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Abstract: Photobiomodulation (PBM) therapy is known to have the potential to improve bone regen-
eration after implant surgery. However, the combinatory effect of the nanotextured implant and PBM
therapy on osseointegration has not yet been proved. This study evaluated the photobiomodulation-
based synergistic effects of Pt-coated titania nanotubes (Pt-TiO2 NT) and 850 nm near-infrared (NIR)
light on osteogenic performance in vitro and in vivo. The FE-SEM and the diffuse UV-Vis-NIR
spectrophotometer were used to perform the surface characterization. The live-dead, MTT, ALP,
and AR assays were tested to perform in vitro tests. The removal torque testing, the 3D-micro CT,
and the histological analysis were used to conduct in vivo tests. The live-dead and MTT assay
resulted in Pt-TiO2 NTs being biocompatible. The ALP activity and AR assays demonstrated that
the combination of Pt-TiO2 NT and NIR irradiation significantly enhanced osteogenic functionality
(p < 0.05). The results of in vivo test, employing the removal torque testing, the 3D-micro CT, and
histological analysis, showed overall improved outcomes; however, no significant difference was
observed between the control and experimental groups (p > 0.05). Therefore, we confirmed the
possibility of the combination of Pt-TiO2 NT and NIR light as a promising technology for implant
surgery in dentistry.

Keywords: photobiomodulation; Pt; titania nanotubes; near-infrared; osseointegration

1. Introduction

The successful osseointegration of dental implants is a critical aspect of implant surgery.
Ideally, a healthy and solid bone should be formed around the implant in a short period.
Various factors, such as implant surface treatment [1,2], bone morphogenic protein [3,4],
and growth factors [5,6], have been investigated to promote osteogenesis around implants.
However, conventional methods have several limitations; therefore, alternative methods
that continuously improve osteogenesis are essential. Photoassisted implant osteogenesis
enhancement methods primarily involve two approaches (1) activating the function of the
implant surface via light irradiation, which is commonly known as photofunctionalization,
and (2) accelerating the functions of cells or tissues around the implant using light, which
is known as photobiomodulation (PBM) [7].

The photofunctionalization of titanium implants refers to the activation of the titanium
implant surface using the ultraviolet (UV)-based photocatalytic effect of TiO2 present
on the titanium surface. This results in excellent antibacterial activity and enhanced
osseointegration of the implant [8–10]. PBM, which was previously known as low-level
laser therapy, involves the application of visible light (>600 nm) in the near-infrared (NIR)
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range to improve wound healing and relieve acute and chronic pain [11–13]. Especially
when considering the effect of PBM therapy in the clinical setting, several factors, such as
the dose of light, the wavelength of light, and the safety from the light irradiation, play
an essential role in the success of PBM therapy [14,15]. The recent development of optical
technology has enabled PBM therapy using light-emitting diodes (LED) that have the
specific wavelength characteristics of conventional lasers, in addition to the advantages of
high outputs and ease of operation [16,17]. In dentistry, PBM therapy has been used for
various clinical applications, such as treating hypersensitivity, craniofacial wound healing,
and cancer therapy [18–21]. Moreover, in vivo studies have demonstrated the potential
of PBM therapy in reducing healing time and improving bone regeneration after implant
surgery [22,23]. The early application of PBM therapy in implant surgery has been shown
to accelerate the proliferation and differentiation of osteoblasts and enhance the bonding
between the titanium implant and the surrounding tissues [24–26]. Therefore, LED-based
PBM is anticipated to significantly affect osteogenesis around dental implants.

In our previous research, we identified absorption patterns of light in the visible and
NIR ranges based on the combination of noble metal nanoparticles and TiO2 nanotubes
(NT) [27,28]. Specifically, the promotion of bone formation was confirmed under visible
light at wavelengths of 470 and 600 nm (in the visible light region). However, thus far, no
studies have examined the effect of combining noble metal nanoparticles and TiO2 NT with
NIR light on osseointegration.

Therefore, in this study, Pt-doped TiO2 NT with an excellent osteogenic function in
the 470 and 600 nm visible light region was prepared. Additionally, the synergistic effect of
noble metal doped TiO2 NT and NIR irradiation on the improvement of osseointegration
both in vitro and in vivo was investigated. The null hypotheses of this study are that there
are no significant differences in the results of (1) in vitro tests and (2) in vivo tests according
to the presence or absence of Pt coating and 850 nm NIR light irradiation.

