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ABSTRACT

Background. A deep convolutional neural network (DCNN) model that predicts the degree of arteriovenous fistula (AVF)
stenosis and 6-month primary patency (PP) based on AVF shunt sounds was developed, and was compared with various
machine learning (ML) models trained on patients’ clinical data.
Methods. Forty dysfunctional AVF patients were recruited prospectively, and AVF shunt sounds were recorded before
and after percutaneous transluminal angioplasty using a wireless stethoscope. The audio files were converted to
melspectrograms to predict the degree of AVF stenosis and 6-month PP. The diagnostic performance of the
melspectrogram-based DCNN model (ResNet50) was compared with that of other ML models [i.e. logistic regression (LR),
decision tree (DT) and support vector machine (SVM)], as well as the DCNN model (ResNet50) trained on patients’ clinical
data.
Results. Melspectrograms qualitatively reflected the degree of AVF stenosis by exhibiting a greater amplitude at
mid-to-high frequency in the systolic phase with a more severe degree of stenosis, corresponding to a high-pitched
bruit. The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis. In predicting
the 6-month PP, the area under the receiver operating characteristic curve of the melspectrogram-based DCNN model
(ResNet50) (≥0.870) outperformed that of various ML models based on clinical data (LR, 0.783; DT, 0.766; SVM, 0.733) and
that of the spiral-matrix DCNN model (0.828).
Conclusion. The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis and
outperformed ML-based clinical models in predicting 6-month PP.

LAY SUMMARY

Auscultation is an effective method of screening arteriovenous fistula (AVF) stenosis through the presence of
high-pitched bruit, but it is also subjective and qualitative. This study investigated the feasibility of an
auscultation-based deep learning (DL) model for predicting the precise degree of AVF stenosis and 6-month primary
patency of AVF. Our auscultation-based DL model successfully predicted the degree of AVF stenosis observed in
angiography, and performed better than models constructed using patients’ clinical data in predicting 6-month
primary patency.
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INTRODUCTION

An arteriovenous fistula (AVF) is the preferred type of access
in patients undergoing hemodialysis [1]. Stenosis frequently
causes AVF dysfunction and requires repeated percutaneous
transluminal balloon angioplasty to establish patency [2, 3].
However, primary patency (PP) rates for AVF are reported to be
72% at 6 months [4] and improved patency has been reported
with endovascular intervention.

Auscultation performed using a stethoscope is an effective
method of screening for AVF stenosis, as the presence of steno-
sis can be detected through the sound of abnormal blood flow,
referred to as high-pitched bruit. The latest guidelines by theNa-
tional Kidney Foundation Kidney Disease Outcome Quality Ini-
tiative [5] also recommend regular physical examination, which
includes auscultation, by health practitioners with moderate
quality of evidence.

However,while auscultation is non-invasive, simple and con-
venient, without the need for expensive equipment or skilled
operators as compared with Doppler ultrasound (DUS), diagno-
sis based on AVF shunt sound can be subjective. Moreover, even
a trained practitioner cannot quantify the severity of stenosis
based on bruit alone, which makes it difficult to assess whether
AVF qualifies for endovascular or surgical treatment based on
bruit.

Recently, technical advances have allowed the recording of
auscultation using a digital stethoscope by electronic intensi-
fication of sound and sharing of recorded sound via Bluetooth
transmission [6]. Sound feature extraction, pattern recognition
and building of efficient learning pipelines using artificial intel-
ligence (AI) have allowed machine learning (ML) algorithms to
detect abnormalities in the sounds of certain organs such as the
lungs [7, 8], and these techniques have already been adopted by
digital stethoscopes [9, 10].

In regards to AVF, a few studies have explored the use of
ML algorithms to analyze AVF shunt sounds [11, 12]. While Ota
et al. previously classified shunt sounds using a convolutional
neural network (CNN), the categories of shunt sounds were not
evaluated in relation to the degree of stenosis [11]. Wang et al.
[12], also developed amodel that binomially classifies AVF shunt
sounds into stenotic and non-stenotic AVF. However, they used
a radial basis function network, the use of which has waned
because of the advent of CNN, and evaluated the stenosis us-
ing DUS, which is known to be inferior to digital subtraction
imaging (DSA) in detecting the stenosis of the venous outflow
tract [13]. Overall, no study has fully investigated the perfor-
mance of the ML algorithm in quantifying the degree of AVF
stenosis from shunt sounds or its performance in predicting the
6-month PP.

