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Abstract: Adequate oxygen in red blood cells carrying through the body
to the heart and brain is important to maintain life. For those patients
requiring blood, blood transfusion is a common procedure in which donated
blood or blood components are given through an intravenous line. However,
detecting the need for blood transfusion is time-consuming and sometimes not
easily diagnosed, such as internal bleeding. This study considered physiolog-
ical signals such as electrocardiogram (ECG), photoplethysmogram (PPG),
blood pressure, oxygen saturation (SpO2), and respiration, and proposed the
machine learning model to detect the need for blood transfusion accurately.
For the model, this study extracted 14 features from the physiological signals
and used an ensemble approach combining extreme gradient boosting and
random forest. The model was evaluated by a stratified five-fold cross-
validation: the detection accuracy and area under the receiver operating
characteristics were 92.7% and 0.977, respectively.
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1 Introduction

Blood volume, hematological values, and immune systems vary depending on various clinical
situations, which change the response to hypovolemia or hypoxia situations [1]. Thus, blood trans-
fusion must be carefully determined between its benefits and risks. For example, in adults, if the
hemoglobin level decreases below 10 g/dL, an increase in cardiac output or redistribution in the organ
may occur to improve oxygen transport capacity. In addition, it is known that the frequency and
type of transfusion abnormalities that may occur during the transfusion process are different due to
differences in underlying diseases [1,2]. According to the report from Korean Blood Safety Monitoring
System in 2021 [3], a total of 2,847 blood transfusion-related symptoms were reported; 1,675 cases of
febrile non-hemolytic transfusion reaction (FNHTR), 761 cases of an allergic reaction, 58 cases of
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transfusion-associated dyspnea, 37 cases of transfusion-associated hypotensive reaction, 18 cases of
transfusion-associated circulator overload, three cases of post-transfusion purpura, two cases of acute
hemolytic transmission reaction, two cases of transfusion-related acute lung injury, and one case of a
delayed serologic transfusion reaction. The FNHTR and allergic reaction accounted for 85.6% of all
blood transfusion-related symptoms.

Especially for trauma patients, blood transfusion is one of the critical management [4]. Pre-
transfusion testing is essential for safe blood transfusion, but in situations such as severe trauma
or massive bleeding, a delay in blood delivery in minutes has a specificity that causes sesecvere
consequences for patients. In these emergency cases, even if some pre-transfusion tests are omitted, the
risk of delayed blood transfusion and omission of pre-transfusion tests are comprehensively considered
as they may benefit the patients [5]. Therefore, the recipient’s vital sign is monitored during pre- and
post-transfusion in trauma patients with suspected or confirmed bleeding and used as a basis for
evaluating the transfusion-related adverse reaction. Most studies associated with variations of vital
signs by transfusion in previously published studies were case reports of non-traumatic subjects or
numerical values, including systolic blood pressure, diastolic pressure, pulse rate, and temperature
recorded in the monitor device [6–8]. Furthermore, several studies have been conducted to detect
blood transfusion, but most were limited to patients with gastrointestinal bleeding or bleeding as a
complication after specific surgery [9–11]. The numeric data is less continuous, and the difference in
measurement intervals for each study utilized is bound to include bias.

Recently, various studies have been conducted on the detection of hypovolemia [12–15]. A few
studies detected blood loss based on photoplethysmogram (PPG) waveforms via time-frequency spec-
tral analysis [12–14]. Another study detected surgical blood loss based on PPG waveforms and arterial
blood pressure (ABP) [15]. However, the previous studies collected data from anesthetized animals
from bleeding protocol or patients in a controlled environment rather than the actual bleeding or
transfusion. Machine learning is a very powerful utility for automating various decision-making tasks.
Machine learning models are now widely used in various fields, including authentication mechanisms,
drug response models, diagnosis, data prediction, and a broad range of medical applications [16–21].
Especially, machine learning in healthcare helps to simplify complicated diagnosis procedures. Given
the lack of data on changes in vital signs before and after blood transfusion, this study aims to collect
the physiological signals from blood transfusion patients in the trauma intensive care unit (TICU) and
to develop a machine learning model to detect the need for blood transfusion. For the signals, this study
considered electrocardiogram (ECG) waveform, PPG waveform, the values of diastolic, systolic, and
mean blood pressure, oxygen saturation (SpO2) value, and mean respiration. In addition, this study
extracted 14 features from the physiological signals for the machine learning model inputs.