2. Materials and Methods
2.1. Preparation and Characterization of Pt-Coated TiO2 NT (Pt-TiO2 NT)

TiO2 NT (diameter: 100 nm) was fabricated by the anodization (voltage: 20 V, duration:
30 min) of a pure Ti sheet (99.5%; Thickness 250 µm, Hyundai Titanium Co., Incheon, South
Korea). A piece of Ti sheet (5 × 5 cm2) was anodized using hydrofluoric acid (0.5 w/v%,
Merck & Co. Inc., Chicago, IL, USA). The anodized specimen was then dried (temperature:
60 ◦C, duration: 24 h) and heat-treated (Temperature: 400 ◦C, soaking time: 3 h) to crystalize
the specimen. The heat-treated specimens were coated with Pt (coating time: 60 s) using an
ion beam sputtering system (E-1030, Hitachi Co., Tokyo, Japan). The surface morphology
and optical properties of the Pt-TiO2 NT were characterized by the field-emission scanning
electron microscopy (FE-SEM; S-4800; Hitachi Co., Tokyo, Japan) and the diffuse reflectance
UV–Vis–NIR spectrophotometer (SolidSpec-3700; Shimadzu Co., Kyoto, Japan).

2.2. In Vitro Test
2.2.1. Live-Dead Assay of Human Mesenchymal Stem Cells (hMSCs)

hMSCs (PT-2501, Lonza Co., Basel, Switzerland) were cultured in α-modified eagle’s
minimum essential medium (α-MEM; Invitrogen, Carlsbad, CA, USA) with 10% fetal
bovine serum (FBS; Invitrogen, Carlsbad, CA, USA) and 1% antibiotics (Invitrogen, Carls-
bad, CA, USA) at 37 ◦C in a 5% CO2 incubator. To assist the osteogenic differentiation of
hMSCs in a typical environment, 10 mM β-glycerolphosphate (Sigma, St. Louis, MO, USA),
50 µg/mL ascorbic acid (Sigma, St. Louis, MO, USA), and 10 nM 1α,25-dihydroxyvitamin
D3 (Sigma, St. Louis, MO, USA) were added to the cell growth media.

To perform the live/dead assay, hMSCs were dispensed at a concentration of
1 × 104 cells/well in a 24-well plate containing the specimen (1 × 1 cm2). After 24 h
of incubation, the hMSCs seeded specimen was under the irradiation of NIR light using a
laboratory-fabricated LED (Wavelength: 850 nm, power density: 60 mW/cm2, the distance
between the LED and the specimen: 4 cm, and the irradiation time: 15 min). After irradia-



Nanomaterials 2023, 13, 1377 3 of 13

tion, the specimen was incubated for 24 and 48 h. To visualize live and dead cells, 500 µL
of a phosphate-buffered solution (PBS; Gibco, Carlsbad, CA, USA) with 2 µM calcein AM
(Invitrogen, Carlsbad, CA, USA) and 4 µM ethidium homodimer-1 (EthD-1, Invitrogen,
Carlsbad, CA, USA) was added to each well after additional incubation for 24 and 48 h.
After 30 min, live (green fluorescence color) and dead (red fluorescence color) cells were
confirmed using an inverted fluorescence microscope (CKX41; Olympus Co., Tokyo, Japan).

2.2.2. MTT Assay

Cell toxicity was assessed using an MTT assay kit (Sigma-Aldrich, St Louis, MO,
USA). The same cell culture and NIR light irradiation conditions as those utilized for the
live/dead assay were employed for the MTT assay. The testing and evaluation of the MTT
assay were performed according to the protocol specified in ISO 10993-5, Annex C [29].
After an additional 24 and 48 h of incubation, 100 µg/mL of MTT solution was added to
each well, and the samples were cultured at 37 ◦C in a 5% CO2 incubator. After 4 h, the
formazan produced by the MTT solution was dissolved in DMSO (Sigma-Aldrich, St Louis,
MO, USA), and the absorbance was measured at 570 nm using a microplate ELISA reader
(Spectra MAX 250; Molecular Devices Co., Sunnyvale, CA, USA). If the cell viability value
of the specimen is higher than 70% of the control (hMSCs cultured on the cell culture dish),
the specimen is determined to be biocompatible according to the decision of ISO 10993-5.
The MTT assay was performed on four samples from each group.