Previously, we successfully developed an auscultation-based
melspectrogram deep CNN (DCNN) model for predicting the
presence of significant (≥50%) AVF stenosis [14]. The objec-
tive of this pilot study was to evaluate the feasibility of the
auscultation-basedmelspectrogram DCNNmodel for predicting
the precise degree of AVF stenosis and 6-month PP. In addition,
performance of the auscultation-based melspectrogram DCNN
model in predicting the 6-month PP was compared with that of
various ML-based clinical models derived from patients’ clinical
data.

MATERIALS AND METHODS

Study patients

This single-center, prospective study was approved by the in-
stitutional review board of Severance Hospital (2020-2715-009).
Patients with dysfunctional autologous AVFs referred for percu-
taneous transluminal angioplasty (PTA) were assessed for eli-
gibility. Dysfunctional AVF was defined as (i) alterations in the
pulse; (ii) failure of the fistula to collapse when the arm is ele-
vated; (iii) inability to achieve the target dialysis blood flow; and
(iv) prolonged hemostatic time [5]. Informed consent was ob-
tained from all the patients. The patient inclusion criteria were
as follows: (i) presence of native AVF at least 60 days before the
procedure that had been used for dialysis for at least 8 of 12 ses-
sions during a 4-week period, ensuring fistula maturity; and (ii)
≥50% stenosis documented on the fistulogram. The exclusion
criteria were as follows: (i) thrombosed AVF; and (ii) age below
18 years. Forty end-stage renal disease patients were recruited
from November 2020 to August 2021, and study patients were
from a previous study [14]. The flowchart of the study is shown
in Fig. 1. Information on DSA, PTA and quantification of stenosis
in DSA images is provided in the Supplementary data.

Recording of AVF shunt sounds

AVF shunt soundswere recorded by placing awireless electronic
stethoscope (Stemoscope, Hulu Devices, San Diego, CA, USA) on
top of the venous access 1–2 cm distal to the anastomosis site
for 10–15 s. Shunt sounds were recorded before and after PTA,
and saved as “.wav” audio-file. A total of 80 AVF shunt sounds
(40 before PTA and 40 after PTA) were recorded. The data un-
derlying this article will be shared on reasonable request to the
corresponding author.

Data preprocessing and feature extraction

Since the length of each audio file varied owing to manual
recording, the audio file was trimmed and padded to a length
of 6 s using the Python library Librosa [15]. A melspectrogram
was used for feature extraction, as it is one of the most widely
used methods for audio-data representation [16, 17]. To obtain
the melspectrogram, an audio file was first mapped from the
time domain to the frequency domain using a short-time Fourier
transform (STFT) with a window length of 25 ms and a stride
length of 10 ms. The frequency was then converted to mel-scale
and amplitude-to-color dimensions by mel-filters to generate a
melspectrogram, which represents the short-term power spec-
trum of the sound. Each melspectrogram was normalized and
resized to a resolution of 128 × 128 with three channels on the
X-axis,Y-axis and the color representing the time, frequency (Hz)
and magnitude of amplitude, respectively.

Data augmentation

The synthetic minority over-sampling technique (SMOTE) al-
gorithm [18] was used to generate synthetic melspectrograms
from existing neighboring melspectrograms to best represent
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Figure 1: Study flow chart.

real-world data that may be obtained in a clinical setting, which
were then augmented or over-sampled 25 times to build the
DCNN model to predict the percentage of AVF stenosis. Addi-
tionally, they were augmented 60 and 20 times for melspectro-
grams of patients without and with 6-month PP, respectively, to
build the DCNN model predicting the 6-month PP (Fig. 2).