The main contributions of this study can be summarized as follows. First, this study collected
40 blood transfusion patients based on a prospectively built TICU registry. Because it is difficult to
acquire physiological signals from patients in need of blood transfusion in the TICU, related studies
have not been actively conducted. The patient data were collected for four years (2019 to 2022) for this
study. Second, this study considered a variety of physiological signals for detecting blood transfusion
needs. Last, this study performed the feature importance analysis indicating the order of importance
among the features.

The rest of the paper is organized as follows. Section 2 describes patient data, feature extraction
from physiological signals, and the proposed ensemble approach. Section 3 presents the results of
the ranked feature importance and cross-validation results. In Section 4, the result interpretation and
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discussion are presented. Finally, in Section 5, this study concludes the paper with a summary and
addresses future work.

2 Methods

This study was approved by the institutional review board from Wonkwang University Hospital
(WKHU), Iksan, Korea (IRB No. 2020–12-024). This study waived the requirement for informed
consent as it used only deidentified data retrospectively collected as part of clinical practice. All
methods were performed by relevant guidelines and regulations.

Fig. 1 depicts a flowchart for the development and evaluation processes of the machine model to
detect the need for blood transfusion. First, this study considered the inputs as physiological signals
and collected the data in WHKU. The data were waveforms and numeric data. Subsequently, the
features were extracted from the data collected for machine learning model input variables. Thereupon,
the five different machine learning models were developed, after which the models were evaluated using
cross-validation.

Figure 1: Development and evaluation processes of the machine learning model to detect the need for
blood transfusion

2.1 Patients
This study has collected TICU patient data from 2019 to 2022 in WKHU. The patient data

includes real-time ECG and PPG waveforms, blood pressure, respiration, and SpO2. The patient data
were collected using Nihon Kohden and Philips devices in the TICU. The device yields numerical
data (heart rate, respiration, SpO2), and the other one produces waveform data, including ECG,
PPG, and blood pressure readings. This study measured the numerical data at 1-min intervals and
collected waveform data at 250 Hz. For the machine learning model to detect the need for blood
transfusion, this study considered the patients who received two units or more of packed red blood
cells (PRBCs) after admission to the TICU. Typically, one unit of PRBCs is approximately 350 mL
in volume, of which red blood cell (RBC) volume is 200 to 250 mL [6]. Initially, this study collected
727 patients and considered 40 patients satisfying the criteria. The reasons for the blood transfusions
are traumatic intracerebral hemorrhage, traumatic fracture and hemorrhage, traumatic hemothorax,
traumatic abdominal hemorrhage, traumatic gastrointestinal hemorrhage, traumatic intracerebral
hemorrhage and fracture, traumatic intracerebral and abdominal hemorrhage, and traumatic vascular
injury. The average values of TICU stay and the units of PRBC were 17.625 days and 3.718 units,
respectively. The patient information, including age, gender, PRBC transfusion volume, and reasons
for transfusion, is summarized in Table 1. The mean of PRBC transfusion was 3.718 on average. The
transfusion reasons were classified into eight categories. The most common cause of transfusion was
traumatic intracerebral hemorrhage (n = 16). The following common cause was traumatic fracture and
hemorrhage (n = 15). The other causes of transfusion were traumatic hemothorax (n = 1), abdominal
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hemorrhage (n = 2), gastrointestinal hemorrhage (n = 2), intracerebral hemorrhage and fracture (n =
1), intracerebral and abdominal hemorrhage (n = 1), and vascular injury (n = 1).

Table 1: Baseline characteristics of patients in dataset

n = 40

Age (mean ± std) 62.975 ± 18.304
Gender
Males (%) 26 (65%)
Females (%) 14 (35%)
TICU stay
Days (mean ± std) 17.625 ± 15.785
PRBC transfusion
Packs (mean ± std) 3.718 ± 2.151
Reason for transfusion
Traumatic intracerebral hemorrhage (%) 16 (40%)
Traumatic fracture and hemorrhage (%) 15 (37.5%)
Traumatic hemothorax (%) 1 (2.5%)
Traumatic abdominal hemorrhage (%) 2 (5%)
Traumatic gastrointestinal hemorrhage (%) 2 (5%)
Traumatic intracerebral hemorrhage and fracture (%) 1 (2.5%)
Traumatic intracerebral and abdominal hemorrhage (%) 1 (2.5%)
Traumatic vascular injury (%) 2 (5%)

2.2 Data
For the forty patient’s data, this study divided them into pre- and post-blood transfusion groups.

For the pre-blood transfusion group, 30-min data measured one hour after admission to the TICU
were used. For the post-blood transfusion group, 30-min data measured one hour before discharge
from the TICU were used. Fig. 2 illustrates the data grouping for pre- and post-blood transfusion.