2.2.3. Alkaline Phosphatase (ALP) Activity Assay

The ALP activity assay was conducted utilizing the same cell culture and initial NIR
light irradiation conditions as those of the live/dead assay. The hMSCs were continuously
exposed to NIR light after changing the osteogenic media every three days. The ALP
activity was measured after one and two weeks of incubation. The detailed procedure
of ALP activity assay is the same as that of our previous study [27]. The absorbance was
measured at 405 nm using a microplate ELISA reader, and the final ALP activity values
were calculated by dividing the absorbance value by the average value of the total protein
amount obtained from the experimental group. The ALP activity assay value of each group
was determined by four samples of the group.

2.2.4. Alizarin Red (AR) Assay

The conditions for the cell culture and NIR light irradiation for hMSCs in the AR assay
were identical to those used for the ALP activity assay. The AR was measured after two and
three weeks of incubation. The detailed procedure of AR assay is the same as that of our
previous study [27]. The absorbance was measured at 405 nm using a microplate ELISA
reader. The AR assay value of each group was determined by four samples of the group.

2.3. Animal Study
2.3.1. Production of Experimental Animal Models and Implant Specimens

An in vivo study was conducted in accordance with the regulations of the Animal
Experiment Ethics Committee of Wonkwang University (approval number: WKU21-20).
Fifty male Sprague-Dawley rats (SD rats; body weight 250–280 g; 8 weeks old; Samtaco Co.,
Osan, Korea) were divided into two groups, namely, the uncoated TiO2 NT implant group
as a control and the Pt-TiO2 NT group as the experimental group. Each group was further
divided into two subgroups (four subgroups in total) based on the period of sacrifice (two
and six weeks). A modified orthodontic screw (OSTH 1604, Osstem implant Co., Seoul,
Korea) with a length of 4.0 mm and a diameter of 1.6 mm was utilized for the in vivo study.
The length of the orthodontic screw was trimmed to 3 mm, which was the entire length of
implantation, to fit the femur of the SD rats.
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2.3.2. Experimental Procedure of In Vivo Study

Figure 1 concisely depicts the experimental protocol employed in the in vivo study.
Surgical procedures were performed under general anesthesia by administering 10 mg/kg
Rompun (Bayer Korea Co., Seoul, Republic of Korea) and 30 mg/kg Zoletil (Virbac Lab,
Carros, France). Ten minutes after the anesthesia injection, the surgical site was isolated
and sterilized using a povidone–iodine solution. Subsequently, a 2% lidocaine injection was
administered subcutaneously, and the surgical sites in the left and right femurs were drilled
with a 2.0 mm diameter. Customized implants were then inserted into the osteotome sites
until the head of the implants reached the cortical bone, and the surgical sites were sutured
with 3.0 silk. Uncoated TiO2 NT and Pt-TiO2 NT implants were inserted into the right and
left femurs, respectively. Three days after implantation surgery, the implanted animals were
subjected to NIR irradiation in an LED chamber (20.0 × 12.0 × 24.0 cm3) for 15 min. NIR
light irradiation was performed every three days. The experimental rats were euthanized
in a CO2 gas chamber after two and six weeks of surgical intervention. Samples collected
from the right femur were subjected to a removal torque test and histological analysis,
whereas a sample collected from the left femur was subjected to radiological analysis.
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Figure 1. The experimental procedure of in vivo test.

2.3.3. Removal Torque Test

The sample obtained from the right femur, along with the implant, was placed in a
removal torque testing system connected to a digital torque gauge (MTT03-50Z; Mark-10,
New York, NY, USA). The upper notch of each implant was fixed to the Jacobian chuck of
the digital torque gauge, and the chuck was rotated in the counterclockwise direction until
the measured torque value reached the maximum value and went down. The maximum
torque values were recorded during this process. The removal torque test value of each
group was determined by five samples of the group.

2.3.4. Micro-Computed Tomography (CT) Assessment

To evaluate the implant placement position and peri-implant bone formation in the
surrounding bone, the new bone volume ratio was calculated using micro-CT scanned
images. The implant specimen in the mouse femur was scanned using a micro-CT system
(Skyscan 1076, Bruker Co., Aartselaar, Belgium) at 100 kV and 100 µA at 700 ms intervals.
At the time of measurement, the newly formed bone was defined as the region of interest
(ROI), which was a cylindrical region surrounding the implant surface (0.4 mm in length
and 1.1 mm in length). The new bone volume to total volume (BV/TV) was calculated for
each group using data analysis software (CTAn, v1.9.1.0, Bruker Co., Aartselaar, Belgium).
The new bone volume ratio was measured in five samples from each group.

