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Automated deep learning 
for classification of dental 
implant radiographs using a large 
multi‑center dataset
Wonse Park 1,2, Jong‑Ki Huh 1,3,5* & Jae‑Hong Lee 1,4,5*

This study aimed to evaluate the accuracy of automated deep learning (DL) algorithm for identifying 
and classifying various types of dental implant systems (DIS) using a large‑scale multicenter dataset. 
Dental implant radiographs of pos‑implant surgery were collected from five college dental hospitals 
and 10 private dental clinics, and validated by the National Information Society Agency and the 
Korean Academy of Oral and Maxillofacial Implantology. The dataset contained a total of 156,965 
panoramic and periapical radiographic images and comprised 10 manufacturers and 27 different types 
of DIS. The accuracy, precision, recall, F1 score, and confusion matrix were calculated to evaluate the 
classification performance of the automated DL algorithm. The performance metrics of the automated 
DL based on accuracy, precision, recall, and F1 score for 116,756 panoramic and 40,209 periapical 
radiographic images were 88.53%, 85.70%, 82.30%, and 84.00%, respectively. Using only panoramic 
images, the DL algorithm achieved 87.89% accuracy, 85.20% precision, 81.10% recall, and 83.10% 
F1 score, whereas the corresponding values using only periapical images achieved 86.87% accuracy, 
84.40% precision, 81.70% recall, and 83.00% F1 score, respectively. Within the study limitations, 
automated DL shows a reliable classification accuracy based on large‑scale and comprehensive 
datasets. Moreover, we observed no statistically significant difference in accuracy performance 
between the panoramic and periapical images. The clinical feasibility of the automated DL algorithm 
requires further confirmation using additional clinical datasets.

Dental implants are among the most widely used and commonly accepted treatment modalities for oral rehabili-
tation of partially and completely edentulous  patients1,2. The occurrence of various major or critical mechanical 
(such as fractures of screws or fixtures) and biological (such as peri-implantitis) problems is steadily and inevi-
tably increasing, affecting long-term survival and reintervention  outcomes3,4. Therefore, dental implant-related 
complications are a growing concern in the dental community worldwide and are a public health problem 
associated with a high socio-economic  burden5,6.

In particular, early detection and appropriate treatment of simple mechanical complications such as screw 
loosening can prevent more severe complications, such as fixture fracture or severe peri-implantitis, at an early 
 stage7,8. For early and fast intervention, dental implant systems (DIS) placed in the oral cavity must be unambigu-
ously identified and classified. However, in actual clinical practice, it is not easy to properly identify or classify 
the various different types of DIS after implant surgery because of various clinical and environmental factors, 
including the closure of a dental hospital or the loss of dental records.

Although two-dimensional dental radiography, including panoramic and periapical radiographs, is the most 
useful tool for identifying and classifying DIS post-implant surgery, there is a fundamental and practical limit 
for classifying thousands of different types of DIS with similar shapes and physical  properties9,10. In addition, 
three-dimensional cone-beam computed tomography (CBCT) has been actively used for dental implant surgery; 
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however, whether CBCT can better classify DIS is debatable because the sharpness and resolution of CBCT is 
still significantly lower than that of peripheral  radiographs11.

Deep learning (DL), a subfield of artificial intelligence (AI), has a wide range of applications in medicine; this 
unique technology is associated with high accuracy in medical image analysis for edge detection, classification, or 
segmentation based on a cascade of multiple computational and hidden layers in a deep neural  network12. When 
limited to dentistry, deep and convolutional neural networks have rapidly become the methodology of choice for 
two- and three-dimensional dental image  analyses13–16. Several studies have demonstrated DL algorithms as an 
emerging state-of-the-art approach in terms of accuracy performance for identifying and classifying various types 
of DIS and often show outperforming results compared to dental professionals specialized in  implantology17–25. 
However, since most previous studies were based on fewer than thousands of DIS images or fewer than 10 dif-
ferent types of DIS, available evidence is insufficient to be implemented in actual clinical  practice19–24. This study 
aimed to evaluate the accuracy of the automated DL algorithm for the identification and classification of DIS 
using a large-scale and comprehensive multicenter dataset.