Figure 2: Data grouping for pre- and post-blood transfusion

The 30-min data includes ECG waveform, PPG waveform, blood pressure, respiration, and
SpO2. In this study, each 30-min data was segmented into 30 1-min segments. Then, 1,200 pre-blood
transfusion segments and 1,200 post-blood transfusion segments were finally obtained for training and
testing machine learning models. Then, each segment includes seven 1-min vital sign data: 1-min ECG
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waveform, 1-min PPG waveform, the values of diastolic, systolic, and mean blood pressure (mmHg),
mean SpO2 (%) and mean respiration (per minute).

2.3 Feature Extraction
Given the physiological signals of ECG waveforms, PPG waveforms, non-invasive blood pressure

(NIBP) values, SpO2 values, and respiration values, this study extracted 14 features for the inputs of
machine learning models. The 14 features include four pulse transit time (PTT) related features from
ECG and PPG waveforms, four heart rate variability (HRV) related features from ECG waveforms,
three BP-related features from NIBP, and three additional features from PPG, SpO2, and respiration.
More specifically, this study first extracted four features from 1-min ECG and PPG waveforms:
mean of PTT-peak (mPTT-peak), variance of PTT-peak (vPTT-peak), mean of PTT-foot (mPTT-
foot), variance of PTT-foot (vPTT-foot) and variance of PPG peak amplitudes (vPPG-amp). Fig. 3
illustrates the five extracted features from 1-min ECG and PPG waveforms. PTT is the time measured
for the arterial pulse pressure wave to travel from the aortic valve to a peripheral site [21–23]. The
mPTT-peak represents the mean time interval between the R-peak of ECG and the pulse peak of
PPG. Similarly, the vPTT-peak represents the variance of time intervals between the R-peak of ECG
and the pulse peak of PPG. The mPTT-foot represents the mean time interval between the R-peak
of ECG and the pulse foot of PPG. Similarly, the vPTT-foot represents the variance of time intervals
between the R-peak of ECG and the pulse foot of PPG. For the vPPG-amplitude, the amplitude was
defined as the difference between the pulse peak and pulse foot within a cardiac cycle.

Figure 3: Extracted four features from ECG and PPG waveforms

Second, this study extracted four features regarding HR and HRV features from a 1-min ECG
waveform: mean HR (mHR), HRV metrics using a standard deviation of normal-to-normal (NN)
intervals (HRV-SDNN), HRV metrics using root mean squared successive difference (HRV-RMSSD),
and HRV metrics using a ratio of low frequency to high-frequency power (HRV-LF/HF). HRV is one
of the non-invasive methods to analyze the balance of sympathetic and parasympathetic activities
[24,25]. In addition, a few studies found that HRV is also associated with thalassemia, a blood
disorder that causes the body to have less hemoglobin than normal [21,26,27]. For the features of
the HRV time domain, this study used HRV-SDNN and HRV-RMSSD, which reflect the beat-to-beat
variance in HR and are widely used time domain measures to estimate the vagally mediated changes
reflected in HRV. The HRV-SDNN was calculated with a standard deviation of all the NN intervals
for each 1-min segment. The HRV-RMSSD was calculated with the root mean square of successive
differences between NN intervals. For the features of the HRV frequency domain, this study used
HRV-LF/HF indicating the amount of sympathovagal modulation of the instantaneous heart rates
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[22,25]. Frequency-domain HRV analysis utilizes a power spectral density curve and provides basic
information on power distribution across frequencies. In this study, the LF was calculated with the
total spectral power of all RR intervals with frequencies ranging from 0.04 to 0.15 Hz, and the HF
was calculated with the total spectral power of all RR intervals with frequencies ranging from 0.15 to
0.4 Hz. The low ratio reflects parasympathetic dominance while the high ratio reflects sympathetic
dominance.

