies using EVs from the bodily fluids of 
patients with CRC are required.

To the best of our knowledge, this study is the first to 
analyze the gut microbiome in patients with CRC using EVs 
extracted from urine. However, this study had a few limita-
tions. First, we set up healthy individuals with abdominal 
symptoms as the control group instead of healthy people. 
This is because it was not easy to recruit completely healthy 
people in the outpatient clinic of a tertiary hospital. In ad-
dition, some baseline characteristics differed between the 
CRC and control groups. To compensate for this, we ad-
justed these clinical factors to analyze the gut microbiome. 
Second, the proportion of late-stage CRC was relatively 
small in the total CRC group. Therefore, it was difficult to 
conclusively interpret the findings in this group.

In conclusion, a distinct composition of the gut microbi-
ome is reflected in the urine-EVs of patients with CRC com-
pared with that in healthy controls. Microbial signatures 
from EVs in the urine could serve as potential biomarkers 

for the early detection of CRC.

KEY MESSAGE
1.	 Gut microbiome composition is reflected in urine 

extracellular vesicles of patients with colorectal 
cancer.

2.	Microbial signatures from extracellular vesicles in 
urine show potential as biomarkers for colorectal 
cancer diagnosis.
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Supplementary Table 1. Baseline characteristics of subjects

Variable Colorectal cancer group (n = 91) Control group (n = 116) p value

Age, yr 63.8 ± 10.1 53.3 ± 8.5 < 0.001

Male sex 55 (60.4) 20 (17.2) < 0.001

Smoking history 44 (49.4) 5 (4.3) <0.001

Alcohol history 41 (46.6) 33 (28.4) 0.012

Body mass index, kg/m2 24.47 ± 3.82 25.35 ± 3.26 0.097

Values are presented as mean ± standard deviation or number (%).
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