2.3.5. Histological Analysis

Following the removal torque test, the collected samples were preserved in 10% neutral
buffered formalin at 4 ◦C for 14 d and subsequently placed in 1% EDTA (Sigma-Aldrich,
St Louis, MO, USA) for 14 d to facilitate demineralization. Afterward, the samples were
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embedded in paraffin wax, and 4 µm thick sections were obtained using a rotary microtome
(Shandon Finesse 325, Thermo Fisher Scientific, Waltham, MA, USA), parallel to the long
axis of the femur. The obtained sections were stained with hematoxylin and eosin (H&E)
to visualize the extracellular matrix and osteogenesis-related cells. The stained specimens
were then analyzed using an optical microscope (CKX41, Olympus Co., Tokyo, Japan).

2.4. Data Analysis

All data in this study are expressed as mean ± standard deviation. Statistical analysis
was performed on the data for all experiments using a one-way analysis of variance (IBM
SPSS Statistics 24.0; IBM, Armonk, NY, USA), followed by the post hoc Games–Howell test.
Differences were considered significant when p-values were less than 0.05.

3. Results

Figures 2 and 3 depict the FE-SEM images and diffuse reflectance UV–Vis–NIR spec-
trophotometry results of TiO2 and Pt-TiO2 NT, respectively. The FE-SEM images resulted
that the average diameters of TiO2 and Pt-TiO2 NT were 9.89 ± 1.68 and 12.76 ± 2.91 nm, re-
spectively. Furthermore, Pt nanoparticles were located on the top surfaces of the NT. Based
on the results of the diffuse reflectance UV–Vis–NIR analysis, the Pt-TiO2 NT group exhib-
ited four electron absorption spectra, and one of them was detected within the 800–900 nm
range, which was consistent with the wavelength of the NIR light utilized in this study.
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Figure 4 presents images of calcein-AM and EthD-1-stained hMSCs cultured on TiO2
and Pt-TiO2 NT, along with MTT assay results, with and without 850 nm NIR light ir-
radiation. The images showed no evidence of damaged or dead cells (indicated by red
fluorescence) in any of the groups after 24 and 48 h of cultivation. Moreover, the elongation
ratio of the filopodia of hMSCs cultured on Pt-TiO2 NT specimen with 850 nm NIR light
irradiation was higher than those of the other groups. The MTT assay results indicated
no significant differences among all experimental groups (p > 0.05), and the cell viability
values of all groups were above 70% compared to the control group (hMSCs cultured on
cell culture dish), indicating good biocompatibility in all experimental groups.
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NT and Pt-TiO2 NT after (A) 24 and (B) 48 h of incubation (In each graph, the experimental groups
with the same lowercase letters indicate statistical significance by one-way ANOVA at α = 0.05).

Figure 5 reveals the ALP activity assay results of hMSCs under 850 nm NIR light
irradiation. In the graph, (−), (+), and (850) indicate conditions without osteogenic media,
with osteogenic media, and with combining osteogenic media and 850 nm NIR irradiation,
respectively. After one week of cultivation, the Pt-TiO2 NT with 850 nm NIR light irradiation
exhibited the highest ALP activity among all groups, and the activity was significantly
higher than that observed for other groups and conditions (p < 0.05). After two weeks
of cultivation, the ALP activity of the Pt-TiO2 NT with 850 nm NIR light irradiation was
the highest among those of all groups. However, no significant difference was observed
between TiO2 NT and Pt-TiO2 NT groups under 850 NIR light irradiation (p > 0.05).
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Figure 6 displays the outcomes of the AR assay. In the graph, (−), (+), and (850)
indicate conditions without osteogenic media, with osteogenic media, and with combining
osteogenic media and 850 nm NIR irradiation, respectively. After three weeks of cultivation,
the AR value of the Pt-TiO2 NT group with 850 nm NIR light irradiation was the highest
among those of all groups and was significantly higher than those of other groups and
irradiation conditions (p < 0.05).
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Figure 6. AR values of TiO2 NT and Pt-TiO2 NT after three weeks of incubation (In each graph,
the experimental groups with different letters indicate statistical significance by one-way ANOVA
at α = 0.05).