Third, this study extracted three features from NIBP: mean diastolic BP (mBP-dias), mean
systolic BP (mBP-sys), and mean of mean arterial BP (mBP-mean). A few studies observed that BP
is associated with transfusion [23,28]. Last, this study considered the variance of PPG amplitudes
(vPPG-amp), mean of SpO2 level (mSpO2), and mean respiration. The full 14 input features and their
statistical summary is presented in Table 2.

Table 2: Statistical summary of features from vital signals
Vital signal features Pre-transfusion Post-transfusion Total p-value

PTT information mPTT-peak (ms) 0.4518 ± 0.1328 0.5064 ± 0.0917 0.4791 ± 0.1172 <0.001
mPTT-foot (ms) 0.2963 ± 0.0678 0.2819 ± 0.0870 0.2891 ± 0.0783 <0.001
vPTT-peak (ms) 0.0200 ± 0.0233 0.0113 ± 0.0209 0.0157 ± 0.0225 0.004
vPTT-foot (ms) 0.0229 ± 0.0244 0.0119 ± 0.0212 0.0174 ± 0.0235 <0.001

HR and HRV
information

mHR (bpm) 110.1169 ± 16.5514 102.3463 ± 10.9634 106.2316 ± 14.5596 <0.001
HRV-SDNN (ms) 102.6394 ± 176.3186 119.683 ± 499.543 111.1612 ± 374.4941 0.475
HRV-RMSSD (ms) 130.9007 ± 271.7169 147.649 ± 603.684 139.2750 ± 467.9527 0.574
HRV-LF/HF (%) 1.5160 ± 2.8489 1.9536 ± 3.8587 1.7348 ± 3.3969 0.043

Blood pressure mBP-dias (mmHg) 81.0041 ± 13.0863 72.1562 ± 19.9054 76.5801 ± 17.4081 <0.001
mBP-sys (mmHg) 128.5213 ± 17.8944 123.7505 ± 24.5682 126.1359 ± 21.6132 <0.001
mBP-mean (mmHg) 98.2779 ± 14.1271 88.5051 ± 21.1398 93.3915 ± 18.6228 <0.001

Others vPPG-amp (mV) 6.0633 ± 8.2941 4.6100 ± 8.7131 5.3366 ± 8.5329 0.007
mSpO2 (%) 95.3428 ± 11.9937 94.8093 ± 11.4658 95.0761 ± 11.7298 0.475
mRespiration (/min) 19.2617 ± 3.7959 22.4746 ± 18.1005 20.8682 ± 13.1692 <0.001

2.4 Model Training and Cross-Validation
Based on the 14 extracted features, this study first performed data standardization, a common

requirement for training data for machine learning algorithms. The standardization changes the data
distribution of each variable with a mean of zero and a standard deviation of one using the equation:

Datastandard = Data − mean(train)

SD(train)
, (1)

where mean(train) and SD(train) are the mean and standard deviation of each variable in the training
dataset, respectively.

This study proposed an ensemble approach combining extreme gradient boosting (XGBoost) [29]
and random forest (RF) [30] for detecting the need for blood transfusion. For the model selection, this
study separately trained XGBoost, RF, gradient boosting machine (GBM) [31], light gradient boosting
machine (LGB) [32], and adaptive boosting (Adaboost) [33], and found the best hyperparameters.
Subsequently, this study selected the top three models and investigated all combination models.
Thereafter, this study chose the XGBoost-RF combination, which outcomes are with soft voting. For
training and evaluation, this study used a grid search approach. The data set (n = 2,400) was randomly
shuffled and partitioned into five equal folds in a stratified manner. Of the five-folds, a single fold was
retained as the validation data set for testing the model, and the remaining four folds were used as the
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training data set. The process was then repeated five times, with each of the five folds used exactly once
as the validation data. In the model using XGBoost, the optimal hyperparameters were the maximum
depth of 10, the learning rate of 0.1, and the number of tree estimators of 50. For random forest,
the optimal hyperparameters were the number of tree estimators of 50, the learning rate of 0.1, the
maximum depth of 10, and balanced class weights. The implementation and analysis of the machine
learning models were performed using NumPy (version 1.17), Scikit-learn (version 0.24.2), Pandas
(version 0.24.2), Matplotlib (version 3.1.0), XGBoost (version 0.90), and LightGBM (version 3.3.0).
For training the data, this study used a machine equipped with an intel core i5 8400 octa-core, DDR4
32 GB RAM, and NVIDIA GeForce GTX 1080 Ti 11 GB GPU.