Results
The performance metrics of the automated DL algorithm based on the accuracy, precision, recall, and F1 score 
for total of 156,965 panoramic and periapical radiographic images were 88.53%, 85.70%, 82.30%, and 84.00%, 
respectively. Using only panoramic images (n = 116,756), the DL algorithm achieved 87.89% accuracy, 85.20% 
precision, 81.10% recall, and 83.10% F1 score, whereas the corresponding values using only periapical images 
(n = 40,209) achieved 86.87% accuracy, 84.40% precision, 81.70% recall, and 83.00% F1 score, respectively. No 
statistically significant difference in the classification accuracy was observed between the three groups, and the 
detailed accuracy performances of DL in the classification of DIS are listed in Table 1.

Figure 1 shows the normalized confusion matrices, containing a summary of the classification of the 27 differ-
ent types of DIS based on the automated DL algorithm (full details are provided in Appendix 3). Using panoramic 
and periapical images, the classification accuracy of DL was the highest for Nobel Biocare Branemark (100.0%) 
and Megagen Exfeel external (100.0%), and the lowest for Warantec IT (35.3%). Using only panoramic images, 

Table 1.  Accuracy performance of automated deep learning algorithm.

Manufactures System

Panoramic images
(Accuracy = 87.89%)

Periapical images
(Accuracy = 86.87%)

Panoramic and Periapical images
(Accuracy = 88.53%)

Precision (%)
Recall
(%)

F1 score
(%) Precision (%)

Recall
(%)

F1 score
(%) Precision (%)

Recall
(%)

F1 score
(%)