Figure 7 presents the results of the removal torque tests. In the graph, (850) means
the condition with 850 nm NIR irradiation in animal experiments. Two weeks and six
weeks after implantation, the torque value of the Pt-TiO2 NT group with 850 nm NIR light
irradiation was the highest among those of all groups. However, there was no significant
difference between the groups (p > 0.05). Furthermore, although the results of the removal
torque test did not exhibit a statistically significant improvement, 850 NIR light irradiation
enhanced the removal torque test results.
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Figure 7. Torque test results of TiO2 NT- and Pt-TiO2 NT-treated implants after (A) two and
(B) six weeks of implantation (In each graph, the experimental groups with different letters indicate
statistical significance by one-way ANOVA at α = 0.05).

Figure 8 depicts the 3D micro-CT images of TiO2 NT and Pt-TiO2 NT with and without
850 nm NIR light irradiation. Following two and six weeks of implantation, widespread
bone formation (yellow color in Figure 8) was observed surrounding the TiO2 NT or Pt-TiO2
NT surface-treated implant (white color in Figure 8), and the periosteum was elevated.
Figure 9 presents the findings of the 3D micro-CT analysis, indicating a tendency for an
increase in bone volume with 850 nm NIR irradiation. However, no statistically significant
difference was observed depending on light irradiation (p > 0.05).
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Figure 8. Three-dimensional micro-CT images and analysis of TiO2 NT- and Pt-TiO2 NT-treated
implants after (A) two and (B) six weeks of implantation (white color: TiO2 NT or Pt-TiO2 NT
surface-treated implant, yellow color: bone).

Figures 10 and 11 show H&E-stained images of TiO2 NT and Pt-TiO2 NT at two-
and six-week implantation, respectively. The thread-type implant–bone interfaces of most
samples were disrupted after the removal torque test, so we observed only an intact bone-
implant interface in any of the specimens. Therefore, we present a representative image of
each group with the limited specimen conditions. Two weeks after implantation (Figure 10),
we could not find a significant histological difference between TiO2 NT and Pt-TiO2 NT
regardless of 850 nm NIR light irradiation. Instead, the immature bone matrix was observed
at the implant-surrounding bone interface in both groups (black arrows in Figure 10). After
six weeks of implantation (Figure 11), histological differences between the groups were
not found regardless of 850 nm NIR light irradiation. However, mature new bone matrix,
including osteocytes, appeared at the interface between the implant and existing bone (blue
arrows in Figure 11).
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ANOVA at α = 0.05).
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Figure 10. H&E-stained images of the tissues around the TiO2 NT- and Pt-TiO2 NT-treated implants
after two weeks.
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4. Discussion

Based on all results of the in vitro and in vivo tests, the first null hypothesis estab-
lished before the experiment was rejected, but the second null hypothesis was accepted.
In vitro tests showed that the combination of Pt-TiO2 NT and 850 nm NIR light irradiation
improved osteogenic performance. However, the results of in vivo tests indicated that this
combination did not show any noticeable effect of enhancing osseointegration.

Our previous study demonstrated that noble metal-coated TiO2 NT exhibits signifi-
cant antibacterial activities through plasmonic photocatalytic effects [27,28]. Additionally,
we demonstrated improved osteogenic capability when using implants with NT surface
treatment and visible light irradiation. Specifically, the combination of Pt-coated TiO2 NT
and 600 nm visible light irradiation used for the PBM treatment exhibited excellent os-
teogenic ability in vitro [27]. Based on these in vitro results, we planned to conduct in vivo
experiments. However, we found that a skin penetration depth of 600 nm was inadequate
for animal experiments. Therefore, we employed NIR radiation, which penetrates soft
tissue more deeply than visible light and is an effective wavelength range for PBM therapy
in conjunction with 600 nm visible light [30–32]. Therefore, in this study, we aimed to
investigate the synergistic effects of NIR irradiation and Pt-TiO2 NT, which are known to
promote wound healing, tissue repair, and osteogenesis.

The inset of the FE-SEM image indicates that most of the Pt nanoparticles were
deposited on the top surface of the TiO2 NT, exhibiting various shapes such as spherical,
rod-like, and crescent-like morphology, owing to the features of the ion beam plasma
coating system. Diffuse reflectance UV–Vis–NIR spectrophotometry analysis revealed four
light absorbance peaks, with two significant peaks in the range of 550–650 and 800–900 nm,
which are related to the photothermal scattering (short and long axes) of the deposited
Pt nanoparticles. This result is due to the shape of the deposited Pt nanoparticles, as
previously noted in other studies. We previously demonstrated that the morphology
of Pt nanoparticles deposited on TiO2 NT influences the wavelength range of the light
absorbance peaks through the photothermal scattering of the Pt nanoparticles [33–36].