2.5 Performance Evaluation
To evaluate the performance of our model for detecting pre-blood transfusion, this study used

accuracy metrics of sensitivity, specificity, accuracy, recall, precision, and F1 score. TP represents the
samples belonging to this class and correctly classified; TN represents the samples belonging to the
class and misclassified; FP represents the sample that does not belong to the class and is classified as
the class; FN represents samples that do not belong to the class and are classified as not belonging
to the class. The sensitivity confirms that a prediction is positive and the subject requires blood
transfusion (positive). The specificity confirms that a prediction is negative, and the subject does not
need blood transfusion. The accuracy is the percentage of test samples correctly classified by the model.
The precision is calculated by dividing the true positives by the samples that were predicted as positives.
This study also included an F1 score in computing the harmonic mean of two scores to reflect the
trade-off between precision and sensitivity. Based on these components, the following metrics can be
calculated:

Sensitivity = TP
TP + FN

(2)

Specificity = TN
FP + TN

(3)

Accuracy = TP + TN
TP + FP + FN + TN

(4)

Precision = TP
TP + FP

(5)

F1 score = 2 × Precision + Recall
Precision × Recall

(6)

In addition, this study used the area under the receiver operating characteristics (AUROC). The
receiver operating characteristic (ROC) expresses the relationship between sensitivity and one minus
specificity. AUROC value is calculated from the area under the ROC curve.

3 Results

3.1 Stratified K-Fold Cross-Validation Results
Table 3 summarizes the stratified cross-validation results with comparison. Based on the stratified

five-fold cross-validation, our proposed model shows a sensitivity of 0.920 ± 0.010, a specificity of
0.934 ± 0.028, an accuracy of 0.927 ± 0.012, a precision of 0.933 ± 0.031, an F1-score 0.926 ± 0.013
and an AUROC of 0.977 ± 0.004. From the single model results from XGBoost, RF, GBM, LGB,
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and Adaboost, this study found the top three models: XGBoost, RF, and GBM. Then, this study
considered all combinations of the three models and summarized the top three combination model
results in Table 3. It shows that the combination models provide higher accuracy metrics than the
single model. Among the combination models, the XGBoost and RF combination provided the best
accuracy metrics.

Fig. 4 shows ROC curves for comparison. This study plotted the curves by averaging the models
from five-fold cross-validation. Fig. 4a compares the curves when a single model was considered.
The results show that XGBoost provides the highest AUROC (0.974), followed by RF (0.965), GBM
(0.960), LGB (0.951), and Adaboost (0.816). Fig. 4b compares the curves when a combined model
from the top three models was considered. The results show that the AUROC results were similar, but
the XGBoost-RF combination provides the highest AUROC (0.977), followed by the XGBoost-RF-
GBM combination (0.975), and XGBoost-GBM combination (0.974). Note that the combination was
slightly better than XGBoost only.

Table 3: Stratified cross-validation results and comparison with different machine learning models

Model Sensitivity Specificity Accuracy Precision F1-score AUROC

XGBoost + RF 0.920 ± 0.010 0.934 ± 0.028 0.927 ± 0.012 0.933 ± 0.031 0.926 ± 0.013 0.977 ± 0.004
XGBoost + GBM 0.913 ± 0.015 0.925 ± 0.028 0.919 ± 0.010 0.923 ± 0.032 0.918 ± 0.012 0.974 ± 0.003
XGBoost + RF + GBM 0.917 ± 0.012 0.929 ± 0.020 0.923 ± 0.006 0.928 ± 0.024 0.922 ± 0.008 0.975 ± 0.003
XGBoost [29] 0.918 ± 0.015 0.930 ± 0.026 0.923 ± 0.010 0.928 ± 0.030 0.923 ± 0.012 0.974 ± 0.004
RF [30] 0.886 ± 0.031 0.915 ± 0.032 0.900 ± 0.014 0.912 ± 0.036 0.898 ± 0.018 0.965 ± 0.003
GBM [31] 0.893 ± 0.021 0.895 ± 0.026 0.894 ± 0.010 0.830 ± 0.032 0.893 ± 0.013 0.960 ± 0.002
LGB [32] 0.867 ± 0.035 0.887 ± 0.019 0.877 ± 0.009 0.885 ± 0.019 0.876 ± 0.013 0.951 ± 0.006
AdaBoost [33] 0.706 ± 0.061 0.729 ± 0.052 0.717 ± 0.003 0.733 ± 0.048 0.718 ± 0.040 0.816 ± 0.017

