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The present study aimed to evaluate the performance of automated skeletal maturation assessment 
system for Fishman’s skeletal maturity indicators (SMI) for the use in dental fields. Skeletal maturity 
is particularly important in orthodontics for the determination of treatment timing and method. SMI 
is widely used for this purpose, as it is less time‑consuming and practical in clinical use compared to 
other methods. Thus, the existing automated skeletal age assessment system based on Greulich 
and Pyle and Tanner‑Whitehouse3 methods was further developed to include SMI using artificial 
intelligence. This hybrid SMI‑modified system consists of three major steps: (1) automated detection 
of region of interest; (2) automated evaluation of skeletal maturity of each region; and (3) SMI stage 
mapping. The primary validation was carried out using a dataset of 2593 hand‑wrist radiographs, 
and the SMI mapping algorithm was adjusted accordingly. The performance of the final system was 
evaluated on a test dataset of 711 hand‑wrist radiographs from a different institution. The system 
achieved a prediction accuracy of 0.772 and mean absolute error and root mean square error of 0.27 
and 0.604, respectively, indicating a clinically reliable performance. Thus, it can be used to improve 
clinical efficiency and reproducibility of SMI prediction.

The assessment of skeletal maturation is essential not only in medical or forensic, but also in dental fields, espe-
cially in orthodontics and pediatric dentistry. In growing patients, skeletal maturity is an important factor to 
consider for optimal timing and success of orthodontic treatment. Especially in patients with skeletal discrepan-
cies between the upper and lower jaws who require growth modification, the timing of orthodontic treatment 
is essential for the treatment outcomes, as the redirection of jaw growth is effective only during certain stages 
of  growth1. Therefore, the evaluation of skeletal maturation is indispensable for orthodontic diagnostics and 
treatment planning, as well as for the evaluation of treatment progress and prognosis.

It has been reported in previous studies that maturational development shows large individual variations, 
leading to discrepancies between the chronological and skeletal  age2,3. Hand-wrist radiographs have been widely 
utilized for the evaluation of skeletal maturation, given the relatively low dose of radiation exposure and quick 
and uncomplicated and non-invasive procedure of x-ray taking. It is based on the principle that the osseous 
development in the hand and wrist areas is closely related with general maturational  development4. The recogni-
tion of osseous features in the hand-wrist areas characteristic of each maturation level underlies the estimation 
of skeletal age. Different methods have been proposed for the analysis of hand-wrist radiographs.

As one of the most widely used methods, Greulich and Pyle (GP) is based on an atlas consisting of standard 
hand-wrist radiographs for each sex and skeletal age. The reference images were obtained from middle-classed 
Caucasian children between 1931 and 1942 in Ohio, United  States5. While this atlas-based comparative method 
is convenient for clinical use, it assumes that the sequence and pattern of ossification and the corresponding 
maturation level are identical in all  individuals6. On the other hand, Tanner-Whitehouse (TW) method is a 
bone-specific technique, which evaluates and scores multiple skeletal maturity indicators and determines the 
skeletal age according to the total score, referred to as skeletal maturity score (SMS). There are several variations 
of TW, which differ in the number of evaluated sites and the relationship between SMS and the corresponding 
skeletal age. TW3 was published in 2001 to reflect the secular trend of maturational  development7. While TW3 
is less sensitive to individual variations compared with GP, its application in everyday clinical practice is rather 
difficult, because the evaluation of multiple maturity indicators is complicated and time-consuming.
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Skeletal maturity indicators (SMI) introduced by Fishman, an American orthodontist, in 1981 are widely 
used for the assessment of skeletal maturity in orthodontic patients. In contrast to the forensic or medical fields, 
the determination of skeletal age in number of years, or the estimation of final adult height is not of great impor-
tance in orthodontics. The main focus is rather on the timing of pubertal growth spurt and growth completion, 
as the course of orthodontic treatment may vary depending on these factors. Therefore, the analytic methods 
proposed for the application in the orthodontic field, such as Fishman’s  SMI4 and Hägg and Taranger  method8 
are simplified to focus on the key stages of maturational development, which are relevant for decision makings 
during orthodontic  treatment9.