Based on the results of the live-dead and MTT assays, we confirmed that 850 nm
NIR light irradiation for 15 min did not cause cytotoxicity. Furthermore, the adhesion and
differentiation of hMSCs cultured on Pt-TiO2 NT specimens under NIR light irradiation
were further improved. In this study, we only tested the live-dead and MTT assays
to determine the biocompatibility of the experimental specimen. Due to the diversity
of the material, the limited cytotoxicity evaluation cannot evaluate the comprehensive
cytotoxicity of the material. Therefore, cytotoxicity evaluation in various ways should be
performed, and we will evaluate the cytotoxicity of the experimental specimen through
various cytotoxicity evaluation methods [37]. In addition, in contrast to that of visible light,
prolonged exposure to NIR light can lead to the evaporation of the cell culture media and
the inevitable heating of the media. Therefore, we conducted a pilot test to measure the
temperature changes in cell culture media, including experimental specimens, before and
after 850 nm NIR irradiation for 15 min. The temperature of the cell culture media, the
media with TiO2 NT, and the media with Pt-TiO2 NT increased by 2.3, 2.8, and 2.6 ◦C,
respectively (detailed data are not shown). Therefore, no difference between the control
and experimental groups was expected owing to the effect of NIR irradiation on hMSCs
differentiation, despite the temperature increase.

Based on the results of the ALP activity and AR assays, which showed the highest
values for the Pt-TiO2 NT group under 850 nm NIR light irradiation compared to those of
the other groups, the enhanced osteogenic differentiation of hMSCs was closely related to
the combination of Pt-TiO2 NT and NIR light. The morphology of hMSCs cultured on Pt-
TiO2 NT with or without 850 nm NIR irradiation was estimated by assessing the elongation
ratio of hMSCs from calcein-AM-stained images (Figure 4). After 48 h of incubation, the
elongation ratio of hMSCs cultured on Pt-TiO2 NT and irradiated with 850 nm NIR was
higher than those of the other groups and conditions. The elongation of mesenchymal
stem cells plays a significant role in improving osteogenic differentiation, apart from the
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adhesion and proliferation of cells [38,39]. Therefore, the combination of Pt-TiO2 NT and
850 nm NIR irradiation resulted in the highest elongation of hMSCs in this study, which is
closely related to early bone formation in vitro.

The results of the removal torque test, micro-CT, and histological analysis indicated
that the combination of 850 nm light irradiation and Pt-TiO2 NT did not improve sig-
nificantly bone formation in vivo compared to in vitro. Significantly, several NIR light
irradiation variables, such as the light intensity, irradiation time, and irradiation distance,
are limited to produce the results of in vivo tests like those of in vitro tests. Additionally,
because the SD rats used in the animal experiments were constantly moving, irradiating the
femur (implanted place) with the same light intensity for a specific time was impossible. To
minimize the variations in the aforementioned variables, a small chamber accommodating
one SD rat was fabricated as shown in Figure 1, and NIR light irradiation was performed
for 15 min in this chamber. Although the in vivo test was performed in an improved
experimental environment, we could not obtain in vivo results similar to those obtained
in vitro. Therefore, improvements in the research design limitations (equipment and light
irradiation devices) for ensuring consistent light irradiation are necessary, and related
experiments are currently in progress. In addition, in terms of clinical implication, we
confirmed the possibility of combining Pt-TiO2 NT and NIR light as a promising technol-
ogy for implant surgery. Additionally, we expect to try this combination for patients with
exceptional cases such as immune deficiencies and evaluate the reparative mechanisms
contributing to defining an osseointegration procedure [40].

5. Conclusions

Within the scope of this study, we confirmed that the combination of Pt-TiO2 NT and
850 nm NIR light irradiation facilitates excellent osteogenic performance in vitro and not
in vivo because of the variations in the experimental environmental variables, such as
the method of NIR light irradiation at the implant placement site and the management
of experimental animals. Although additional improvements in animal test conditions
are required, the combination of Pt-TiO2 NT and 850 nm NIR light irradiation exhibits
the potential for enhancing osseointegration and is expected to serve as a foundation
technology for developing novel implantable devices.
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