All dental implant systems 85.20 81.10 83.10 84.40 81.70 83.00 85.70 82.30 84.00

Neobiotech

IS I 88.30 93.00 90.60 87.60 93.00 90.20 91.30 92.10 91.70

IS II 66.70 20.00 30.80 60.00 30.00 40.00 66.70 20.00 30.80

IS III 87.80 81.10 84.30 74.10 75.50 74.80 79.40 94.30 86.20

EB 94.00 90.40 92.20 98.00 92.30 95.00 97.90 88.50 92.90

Nobel biocare Branemark 92.90 76.50 83.90 96.00 70.60 81.40 100.0 76.50 86.70

Dentsply
Astra 93.40 100.0 96.60 93.40 100.0 96.60 93.40 100.0 96.60

Xive 98.50 100.0 99.20 100.0 100.0 100.0 98.50 100.0 99.20

Dentium
Implantium 95.20 96.20 95.70 95.90 95.20 95.50 95.40 95.70 95.60

Superline 95.00 95.40 95.20 94.20 93.70 93.90 96.00 95.60 95.80

Dioimplant
UF 92.90 96.30 94.50 96.20 92.60 94.30 100.0 96.30 98.10

UF II 86.20 86.20 86.20 86.20 86.20 86.20 86.20 86.20 86.20

Megagen

Any ridge 92.30 92.30 92.30 85.70 92.30 88.90 84.60 84.60 84.60

Anyone internal 73.80 82.90 78.10 72.0 71.90 72.40 79.40 64.10 70.90

Anyone external 66.40 59.50 62.80 58.00 65.909 61.70 56.50 76.20 64.90

Exfeel external 100.0 75.0 85.70 100.0 83.30 90.90 100.0 83.30 90.90

Straumann

TS standard 84.20 88.90 86.50 88.90 88.90 88.90 84.20 88.90 86.50

TS standard plus 90.30 93.30 91.80 93.80 100.0 96.80 93.50 96.70 95.10

Bone level 99.20 96.00 97.60 98.40 96.00 97.20 99.20 94.40 96.70

Shinhung Luna 97.50 88.60 92.90 83.00 88.60 85.70 92.90 88.60 90.70

Osstem

GS II 86.10 93.90 89.90 93.80 90.90 92.30 81.60 93.90 87.30

SS II 77.80 58.30 66.70 90.00 75.00 81.80 80.00 66.70 72.70

TS III 97.40 96.80 97.10 97.30 96.20 96.80 97.60 97.60 97.60

US II 91.50 95.30 93.40 90.50 97.00 93.70 91.00 98.70 94.70

US III 100.00 78.90 88.20 93.30 73.70 82.40 93.30 73.70 82.40

Warantec

Hexplant 80.20 64.60 71.60 79.60 62.10 69.70 78.90 72.80 75.80

Internal 54.50 71.50 61.80 52.50 71.90 61.30 60.10 67.20 63.50

IT 19.00 19.00 19.00 19.20 23.80 21.30 35.30 28.60 31.60
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the classification accuracy was the highest for Osstem US III (100.0%) and Megagen Exfeel external (100.0%), and 
the lowest for Warantec IT (19.0%). When using only periapical images, the classification accuracy was the high-
est for Megagen Exfeel external (100.0%) and Dentsply Xive (100.0%), and the lowest for Warantec IT (19.2%).

Discussion
AI-based large-scale machine learning and DL in the late 2010s, which facilitated the accurate diagnosis of 
medical radiographic images, garnered attention in biomedical engineering and provided novel insights into 
precision  medicine26–28. More recently, deep convolutional neural network algorithms have gained popularity in 
dentistry, and have also achieved considerable success in analyzing dental radiographic  images29. The potential 
clinical applications of DL technology are closely related to (1) deeper and more sophisticated neural network 
structures and (2) large annotated and high-quality datasets. Particularly, a gold-standard dataset annotated and 
verified by medical and dental professionals is essential to create a reliable radiographic image-based DL model 
in the medical and dental  fields26,27.

To evaluate the performance of DL-based identification and classification of various types of DIS in actual 
clinical practice, a large, highly accurate, and reliable dataset is necessary. Recently, a large-scale and compre-
hensive multicenter dataset that could be used in the clinical field for DL-based identification and classification 
of DIS was collected and released openly by the national initiative. To our knowledge, the dataset used in the 
present study contained the larger number of radiographic images and types of DIS than any previously reported 
implant-related dataset. Because we used this dataset in the current study, it is expected to show higher feasibility 
than that of any previous implant-related DL research.

Most previous studies evaluated the accuracy performance of the conventional or minimally modified DL 
architectures (e.g., YOLO, SqueezeNet, ResNet, GoogLeNet, and VGG-16/19) using less than a few thousand 
dental radiographic images, and usually fewer than 10 different types of DIS in their datasets, identifying a clas-
sification accuracy ranging from 70 to 100%17–25. One study that utilized a ResNet architecture based on 12 types 
of 9767 panoramic images reported a high accuracy of 98% or  more23. Our previous pilot study that utilized 
automated DL based on six different types of 11,980 DIS images also showed reliable outcomes and achieved 
a very high accuracy of 95.4% (sensitivity:95.5% and specificity:85.3%)18. Conversely, another study based on 
Yolov3 using 1282 panoramic images showed a relatively low accuracy in the 70% range on  average22.

The automated DL algorithm used in this study, based on the combination of periapical and panoramic 
radiographs, achieved an AUC of 0.885. When only panoramic radiographs were used, the AUC was 0.878, and 
when only periapical radiographs were used, the AUC was 0.868. Specifically, periapical and panoramic images 
had the highest classification accuracy, and periapical images alone had the lowest accuracy, but there was no 
statistically significant difference between the three groups. These outcomes are consistent with the previously 
reported absence of a significant difference in classification accuracy between panoramic and periapical images 
and are also likely due to the fact that almost three times more panoramic images (n = 105,080) than periapical 
images (n = 36,188) were used for training and  validation17,18.

Specifically, the Nobel Biocare Branemark, Megagen Exfeel external, Osstem US III, and Dentsply Xive 
showed a high classification accuracy of 100.0%, whereas Warantec IT showed a low accuracy performance 
(accuracy: 19.0–35.3%) due to the relatively small number of radiographic images, including only 238 panoramic 
and 208 periapical images, despite having a conventional fixture morphology with an internally tapered shape. 
From this perspective, DL has great advantages in identifying and classifying similar types of DIS; however, the 
accuracy performance varies significantly depending on the amount of datasets required for training, which is 
considered a fundamental limitation of the existing DL algorithms. Further research should be conducted to 
confirm whether the number of datasets required for training can be reduced by adopting an algorithm that is 
more specialized than the algorithm in this study for DIS classification.

