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Over the past decade, the advent of organoid technology 

has allowed production of laboratory-grown organ tissues 

as a model system for human biological studies. The use of 

human organoids has allowed researchers to learn a great 

deal about human biology and disease mechanisms [1]. 

Organoids are unique three-dimensional culture systems 

that are self-organized and similar to actual human organs. 

Human organoids represent human physiology rather than 

human-like animal models or two-dimensional culture 

systems [2]. 

Kidney organoids model the structure and function of 

nephrons, which are subdivided into functionally distinct 

portions, containing podocytes with proximal and distal tu-

bules [3–5]. Kidney organoids have been shown to recapit-

ulate genetic kidney diseases and acute kidney injury, such 

as cisplatin-induced toxicity [3,4]. Additionally, organoids 

generated from patient-derived induced pluripotent stem 

cells (iPSCs) have potential applications in pharmaceutical 

drug testing and molecular medicine [6]. Recently, proto-

cols for cost-effective bulk production of organoids have 

been developed and are well-suited for large-scale assays, 

such as drug screening and regenerative medicine [2,7]. 

In spite of the availability of kidney organoids, certain 

technical limitations are associated with the use of organ-

oids. Extended culture of kidney organoids may lead to 
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expansion of nonrenal cell types, including neuronal cells 

and myofibroblasts [7]. Additionally, patient-derived or 

genetically modified iPSCs exhibit a variable nature of dif-

ferentiation and low maturation efficiency. However, these 

limitations have been partly overcome using strategies 

to avoid immaturity or screen out unwanted maturation 

stages. 

A study by Park et al. [8] demonstrated that bright-field 

optical microscopic images could be used to assess the 

maturity of kidney organoids. They discriminated organ-

oids according to bright-field morphology and examined 

renal markers of differentiation using quantitative poly-

merase chain reaction (PCR). These results revealed that 

bright-field morphology has a high correlation with actual 

differentiation of organoids. The distinctive feature of this 

method is that analysis is performed in a living model. The 

existing methods such as immunofluorescence analysis, 

reverse transcription-PCR, and single-cell RNA sequenc-

ing analysis require destruction of cells in the organoids. 

Moreover, analysis of bright-field images can be performed 

in a relatively short time and can be performed at low cost 

in the laboratory because it is time-efficient and does not 

use expensive equipment.  

Because the analysis of bright-field images is subjective, 

the outcomes may vary by the observer. To overcome this 
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challenge, the authors adopted deep learning algorithms to 

objectively analyze bright-field images (Fig. 1). Advances in 

machine learning, especially deep learning, have allowed 

exploration, classification, and interpretation of patterns 

in biological images [9]. One of their typical tasks includes 

an unsupervised comparison of the features of collections 

of images by identifying changes in cellular morphology in 

imaging-based screening [10]. 

Park et al. [8] trained convolutional neural networks 

(CNNs) using bright-field images of kidney organoids on 

day 18 after differentiation and compared the best-per-

forming CNNs with a human-based classifier. They con-

cluded that DenseNet121 is most suitable for predicting the 

differentiation of kidney organoids. This model classified 

organoid images into useful (positive) and nonuseful (neg-

ative) groups. The results revealed that the CNN algorithm 

had higher accuracy and speed in classifying organoids 

than human experts. 

Park et al. [8] highlighted that a deep learning mod-

el could accurately validate kidney organoid maturity 

based on analysis of bright-field morphology. The use of 

bright-field images is a cost-effective and fast strategy for 

distinguishing suitable organoids. This noninvasive and 

nondestructive prediction method could also be applied to 

Figure 1. Conventional and deep learning-based methods to evaluate the maturity of kidney organoids. The deep learning-based 
method has advantages over conventional methods in the quality control of organoids in that it can reduce subjectivity and variability 
depending on observers. In addition, bright-field images can be obtained without destruction of organoids.
RT-PCR, reverse transcription polymerase chain reaction; scRNA-seq, single-cell RNA sequencing.
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standardize the quality control protocol of organoids and 

to high-throughput imaging analysis for drug screening. 

However, the current model has only been trained on 150 

images of “good” and “bad” kidney organoids, which is a 

relatively small scale. Therefore, its practical use remains 

challenging. Breakthrough improvements can be achieved 

by training with many annotated images, which would 

enable a more detailed classification than just positive or 

negative groups. Furthermore, using additional learning 

models and including images for quality control in publicly 

available datasets would be helpful for improving this tool. 

We can also expect that this deep learning algorithm is ap-

plicable to kidney organoids induced by other differentia-

tion protocols. 
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