DCNN structure

In this study, we employed widely used CNN architectures,
including VGG16 [19], ResNet50 [20], DenseNet201 [21] and Effi-
cientNetB5 [22] to build regression models to predict the degree
of AVF stenosis. Two fully connected layers using a rectified lin-
ear unit (ReLU) as the activation function were added after the
Conv-pool layers with 2048 and 2048 neurons, and two dropout
layers (rate = 0.5) were also added for regularization and to
avoid overfitting of the model after the first and second dense
layers. Finally, for binary classification, a final layer with one
neuron, using the softmax activation function, was added. The
DCNN models were initialized from the ImageNet weights and
compiled with mean square error (MSE) as a loss function and a
root mean square propagation (RMSprop) [23] optimizer with a
learning rate of 0.0001. Themodels were trainedwith batch sizes
of 24 and 200 epochs, respectively. AVF shunt sounds obtained

before PTA and after PTA were used to construct “pre-AVF” and
“post-AVF” models, respectively. Each dataset was randomly
divided into training, validation and test sets using split ratios
of 70%, 10% and 20%, respectively (Fig. 2A). Among the four
CNN architectures used to predict the degree of “post-AVF”
stenosis, the best CNN architecture was selected for predicting
the 6-month PP based onmelspectrograms of AVF shunt sounds
obtained after PTA. The split ratio used to predict the degree of
AVF stenosis was also used to predict the 6-month PP (Fig. 2B).
Gradient-weighted class activation mapping (Grad-CAM) [24]
was used to produce visual explanations for decisions from the
DCNN models.

Implementation

All codes were written and run on Google Colab (https://colab.
research.google.com, n.d.), which provides 12GB of RAM and an
NVIDIA Tesla K80 GPU. Python 3.10.4 was used along with the
Python libraries Numpy, Pandas, Scikit-learn, Tensorflow and Keras.

Data acquisition

To construct clinico-demographic models for predicting 6-
month PP based on patients’ clinic-demographic and laboratory

https://colab.research.google.com
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Figure 2: Study flow chart for (A) CNN model predicting the degree of AVF stenosis; (B) CNN model predicting 6-month PP from AVF shunt sound; and (C) CNN model

predicting 6-month PP using feature mapping (i.e. spiral-matrix) of patients’ clinical data.
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findings (fromnow on “clinicalmodels”), patients’ baseline char-
acteristics including age, sex, chronic kidney disease etiology,
comorbidities, type and location of AVF, previous PTA history,
and laboratory results were obtained from electronic medical
records.

Construction of clinical models

Before constructing clinical models, visual exploration of data
was performed using two dimensionality reduction techniques:
principal component analysis (PCA) and t-distributed stochastic
neighboring entities (t-SNE); the former focuses heavily on linear
algebra, while the latter is a probabilistic technique [25].

Clinical models for predicting the 6-month PP have been de-
veloped using logistic regression (LR), decision tree (DT) [26], and
support vector machines (SVM) [27]. In addition, a DCNN model
(ResNet50) was trained using a spiral-matrix-arranged patient’s
clinicodemographic and laboratory findings [28]. In the case of
LR, binary LR with backward elimination was used to determine
the predictors of 6-month PP. DT, a hierarchical model with de-
cision rules used to predict outcomes from a set of input vari-
ables, was trained using a maximum depth of three layers and
the importance of the features was calculated. For SVM, a type
of supervised ML algorithm was used to classify data points by
maximizing the margin between classes in a high-dimensional
space, and 3-degree polynomial clinical data was used to train
the binary SVM classifier. For the LR, DT and SVM models, the
clinical data of a total of 40 patients was used to construct the
models and contingency tables.

For spiral-matrix-arranged clinical data (from now on “spi-
ral matrix”), we constructed a 6 × 6 matrix of patients’ numer-
ical clinical data and converted NumPy array data into Python
Imaging Library grayscale images. Images were then augmented
60 times for patients without 6-month PP and 20 times for pa-
tients with 6-month PP for the normalization of the imbalanced
dataset. For these images, width and height shift, shear, and
zoom with a range of 0.2 and “nearest” fill mode were used. The
best CNN architecture used for predicting 6-month PP based on
melspectrogram was also used for model prediction based on a
spiralmatrixwith training, validation and test split ratios of 70%,
10% and 20%, respectively (Fig. 2C).

Evaluation metrics

Four standard metrics were used to evaluate the proposed
method for predicting the degree of AVF stenosis: mean absolute
error (MAE), MSE, root-mean-square error (RMSE) and R-squared
value (R2). In brief, MSE is the average square value between the
true and predicted values; RMSE is the percentage difference be-
tween the true and predicted values; and MAE is the percentage
difference between the predicted values.