In the radiographs used in this study, the main ROI was the implant fixture, but a number of other confound-
ing conditions (such as surrounding alveolar bone, cover screw, healing abutment, provisional or definitive 

Figure 1.  Schematic illustration of dataset collection and verification. All study protocols and related 
procedures were supervised by the National Information Society Agency (NIA) and the Korean Academy of 
Oral & Maxillofacial Implantology (KAOMI).
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prosthesis) were included. To be used in actual clinical practice, implant fixtures with different confounding 
conditions and angles should be used as datasets, rather than implant fixtures with perfect/intact shapes and 
standard angles. Several previous studies, including this one, have confirmed that implant datasets with different 
angles and confounding conditions have a high accuracy performance of over 80%17,18,25. Furthermore, using 
the Gradient-Weighted Class Activation Mapping technique, it was found that the types of DIS were classified 
by focusing on the implant fixture itself rather than the various confounding components of the DIS. Therefore, 
various confounding factors and angles do not appear to have a significant impact on the accuracy performance 
of DL-based implant system classification.

In a recent study wherein healthcare professionals with no coding experience evaluated the feasibility of 
automated DL models using five publicly available and open-source medical image datasets, most classification 
models showed accuracy performance and diagnostic properties comparable to those of state-of-the-art DL 
 algorithms30. Developing customized DL models according to the types and characteristics of datasets requires 
highly specialized skills and expertise. This study confirmed that the DL algorithm itself, not computer scientists 
and engineers, built an automated DL model without coding and showed excellent classification accuracy of over 
86% in 27 similar design but different types of multiple classifications.

Identifying and classifying DIS with varying features and characteristics and limited clinical and radiographic 
information is a challenge not only for inexperienced dental professionals, but also for dentists with sufficient 
experience in implant surgery and prosthetics. In the past, several studies have identified DIS from a forensic 
perspective based on radiographs, and until recently, efforts have been made to classify DIS, but most of these 
are based on empirical evidence, making it difficult to achieve high  reliability9,10,31. More recently, computer-
based implant recognition software and web-based DIS classification platforms have been developed and used; 
however, most require manual classification of DIS features (such as coronal interface, flange, thread type, taper 
and apex shape) or contain only a small number of DIS datasets, limiting their active use in clinical  practice32.

The first end goal based on this research was to obtain a database of almost all types of DIS used worldwide 
and train it with sophisticated and refined DL algorithms optimized for DIS classification to achieve a high level 
of reliability that can be used in actual clinical practice. The second goal was to create a web or cloud-based envi-
ronment where datasets can be freely stored, trained, and validated in real time. Achieving these goals requires 
the proactive development of standard protocols to facilitate data sharing and integration, secure transmission 
and storage of large datasets, and enable federated  learning33,34.

This study had several limitations. Collecting a dataset using supervised learning requires considerable tan-
gible and intangible resources including finances, time, trained personnel, hardware, and software. Therefore, 
unsupervised learning, a technique for overcoming small-scale and imbalanced datasets, has been introduced 
and tested with caution in dentistry; however, it remains a challenging  approach35. Large-scale and multicenter 
datasets may be useful for future DL-based research and actual clinical trials to identify and classify various 
types of DIS. Nevertheless, the dataset used in this study had inherent limitations regarding the interpretability 
of the results. Although the raw NIA dataset consisted of 165,700 radiographs and 42 different types of DIS, the 
number of panoramic and periapical images for each type of DIS was highly heterogeneous. In addition, DIS 
manufactured by foreign companies or using non-titanium materials (such as non-metallic ceramic zirconia), 
which are rarely used in South Korea, were few or not included in the raw dataset. To overcome the potential 
problem of overfitting and selective bias, we selected only DIS that contained more than 100 images of panoramic 
and periapical radiographs.