With the advances in artificial intelligence (AI), numerous studies have been reported concerning the use of 
deep learning and neural networks for the evaluation and analysis of radiographs in various medical and den-
tal fields. While the interest in the automation for clinical efficiency is ever increasing, there are also concerns 
about the accuracy and clinical validity of such automated  systems10. The present study aimed to evaluate the 
performance of an AI-based automated assessment system for SMI prediction.

Materials and methods
Model development. The existing GP and TW3-based bone age assessment system (MediAI-BA, Crescom 
Inc., Korea)11 was further trained and modified to include the evaluation of SMI. The pre-trained system 
employed a hybrid approach combining the advantages of TW3 and GP methods to improve the performance 
of skeletal age  prediction11,12. The automated assessment system for SMI was developed based on the same prin-
ciple applied to the GP and TW3-based system, consisting of three major steps: (1) automated detection of 
region of interest (ROI); (2) automated evaluation of skeletal maturity of each region; and (3) SMI stage map-
ping (Fig. 1). In this version, the detection algorithm for each ROI was developed using a detection Transformer 
 model13, which utilizes learnable queries to search image features from the output of Transformer encoders and 
bipartite graph matching for detection. For automated evaluation of skeletal maturity of each region, the clas-
sification algorithm was developed using Swin Transformer  model14, which is a hierarchical vision transformer 
deep learning model with a window-shifting method. Data augmentation techniques, such as random resize, 
random crop, brightness adjustment, contrast adjustment, CLAHE, and random noise, were applied during deep 
learning training.

In addition to the major areas of growth plate evaluated for the TW3 method and the carpal region, all regions 
subject to the evaluation of SMI were included as ROIs (Fig. 2). In particular, MP5 (fifth middle phalanx) and 
PP1 (first proximal phalanx) were added by utilizing the detection algorithm based on the work by Li et al.13 
RetinaNet, a deep convolutional neural network (CNN), was utilized for the automated detection of ROIs. 
Subsequently, each of the detected regions was analyzed for skeletal maturity level based on the morphological 
changes, such as epiphyseal widening, presence of sesamoid, epiphyseal capping and epiphyseal fusion. For image 
classification a vision transformer-based deep learning model was utilized. The final skeletal age was calculated 
by analyzing and integrating the probability of skeletal maturity of each area. Irrespective of the skeletal age 
prediction, skeletal maturity level of each of the six regions relevant for SMI evaluation was analyzed for SMI 
stage mapping. The final SMI stage was calculated by integrating the skeletal maturity and age of each ROI, and 
the final skeletal age. Both SMI and skeletal age were outputted as results (Fig. 3).

The primary verification of this SMI-modified system was carried out using the verification dataset, and the 
system underwent further modifications and adjustments according to the results. Subsequently, the accuracy 
of the finally modified system was tested using a new set of hand-wrist radiographs from a different institution, 
which had not been introduced to the system previously.

Subjects. The dataset used for the primary verification consisted of hand-wrist radiographs obtained from 
2593 growing patients as part of orthodontic diagnosis between April 2019 and July 2022 at a private orthodon-
tic clinic in Korea. The accuracy of the final SMI-modified system was tested using hand-wrist radiographs of 
711 patients, who visited the Department of Orthodontics, Yonsei University Dental Hospital in Seoul, Korea 
between August 2019 and February 2021. The exclusion criteria for both of the datasets were as follows: (1) 
congenital craniofacial anomalies or syndromes affecting growth, (2) history of growth hormone treatment, (3) 

Figure 1.  Overview of the steps involved in the modified SMI-based skeletal maturation assessment system. 
In the pre-processing step, the image size of hand-wrist radiographs is adjusted, and right-hand radiographs 
are mirrored. In addition to the detection and classification of each ROI, the evaluation of the whole hand as a 
holistic image is performed to enhance the performance by including maturity features that are not parts of the 
ROIs.
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history of systemic diseases and medication, and (4) insufficient quality of radiographs affecting the evaluation 
of SMI.