The performance of the proposed model in predicting 6-
month PP was evaluated using a confusionmatrix, precision (i.e.
positive predictive value), accuracy, recall (i.e. hit rate, sensitiv-
ity or true positive rate), F-1 score, and area under the receiver
operating characteristics curve (AUROC).

Statistical analyses

The Mann–Whitney U test was used for continuous variables,
and the χ2 or Fisher’s exact test was used for categorical vari-
ables.All statistical analyseswere performed using Google Colab
or SAS software (version 9.4) software (SAS Institute, Inc.). Sta-
tistical significance was defined as a two-sided P-value of <.05.

RESULTS

Study patients’ characteristics

The patient characteristics are summarized in Table 1. Of the to-
tal patients, 22 (55%), 16 (40%) and 2 (5%) had brachial-cephalic,
radial-cephalic and brachial-basilic AVFs, respectively. The me-
dian degrees of AVF stenosis were 59% and 23% before and after
PTA, respectively. The median time between AVF formation and
PTA was 839 days; 70% of the total patients had received two
or fewer PTAs and 90% had received five or fewer PTAs, with a
median time of 386 days since the previous PTA. The technical
success rate was 100%; however, 25 (63%) patients showed <30%
AVF stenosis after PTA, while 30 patients (75%) showed 6-month
PP.

Performance of melspectrogram-based DCNN models
for predicting the degree of AVF stenosis

Four CNN architectures were used to construct DCNN models
to quantitatively predict the degree of AVF stenosis. The evalua-
tion metrics of the DCNN models are listed in Table 2. MAE and
RMSE were the lowest, and R2 values were the highest in the
following order: VGG16, ResNet50, DenseNet201 and Efficient-
NetB5, for both pre-AVF and post-AVF models. While all other
DCNN models showed an R2 ≥ 0.90, the R2 of the EfficientNetB5
pre-AVF and post-AVF models were 0.82 and 0.85, respectively.
While VGG16, ResNet50 and DenseNet201 showed comparable
MAE, MSE and RMSE, only the Grad-CAM heatmap of ResNet50
accurately reflected the areas in the melspectrogram where the
greatest difference in amplitude and frequency occurred as a
result of stenosis (Fig. 3). In contrast, Grad-CAM heatmaps of
VGG16 and DenseNet201 pointed to areas in the melspectro-
gram, irrespective of the degree of stenosis. Moreover, the MSE,
MAE and RMSE of DenseNet201 and EfficientNetB5 pre-AVF and
post-AVFmodels increased at epochs higher than the optimized
epoch, and thus showed signs of over-fitting (Supplementary
data, Figs S1 and S2). Thus, the ResNet50 model was considered
to best predict the degree of AVF stenosis, and the ResNet50 ar-
chitecture was used to construct the DCNNmodel for predicting
the 6-month PP.

Performance of clinical models for predicting 6-month
PP of AVF

The results of the χ2-test and univariate analysis of clinical pa-
rameters for the 6-month PP are summarized in Supplemen-
tary data, Tables S1 and S2. Patients without a 6-month PP
showed a higher number of previous PTA (4.5 vs 1.0, P = .008),
lower hemoglobin levels (g/dL) (11.2 vs 11.7, P = .038) and higher
low-density lipoprotein cholesterol levels (mg/dL) (85.2 vs 61.6,
P = .022) than those with a 6-month PP. Technical success (<30%
post-PTA stenosis) was not associated with the 6-month PP
(P = .715), and no difference in the degree of residual steno-
sis was found between patients with and without 6-month PP
(P = .873). In the multivariate LR analysis, the number of previ-
ous PTAs was the only significant predictor of loss of 6-month
PP (odds ratio 1.7, 95% confidence interval 1.1–2.6, P = .016)
(Supplementary data, Table S3). The sensitivity and specificity
of predicting 6-month PP based on the number of previous PTAs
are shown in Supplementary data, Table S4. Cases with more
than two previous PTAs showed a highest Youden index of 0.53,
with a sensitivity of 70% and specificity of 83.3%.
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Table 1: Clinico-demographic characteristics of study patients.