Conclusion
We verified that automated DL shows a high classification accuracy based on large-scale and multicenter datasets. 
Furthermore, no significant difference in accuracy was observed between panoramic and periapical radiographic 
images. The clinical feasibility of the automated DL algorithm will have to be confirmed using additional datasets 
and clinical research in the future.

Materials and methods
Ethics. This study was approved and conducted in accordance with the following Institutional Review Board 
(IRB): Seoul National University Dental Hospital (ERI21024), Yonsei University Dental Hospital (2-2021-
0049), Gangnam Severance Dental Hospital (3-2021-0175), Wonkwang University Daejeon Dental Hospital 
(W2104/003-002), Dankook University Dental Hospital (2021-8-004), and national public IRB (P01-202109-
21-020). IRBs of Seoul National University Dental Hospital, Yonsei University Dental Hospital, Gangnam Sev-
erance Dental Hospital, Wonkwang University Daejeon Dental Hospital, Dankook University Dental Hospital, 
and national public approved a waiver of informed consent for retrospective large-scale and multicenter data 
analysis. All methods in this study were performed in accordance to relative guidelines and regulations.

Dataset collection and verification. All included dental radiographic images were managed and super-
vised by the National Information Society Agency (NIA) under the Ministry of Science and the Korean Academy 
of Oral and Maxillofacial Implantology (KAOMI). The dataset was collected from five college dental hospi-
tals (including Seoul National University Dental Hospital, Yonsei University Dental Hospital, Yonsei University 
Gangnam Severance Dental Hospital, Wonkwang University Daejeon Dental Hospital, and Dankook University 
Dental Hospital) and 10 private dental clinics. Appendix 1 summarizes the detailed consortium of the dataset 
collection.

Digital imaging and communication in medicine-format panoramic and periapical images were converted 
into either de-identified 512 × 512 pixels or smaller JPEG- or PNG-format images, and one implant fixture per 
image was cropped as a region of interest (ROI). The collected ROI images were reviewed to ensure that cropping, 
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resolution, and sharpness were properly performed by 10 dental professionals employed by the KAOMI. Subse-
quently, based on the medical and dental records provided by college dental hospitals and private clinics, each 
implant fixture was labeled with the manufacturer, brand and system, diameter and length, placement position, 
surgery date, age, and sex using customized labeling and annotation tools. All included radiographic images 
were validated by a board-certified oral and maxillofacial radiologist who was not involved in dataset manage-
ment. The final dataset consisted of 165,700 panoramic and periapical radiographic images and 42 types of DIS. 
Appendix 2 provides a detailed list of the raw NIA dataset (Fig. 2).

We included only DIS that contained at least 100 periapical and 100 panoramic images from the raw NIA 
dataset. Finally, the dataset used in this study contained 116,756 panoramic and 40,209 periapical images, 
comprised 10 manufacturers and 27 types of DIS. Specifically, the dataset included Neobiotech (n = 21,260, 
13.54%), Nobel biocare (n = 3644, 2.32%), Dentsply (n = 15,296, 9.74%), Dentium (n = 41,096, 26.18%), Dioim-
plant (n = 1530, 0.97%), Megagen (n = 7801, 4.97%), Straumann (n = 4977, 3.17%), Shinhung (n = 3376, 2.15%), 
Osstem (n = 42,920, 27.34%), and Warantec (n = 15,065, 9.60%). The detailed types of DIS are listed in Table 2 
and illustrated in Fig. 3.

Implementation of automated DL algorithm. For the identification and classification of 156,965 radi-
ographic images, a customized automatic DL engine (Neuro-T version 3.0.1, Neurocle Inc., Seoul, Korea) was 
adopted in this study. Within the available computing resources and training time, an automated DL algorithm is 
a self-training architecture that selects appropriate DL models and optimizes the hyperparameters (including the 
resize method, number of network convolutional layers, decay method, learning rate, dropout rate, batch size, 
number of epochs and patience, and optimizer) to fit the model in the customized  dataset36.