The study protocol was approved by the Institutional Review Board of Yonsei Dental Hospital (IRB No. 
2-2022-0030), and adhered to the Declaration of Helsinki (2013). The requirement of informed consent and ethi-
cal approval was waived in view of the retrospective and non-interventional design of the study. All procedures 
were performed irrespective of the study as part of the routine care.

Figure 2.  Automated detection of regions of interest. In addition to the ROIs used in the TW3 method, all of 
the six ROIs used for Fishman’s SMI, as well as the carpal bones are detected. (DP3, 3rd distal phalanx; MP3, 
3rd middle phalanx; MP5, 5th middle phalanx; PP3MC, 3rd proximal phalanx/metacarpal; PP1, 1st proximal 
phalanx, MC1, 1st metarcarpal).

Figure 3.  Result screen displaying the SMI stage and bone age predicted by the SMI-modified automated 
skeletal maturation assessment system.
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Evaluation of SMI. SMI staging performed by the observers strictly followed the descriptions provided in 
the original article by Fishman. Eleven different skeletal maturity indicators, which are numbered through SMI 
1 to 11, were recognized by assessing six sites of the hand and wrist  areas4. In addition, SMI 0 was included to 
express the maturation level earlier than that of SMI  115,16. For each dataset, the evaluation of SMI was under-
taken by three different orthodontists, who have multiple years of clinical experience in orthodontics. The 
ground-truth SMI was determined as the stage that was the most frequently chosen by the observers. If no 
agreement could be reached, a fourth observer was asked for additional evaluation. To minimize any bias, the 
observers were unaware of the chronological age of the patients and the SMI stage determined by other observ-
ers at the time of evaluation.

Statistical analysis. For statistical analysis and data visualization, Microsoft Excel for Windows (version 
2019; Microsoft Corp., WA, USA) and Scikit-learn library in Python were used. The performance of the auto-
mated SMI assessment system was evaluated by computing mean absolute error (MAE) and root mean square 
error (RMSE) using the following formulas.

In both formulas, n is the number of evaluated hand-wrist radiographs, and yi and xi represent the ground-
truth and AI-predicted SMI, respectively. MAE and RMSE were calculated for the overall performance of the 
system, as well as for each of the SMI stages.

Furthermore, confusion matrix was generated for visual presentation of the correctly and incorrectly pre-
dicted SMI. The overall prediction accuracy was calculated by dividing the number of correct predictions by 
the total number predictions. In addition, sensitivity and specificity of each SMI stage, as well as the overall 
sensitivity and specificity were obtained.

Results
The overall prediction accuracy obtained following the primary validation of the automated SMI assessment 
system was 0.599 with MAE of 0.499. The confusion matrix exhibited a diagonal pattern, which implies an 
overall correct prediction of SMI (Fig. 4). However, the AI-predicted SMI 7 showed a large range of incorrect 
predictions. According to the results of the primary validation, the algorithm of SMI mapping underwent further 
adjustments to improve the performance of the system.

Upon adjusting the algorithm, the performance of the final model was evaluated using the test dataset consist-
ing of hand-wrist radiographs of 711 patients (361 males and 350 females). The patient age at the obtainment of 
radiograph ranged from 6 to 18 years, with the mean age of 11.93 ± 2.43 years. As can be seen in the confusion 
matrix, most of the predictions remained in the diagonal, with only a few outliers (Fig. 4). The overall prediction 
accuracy was 0.772, indicating that the AI-predicted SMI corresponded to the ground-truth SMI in 77.2% of 
the cases. Considering the uneven distribution of the SMI stages in the dataset, balanced accuracy was obtained 
additionally. It was slightly smaller than the prediction accuracy with 0.704. When the tolerance range was 
expanded to within 1 SMI stage, the prediction accuracy increased to 0.963. The overall MAE and RMSE were 
0.27 and 0.604, respectively. As a linear solution, MAE weighs errors equally in the average regardless of their 
magnitude. On the other hand, RMSE weighs large errors more heavily. Both MAE and RMSE were the smallest 
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Figure 4.  Confusion matrices showing the results of primary validation and accuracy test following fine tuning.
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for SMI 0 with 0.067 and 0.258, respectively. The largest MAE was calculated for SMI 5 (1.0) followed by SMI 
1 (0.938) and 2 (0.846). On the other hand, RMSE was bigger for SMI 2 (1.177) than SMI 1 (1.09) and SMI 5 
(1.0). Accordingly, the highest sensitivity was found for SMI 0, and the lowest for SMI 5, followed by SMI1. The 
overall specificity was 0.978, with the highest values found for SMI 5 (1.0) and SMI 8 (0.997), and the lowest for 
SMI 7 (0.944) (Table 1).