Age (years)a 62.0 (53.0–69.8)
Sex

Male/female, n (%) 24 (60)/16 (40)
BMIa 22.7 (21.0–25.1)
Location of AVF, n (%)

Forearm 16 (40)
Upper arm 24 (60)

AVF type, n (%)
Brachial-cephalic 22 (55)
Radial-cephalic 16 (40)
Brachial-basilic 2 (5)

Location of stenosis, n (%)
Juxta-anastomotic vein 21 (53)
Cephalic arch 12 (30)
Cannulation zone 7 (18)

Median AVF stenosis (%) before PTA 59.1 (49.1–65.2)
Median AVF stenosis (%) after PTA 23.4 (15.1–36.4)
Median time between AVF formation date and PTA (days)a 839.5 (529.0–1351.5)
Median flow (ml/min) before PTAa 491.4 (246.2–772.9)
Median flow (ml/min) after PTAa 899.6 (654.9–1339.5)
Median follow-up period since PTA to last follow-up (days)a 450.0 (351.8–525.8)
Number (n) of previous PTAs, n (%)
n ≤ 2 28 (70)
2 < n ≤ 5 8 (20)
5 < n ≤ 8 2 (5)
8 < n 2 (5)

Median time since previous PTA (days)a 386.5 (170.0–791.3)
6-month PP, n (%) 30 (75)
CKD etiology, n (%)

Diabetic nephropathy 26 (65)
Hypertensive nephropathy 3 (8)
C1q nephropathy 2 (5)
RPGN 1 (3)
ADPKD 1 (3)
Unknown 7 (18)

Comorbidities, n (%)
Type 2 diabetes mellitus 26 (65)
Hypertension 26 (65)
Coronary artery occlusive disease 10 (25)
Hyperlipidemia 9 (23)
Heart failure 4 (10)
Peripheral artery occlusive disease 2 (5)

Smoker or ex-smoker 11 (28)

aThe data is presented as median values. Data in parentheses are 25th percentile and 75th percentile.
ADPKD, autosomal dominant polycystic kidney disease; BMI, body mass index; CKD, chronic kidney disease; RPGN, rapidly progressive glomerulonephritis

Table 2: Evaluation metrics for regression models.

VGG16 ResNet50 DenseNet201 EfficientNetB5

Pre-AVF Post-AVF Pre-AVF Post-AVF Pre-AVF Post-AVF Pre-AVF Post-AVF

MAE 0.018 0.011 0.028 0.043 0.044 0.037 0.059 0.066
MSE 0.001 0.000 0.001 0.003 0.003 0.002 0.005 0.007
RMSE 0.024 0.017 0.036 0.051 0.055 0.048 0.072 0.081
R2 0.981 0.993 0.956 0.940 0.896 0.947 0.820 0.845

Before using ML to construct a clinical model for predict-
ing the 6-month PP, the dataset was first visualized using PCA
and t-SNE techniques, but no clusters were visually observed
(Supplementary data, Fig. S3). Three ML techniques (LR, DT
and SVM) and spiral-matrix-based DCNN (from now on “spiral-

matrix DCNN”) were used to construct clinical models. The top
four important features of DT are shown in Supplementary data,
Fig. S4. Unlike the multivariate LR model, platelet count was the
most important feature, followed by the previous number of PTA,
prolongation time and serum blood urea nitrogen level.
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Figure 3: Regression plots for stenosis prediction based on melspectrogram using VGG16, ResNet50, DenseNet201 and EfficientNetB5 CNN models (A, C, E and G) and
gradient-weighted class activation mapping (Grad-CAM) calculated from the final 2D convoluted layers of VGG16, ResNet50, DenseNet201 and EfficientNetB5 CNN
models (B, D, F and H) used for stenosis prediction.

The receiver operating characteristic (ROC) curves of the LR,
DT, SVM and spiral-matrix DCNN (ResNet50) models are shown
in Fig. 4. The AUROC was highest in the following order: spiral-
matrix DCNN (0.828), LR (0.783), DT (0.766) and SVM (0.733).
Among the DCNN models utilizing the same ResNet50 architec-
ture, the performance of the melspectrogram-based model was
superior to that of the spiral-matrix-based model. The accuracy
of the spiral-matrix DCNNmodel in the validation set was lower