Figure 4: Mean receiver operating characteristic curves of k-fold cross validation: (a) XGboost, RF,
GBM, LGB, and AdaBoost, and (b) a combined model from the top three models: XGBoost-RF,
XGboost-GBM, and XGBoost-RF-GBM, respectively



CSSE, 2023, vol.46, no.2 2377

3.2 Feature Importance Analysis
Fig. 5 shows the results of the ranked feature importance analysis from the single top models

(XGBoost, RF, GBM), and the proposed combined model (XGBoost-RF). The results from XGBoost
show that the feature of vPTT-foot had the highest importance value, followed by vPTT-peak,
mRespiration, mBP-dias, and mPB-mean, shown in Fig. 5a. They indicate that XGBoost emphasized
the information on PTT, respiration, and BP to detect the need for blood transfusion. The results
from RF show that mBP-sys had the highest importance value, followed by mPTT-peak, mPB-mean,
mBP-dias, and vPTT-foot, shown in Fig. 5b. They indicate that RF emphasized the information
on BP and PTT to detect the need for blood transfusion. Results from GBM show that vPTT-foot
had the highest importance value, followed by vPTT-peak, mRespiration, mBP-dias, and mPB-mean,
shown in Fig. 5c. They indicate that GBM emphasized the information on PTT, respiration, and BP
to detect the need for blood transfusion. Regarding the proposed ensemble model, the results from
the combination of mBP-sys had the highest importance value, followed by mBP-dias, vPTT-foot and
mPB-mean, shown in Fig. 5d. They indicate that the ensemble model emphasized the information on
BP and PTT to detect the need for blood transfusion. On the other hand, HRV-LF/HF, vPPG-amp,
and HRV-RMSSD rarely contributed to the detection model.

Figure 5: Results of the normalized feature importance analysis from (a) eXtreme Gradient Boosting
(XGBoost), (b) random forest (RF), (c) gradient boosting machine (GBM), and (d) the combined
model of XGBoost and RF
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4 Discussion

This study presented an ensemble model combining XGBoost and RF to detect the need for
blood transfusion. The cross-validation results showed that the model provided sensitivity of 92.08%,
specificity of 93.4%, accuracy of 92.7%, precision of 92.6%, F1 score of 92.6%, and AUROC of 0.977.
Regarding the single model, RF provided the best AUROC value, followed by GBM, and LGB.
When considering the combination among the top three models, our model combining XGBoost
and RF provided the best AUROC value, followed by the three-model combination (XGBoost, RF,
and GBM) and the two-model combination (XGBoost and GBM). Overall, the ensemble model
with XGBoost and RF provided the highest accuracy over all accuracy metrics such as sensitivity,
specificity, accuracy, precision, F1-score, and AUROC. This study has the following contributions.
First, this study collected 40 blood transfusion patients based on a prospectively built TICU registry
from 2019 to 2022 in WKHU. Second, this study considered physiological signals such as ECG
waveforms, PPG waveforms, NIBP values, SpO2 values, and respiration values. It then extracted
four PTT-related features from ECG and PPG waveforms, four HRV-related features from ECG
waveforms, three BP-related features from NIBP, and three additional features from PPG, SpO2,
and respiration. Third, this study investigated the prediction performance from the state-of-the-art
machine learning models and found the best combination among them. Fourth, the contribution of
each feature could be confirmed using feature importance analysis. Last, this study found the best
ensemble model to provide the best performance: XGBoost and RF combination.