Discussion
The present study is the first to report an AI-based automated system for the assessment of Fishman’s SMI, which 
is widely used in dental fields, especially in orthodontics. In recent years, an increasing number of studies have 
been reported on the automation of skeletal maturation assessment using AI for the improvement of clinical 
efficiency and reproducibility. The vast majority of these proposed systems are based on TW3  method12,17–19, as 
it has several advantages over other methods. Firstly, it takes into account the variability of skeletal maturation 
pattern in different populations and ethnic groups. Unlike its predecessor, TW2, which derived from a sample 
of British  children20, TW3 was developed using additional data from multiple ethnic groups and  populations7. 
Later studies have also shown its validity in various populations, including Korean  children21–23. Furthermore, 
TW3 method offers a comprehensive evaluation of skeletal maturity by assessing multiple bones, leading to a 
more thorough analysis of skeletal development and improved reliability. On the other hand, a major drawback of 
TW3 is the complexity and time required to obtain results. This limitation has been addressed through the use of 
AI-based systems. Another limitation of TW3 is that it does not account for changes in the trend of maturational 
development over time. This could lead to potential obsolescence of the method, much like its predecessor TW2. 
Therefore, periodic updates are necessary to maintain the validity and reliability of the TW  method7.

Similarly, the GP method is susceptible to changes in the trends of maturational development, as well as to 
variations resulting from differences in ethnicity, regional factors, and environmental  influences24–26. Unlike the 
Tanner-Whitehouse method, which has undergone revisions since its inception, the GP method has not been 
updated since its introduction in  19595. In other words, it is solely based on the initial reference hand-wrist 
radiographs of Caucasian children obtained over 80 years ago. According to the study by Mansouvar et al., the 
GP method is reliable for Caucasian and Hispanic children, but not for African/American and Asian  groups27. 
A study with the sample of Korean population also concluded that the rates of skeletal development provided 
by GP is not applicable to Korean  children28.

In contrast to TW3 and GP, Fishman’s SMI provides a staging system for assessing maturation levels, which 
is not reliant on skeletal  age4. Consequently, SMI is not subject to fluctuations in the trend of maturational 
development and differences arising from factors such as ethnicity. In simpler terms, SMI allows for an intuitive 
determination of an individual’s skeletal maturity level, without necessitating consideration of additional factors. 
When assessing skeletal maturity for orthodontic purposes, the level of maturation in relation to chronological 
age is of little importance. As a result, obtaining skeletal age is not typically necessary, in contrast to its importance 
in medical or forensic fields. Nevertheless, SMI, like other methods, has its limitations. Since a single skeletal 
indicator is assigned for each stage, variations in the appearance sequence of skeletal maturity indicators or 
unclear indications of these indicators can lead to misstaging.

Clinicians often encounter hand-wrist radiographs with osseous maturational characteristics that are ambigu-
ous to be classified as a certain SMI  stage29. In case of individual variations in the sequence of skeletal maturation 
that do not comply with the descriptions by Fishman, SMI stage may be over- or underestimated depending on 
the observer, and reproducibility and reliability of SMI may be affected. It has been reported in a previous study 
that the prediction accuracy was relatively low for SMI stages 5 and 6. Insufficient amount of data, and large 
inter-observer variabilities were considered as the possible  reasons15. Similarly, in the present study, the predic-
tion accuracy for SMI stage 5 was found to be lower compared to other SMI stages. This may be related with the 

Table 1.  Performance of automated SMI assessment system. SMI, skeletal maturity indicators; MAE, mean 
absolute error; RMSE, root mean square error.