The dataset comprised three groups: panoramic (n = 116,756), periapical (n = 40,209), and panoramic and 
periapical (n = 156,965) images. Each dataset group was randomly and evenly divided into three subgroups: 
training (80%), validation (10%), and testing (10%). After the dataset division, the training dataset was aug-
mented by ten times, with random rotations (90°), hue (range of − 0.1 to 0.1), brightness (range of − 0.12 to 
0.12), saturation (range of 0.6–1.5), contrast (range of 0.6–1.5), noise (0.05), and horizontal and vertical flips. 
We trained our approach on two NVIDIA A6000 graphic processing units (48 GB memory, NVIDIA, Mountain 

Figure 2.  Dataset containing 116,756 panoramic and 40,209 periapical radiographic images and comprising 10 
manufacturers and 27 types of dental implant systems.
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Table 2.  Number of panoramic and periapical radiographic images for each dental implant system.

Manufactures System

Panoramic 
images
(n = 116,756)

Periapical images
(n = 40,209)

Total images
(n = 156,965)

Neobiotech

IS I 6708 5.75% 1139 2.83% 7847 5.00%

IS II 2774 2.38% 104 0.26% 2878 1.83%

IS III 7594 6.50% 533 1.33% 8127 5.18%

EB 1890 1.62% 518 1.29% 2408 1.53%

Nobel biocare Branemark 3302 2.83% 342 0.85% 3644 2.32%

Dentsply
Astra 13,404 11.48% 571 1.42% 13,975 8.90%

Xive 667 0.57% 654 1.63% 1321 0.84%

Dentium
Implantium 14,993 12.84% 4162 10.35% 19,155 12.20%

Superline 16,734 14.33% 5207 12.95% 21,941 13.98%

Dioimplant
UF 525 0.45% 273 0.68% 798 0.51%

UF II 447 0.38% 285 0.71% 732 0.47%

Megagen

Any ridge 217 0.19% 135 0.34% 352 0.22%

Anyone internal 1640 1.40% 2167 5.39% 3807 2.43%

Anyone external 1290 1.10% 1263 3.14% 2553 1.63%

Exfeel external 974 0.83% 115 0.29% 1089 0.69%

Straumann

TS standard 1151 0.99% 176 0.44% 1327 0.85%

TS standard plus 741 0.63% 301 0.75% 1042 0.66%

Bone level 1347 1.15% 1261 3.14% 2608 1.66%

Shinhung Luna 2935 2.51% 441 1.10% 3376 2.15%

Osstem

GS II 1401 1.20% 327 0.81% 1728 1.10%

SS II 717 0.61% 116 0.29% 833 0.53%

TS III 19,222 16.46% 10,536 26.20% 29,758 18.96%

US II 7295 6.25% 2363 5.88% 9658 6.15%

US III 758 0.65% 185 0.46% 943 0.60%

Warantec

Hexplant 4568 3.91% 4271 10.62% 8839 5.63%

Internal 3224 2.76% 2556 6.36% 5780 3.68%

IT 238 0.20% 208 0.52% 446 0.28%

Figure 3.  Multi-label classification confusion matrix with normalization using panoramic and periapical 
radiographic images.
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View, CA, USA). The models were trained for a maximum of 500 epochs and stopped if the validation set loss 
did not improve for more than 20 epochs.

Statistical analysis. Categorical and continuous variables were expressed as frequencies (n) and ratios (%). 
The performance metrics were evaluated as accuracy, precision, recall, and F1 score (Eqs. (1)–(4), TP: true posi-
tive, FP: false positive, FN: false negative, and TN: true negative):

Additionally, a normalized confusion matrix for each DIS was calculated based on the test dataset. All data 
processing and statistical analyses were conducted using a commercial statistical package (Neuro-T version 
3.0.1, Neurocle Inc., Seoul, Korea) and non-commercial statistical package (R version 4.2.0, R Foundation for 
Statistical Computing, Vienna, Austria).

Data availability
The dataset used in this study is a public dataset with limited access that can be used after approval by the National 
Information Society Agency (NIA), and details can be found on the AI-Hub website (https:// aihub. or. kr/ aihub 
data/ data/ view. do? currM enu= 115& topMe nu= 100& aihub DataSe= realm & dataS etSn= 536).
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