The ensemble approach is the process of using multiple related- but different analytical models
and then combining the results into a single score to improve the accuracy of predictive analytics and
data mining applications. The XGBoost model has recently dominated the applied machine learning
algorithms for its efficiency and accuracy. As a gradient boosting, new models are created that predict
residuals of prior models and then are added to make the final decision. When the new models are
added, a gradient descent algorithm is used to minimize the loss. A gradient descent algorithm is used
to update weights in neural networks. However, regarding gradient boosting, the gradient descent
algorithm is used to optimize the boosted model predictions. That is, gradient boosting is to find the
best loss function by taking lots of simple functions corresponding to weak trees and adding them
together. Thus, the gradients are added to the training process by fitting the subsequently optimized
tree. The RF is also a commonly used machine learning algorithm, which combines the outputs from
smaller weak decision trees. The unique characteristic of RF is that many uncorrelated weak models
operating as a committee will outperform any of the strong individual models. Regarding the accuracy
of blood transfusion need detection, our ensemble model yielded the highest detection accuracy
compared with other models, including GBM, LGB, Adaboost, and their possible combination
models. This study performed a stratified 5-fold cross-validation against overfitting and found the
best hyperparameters with a grid search against underfitting. The cross-validation generates multiple
mini train-test splits. For each split, this study partitioned the data into k folds (k = 5), and iteratively
trained the algorithm on k-1 folds while using the remaining fold as the test set. In the grid search, this
study changed the values of the maximum depth, the learning rate, and the number of tree estimators
for both XGBoost and RF, and found the best hyperparameters.

In addition, to investigate the contributions of the extracted features, this study performed the
feature importance analysis. The results showed the feature of mBP-sys made the most significant
contribution to detecting blood transfusion needs. On the other hand, HRV-LF/HF, vPPG-amp, and
HRV-RMSSD contributed little. The feature importance value was calculated as the decrease in node
impurity weighted by the probability of reaching the node. The node probability was calculated as the
number of samples reaching the node was divided by the total number of samples. The node impurity
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was based on the Gini index, which measures the degree of a particular variable being incorrectly
classified when it is randomly chosen. This study also could consider entropy and classification error
for the impurity measures, but the results were the same.

Several traditional prediction models to detect the need for transfusion have been introduced
[34]. However, these models showed insufficient accuracy and did not incorporate continuous vital
signs. The expert trauma surgeon may have difficulties predicting significant hemorrhage [35]. Our
machine learning model would provide new guidance to excellent prediction models. Indeed, vital sign
monitoring could be applied to prehospital settings as well as emergency departments. Interestingly,
part of the results demonstrated that the top six features contributing outcomes were related BP and
PTT: mBP-sys, mBP-dias, vPTT-foot, mBP-mean, mPTT-peak, and vPTT-peak. These results showed
that incorporating the information of BP and PTT improved the detection performances of the model.
The seventh top feature was mRespiration, which indicates that respiration is also one of the important
factors for detecting the need for blood transfusion. On the other hand, HRV features were ranked
low, which indicates a low contribution to the detection model.

5 Conclusion

This study developed an ensemble machine learning model to detect the need for blood transfusion
using physiological signals. For the model, this study has collected 40 blood transfusion patients based
on a prospectively built TICU registry, and considered physiological signals as the model input. For
the model input, this study extracted PTT-related features, HRV-related features, BP-related features,
and three additional features from PPG, SpO2, and respiration. Subsequently, this study investigated
the prediction performance from the state-of-the-art machine learning models and found the best
combination among them. Finally, this study found the best ensemble model to provide the best
performance: XGBoost and RF combination. Our performance in detecting the need for blood
transfusion is overall accurate and may be helpful for healthcare providers, especially in the field of
trauma surgery and care. Though our model demonstrated high accuracy in detecting the need for
blood transfusion, several limitations should be considered. First, our model was trained using data
from a single TICU medical center. In addition, the sample size is small. For the data selection, this
study considered only the patients who received two units or more of PRBCs after admission to the
TICU. Due to the restriction, this study could use only 40 of 727 patient data. Furthermore, this study
validated the proposed model using a stratified five-fold cross-validation. Next, our data included
patients from Korea only. Thus, this study should extend to upgrade the model with more datasets
comprising more diverse subjects. To overcome the generalization issues, it may be necessary to validate
our model using external datasets, such as data from various medical institutions. In addition, this
study needs to consider more variables for the model input. Finally, this study needs to consider several
conditions that require blood transfusion, such as chemotherapy treatments, blood loss, severe anemia,
bleeding disorders, pregnancy, and autoimmune disorders.
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