SMI Sensitivity Specificity MAE RMSE

0 0.933 0.972 0.067 0.258

1 0.188 0.990 0.938 1.09

2 0.423 0.993 0.846 1.177

3 0.856 0.982 0.25 0.756

4 0.778 0.978 0.333 0.745

5 0.000 1 1 1

6 0.720 0.955 0.355 0.726

7 0.884 0.944 0.116 0.341

8 0.574 0.997 0.5 0.805

9 0.630 0.990 0.37 0.609

10 0.877 0.969 0.123 0.350

11 0.882 0.972 0.118 0.343

Overall 0.646 0.978 0.27 0.604

Prediction accuracy 0.772 Balanced accuracy 0.646
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fact that there was no radiograph in the dataset used for the accuracy test that was predicted as SMI 5. However, 
the prediction accuracy of SMI 5 was calculated to be only 0.19 also in the primary validation, which was carried 
out with a larger dataset. In other words, SMI stages that are more likely to deviate from the proposed sequence 
are more prone to higher inter-observer variability and lower prediction accuracy. The system introduced in 
the present study is a hybrid approach that evaluates maturational level by integrating the GP, TW3, and SMI 
methods. This approach compensates for the known limitations of each system and enhances the accuracy and 
reproducibility of SMI predictions.

Recent advances in technology have led a notable surge in the integration of AI into dental practice for tasks 
such as diagnosis, radiographic analysis and treatment  planning30. Consequently, there have been attempts to 
streamline and accelerate the process of skeletal maturity assessment through the application of  AI31, as the 
manual assessment has been subject to criticism for its tediousness and intra- and interobserver  variabilities32,33. 
Previous studies have demonstrated clinically reliable performance of deep learning-based automated systems 
for assessing skeletal  maturity11,17,18,34–36. However, the majority of introduced models are based on TW3 or GP 
methods. Few automated systems have been proposed for the assessment of skeletal maturity using SMI. How-
ever, previous studies that investigated SMI in relation to AI focused rather on the prediction of SMI using the 
radiographic images of cervical  vertebrae15,37.

The performance of various automated skeletal maturation assessment systems has been evaluated in previous 
studies. According to these studies, the AI-predicted skeletal age was not significantly different from the skeletal 
age assessed by  experts11,19. The range of MAE reported in the literature varies from 0.39 to 2.41 years depend-
ing on the  study17,34–36,38–42. It is notable that the models proposed during the last  decade17,34,35,38,42 show better 
performance with smaller MAE compared with the models introduced  earlier36,39–41. Since the MAE computed 
in the present study does not refer to skeletal age, but SMI stage, it cannot be directly compared with the results 
of previous studies. According to the data provided in Fishman’s study, the mean interval between SMI stages is 
0.61 years for the female and 0.64 years for the male  sex4. Based on this information, MAE of 0.27 SMI stage can 
be converted to approximately 0.169 years. Although this conversion may not be accurate, as it does not consider 
the differences in the size of the interval between the stages, the results suggest that the SMI-modified automated 
skeletal maturation system shows a satisfactory performance compared with previous systems.

The present study has several limitations. The size of the study population as a whole was sufficient, however, 
the number of observations was relatively small for some of the SMI stages. This may have affected the reliability 
of the accuracy measured for these subgroups. Furthermore, the data were collected retrospectively. While the 
data used for AI-training were collected from different institutions including different ethnicities, the datasets 
used for the primary validation and final evaluation consisted of hand-wrist radiographs only of a single ethnic 
group. Therefore, the results of the present study may not reflect possible differences between various ethnicities, 
or populations. In order to validate the results of the present study, and to further improve the accuracy of the 
proposed system, future studies with larger datasets from multiple institutions and populations are required.

Conclusion
The hybrid SMI-reinforced automated skeletal maturation assessment system introduced in the present study was 
shown to deliver clinically reliable prediction of SMI with a very low prediction error. Hence, it can be efficiently 
utilized in dental fields to enhance clinical efficiency. It can also assist clinicians in improving the reproducibility 
of skeletal maturation assessment.

Data availability
The data underlying this article cannot be publicly shared to protect the privacy of the individuals participating 
in the study. The data will be shared at a reasonable request to the corresponding author.
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