than that of the training set, whereas the loss of this model
was higher in the validation set than in the training set, thus
showing signs of under-fitting (Supplementary data, Fig. S5). In
contrast, the melspectrogram-based DCNNmodel for predicting
the 6-month PP of the validation set showed a similar level of
accuracy and loss as that of the training set at approximately
80 epochs (Supplementary data, Fig. S6). Moreover, at an epoch
>55, the performance of the melspectrogram-based DCNN
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Figure 4: (A) Receiver operating characteristic (ROC) curves of various ML models based on clinical features (binary LR, DT and SVM, respectively) and ResNet50 CNN

model based on spiral matrix from clinical features. (B) Contingency tables of various ML models based on clinical features including binary LR, DT and SVM. (C) ROC
curves of ResNet50 CNNmodel for 6-month AVF PP based onmelspectrogram. (D) Confusionmatrix of ResNet50 CNNmodel for 6-month AVF PP based on spiral matrix
from clinical features and from melspectrogram.

Table 3: Precision, recall and F-1 score of the ResNet50 CNN model based on the spiral matrix vs ResNet50 CNN model based on the
melspectrogram.

Precision Recall F-1 score

ResNet50 CNN model based on spiral matrix (i.e. clinical features) 0.82 0.73 0.77
ResNet50 CNN model based on melspectrogram 1.0 1.0 1.0

model surpassed that of the spiral-matrix DCNN model, with
an AUC of 0.870 (Fig. 4). Overall, comparing these two models,
the precision, recall and F-1 score of the melspectrogram-based
DCNN model outperformed those of the spiral-matrix DCNN
model (Table 3).

Correlation of melspectrogram pattern with the degree
of AVF stenosis and 6-month PP

With a more severe degree of AVF stenosis, the melspectro-
gram showed a greater magnitude of amplitude at mid-to-high
frequency, mainly in the systolic phase, corresponding to the
high-pitched systolic bruit. Thus,when comparing themelspec-
trogram of the stenotic AVF with that of the non-stenotic AVF,
differences in the melspectrogram were mostly apparent in the
magnitude of the high-pitched and low-pitched bruit. In pa-
tients with significant (≥50%) AVF stenosis without technical
success of PTA, the magnitudes of the high-pitched and low-
pitched bruits were similar. In contrast, in patients with sig-
nificant (≥50%) stenosis where technical success of PTA was

achieved the magnitude of the high-pitched bruit decreased,
while that of the low-pitched bruit remained similar or slightly
increased (Fig. 5). Furthermore, the Grad-CAM heatmap of the
melspectrogram-ResNet50 model highlighted the borders be-
tween the high-pitched and low-pitched bruits for predicting the
6-month PP (Fig. 5).

DISCUSSION

The proposed melspectrogram-based DCNN model successfully
predicted the degree of AVF stenosis. Of the four different CNN
architectures used to construct this model, the ResNet50 model
showed no signs of overfitting and predicted the degree of AVF
stenosis with a low RMSE (0.036–0.051) and a high R2 value
(0.940–0.956). Using AVF shunt sounds obtained after PTA, a
melspectrogram-based DCNNmodel for predicting the 6-month
PP was also constructed. This model outperformed any clinical
model constructed using conventional statistics (i.e. binary LR),
ML (i.e. DT and SVM) or spiral-matrix DCNN.
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Figure 5: (A–E) A 61-year-oldmale with brachiocephalic AVF: (A) DSA before PTA showing about 65.4% stenosis at cephalic arch, (B) melspectrogram of AVF sound before
PTA, (C) DSA after PTA showing about 53.7% stenosis at cephalic arch, (D) melspectrogram of AVF sound after PTA, (E) gradient-weighted class activationmapping (Grad-
CAM) calculated from the final 2D convoluted layers of ResNet50 CNN used for 6-month PP. This patient showed failed technical success and was referred for another
PTA within 6 months. (F–J) A 62-year-old male with radiocephalic AVF: (F) DSA before PTA showing about 55.7% stenosis at cephalic vein, (G) melspectrogram of AVF

sound before PTA, (H) DSA after PTA showing 13.7% stenosis at cephalic vein, (I) melspectrogram of AVF sound after PTA, (J) gradient-weighted class activationmapping
(Grad-CAM) calculated from the final 2D convoluted layers of ResNet50 CNNused for 6-month PP. This patient showed successful technical success andwas not referred
for another PTA within 6 months.

The high diagnostic performance of the melspectrogram-
based DCNN model for predicting the degree of AVF stenosis
suggests that the findings from the auscultation of AVF shunt
sounds correlates well with that of actual angiography. Quali-
tatively, the melspectrogram of a more stenotic AVF showed a
greater magnitude of amplitudes at mid-to-high frequency in
the systolic phase, which is consistent with a high-pitched bruit
accompanied by systolic accentuation. In contrast, melspectro-
grams of <50% AVF stenosis showed a greater magnitude of
low-pitched bruit. Except for EfficientNetB5, all other CNN ar-
chitectures adequately correlated melspectrograms to the de-
gree of AVF stenosis, with R2 ≥ 0.90. Previously, Glangetas et al.
proposed the idea of developing a portable autonomous stetho-
scope integrated with AI [29] that can be easily converted into
a smartphone accessory [30]. While this idea was first intro-
duced to classify lung sounds, using the proposed model, AVF
shunt sounds can be used to non-invasively monitor the degree
of AVF stenosis by general health practitioners, including dialy-
sis staff members, whomay not specialize in nephrology, vascu-
lar surgery or intervention.

Controversies still exist as to which clinical factors affect the
6-month PP. While age [31, 32], sex [33, 34] and comorbidities
such as diabetes [35] have been suggested as risk factors for loss
of patency, other studies [36–38] have reported conflicting re-
sults. These conflicting results make the accurate prediction of
the loss of PP challenging. In this study, the previous number of
PTA was a significant risk factor according to both multivariate
analysis and the DT classifier. This finding was consistent with
that of a previous study indicating that patients with a stenosis
andmore than one previous PTA underwent primary PTA signif-
icantly sooner than those who did not [39]. The simplest clinical
model of more than two previous PTAs showed a higher accu-
racy than either the DT or SVMmodels. In this study,whilemore
than two previous PTA showed the highest accuracy, more than
three previous PTAs showed 90% specificity for 6-month PP. This
result was similar to that of a previous study by Elramah et al.,
who reported a history of more than three previous PTAs to be

associated with diminished PP [40]. However, although this clin-
ical model may be statistically sound, the mere assumption of
primary failure based on the number of prior PTA can be dan-
gerous in clinical practice.

As an alternative method, the feasibility of a
melspectrogram-based DCNN model for predicting the 6-
month PP was explored. The melspectrogram-based DCNN
model successfully predicted the 6-month PP and outperformed
the clinical models, including the spiral-matrix DCNN model.
Grad-CAM heatmaps highlighted the areas in the melspectro-
gram corresponding to the borders between the high-pitched
and low-pitched frequency bruit. Thismay imply that the degree
of restoration in the magnitude of the normal low-pitch bruit
and persistence of systolic accentuation may be involved in
predicting primary failure. Although no difference in the degree
of residual AVF stenosis was noted between patients with and
without 6-month PP, unidimensional measurement of residual
stenosis on DSA images may be less sensitive to residual blood
flow turbulence that may be captured in the AVF shunt sound.

This study had several limitations. First, this pilot study in-
cluded a small number of patients, all of whom had venous out-
flow obstruction and underwent interventions by a single inter-
ventional radiologist, whichmay have contributed to a selection
bias. The primary focus of this study was to assess the feasibil-
ity of the DCNN model in predicting the degree of AVF stenosis
and 6-month PP. A subsequent study, which included patients
without AVF dysfunction, is underway to evaluatewhether these
models can be used to differentiate or screen patients in need
of intervention from those who do not. Second, because of the
paucity of AVF shunt sounds, the SMOTE algorithm was used to
generate a synthetic melspectrogram. Third, clinical data from a
small number of patients may have resulted in only a few statis-
tically significant predictors of 6-month PP and may have con-
tributed to the underestimated performance of clinical models.
Fourth, melspectrograms provide only one type of visual rep-
resentation of audio data, and for simplicity, the use of other
representations such as harmonic-percussive spectrograms or
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scattergrams have not been explored [41]. Fifth, DCNN mod-
els were not constructed for different AVF type and location of
stenosis due to the small number of patients. Lastly, measure-
ments fromDSAwere used as a reference instead of other imag-
ing modalities such as DUS, as DSA is the current gold standard
for assessing vascular stenosis [42].

In conclusion, the melspectrogram-based DCNN model suc-
cessfully predicted the degree of AVF stenosis and outperformed
ML-based clinical models in predicting the 6-month PP.
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