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Introduction: Alzheimer’s disease (AD) is the most studied progressive

eurodegenerative disorder, affecting 40–50 million of the global population.

This progressive neurodegenerative disease is marked by gradual and

irreversible declines in cognitive functions. The unavailability of therapeutic

drug candidates restricting/reversing the progression of this dementia has

severed the existing challenge. The development of acetylcholinesterase

(AChE) inhibitors retains a great research focus for the discovery of an

anti-Alzheimer drug.

Materials and methods: This study focused on finding AChE inhibitors by

applying the machine learning (ML) predictive modeling approach, which is

an integral part of the current drug discovery process. In this study, we have

extensively utilized ML and other in silico approaches to search for an effective

lead molecule against AChE.

Result and discussion: The output of this study helped us to identify some

promising AChE inhibitors. The selected compounds performed well at

different levels of analysis and may provide a possible pathway for the future

design of potent AChE inhibitors.

KEYWORDS

Alzheimer’s disease, machine learning (ML), virtual screening, molecular dynamics
(MD), acetylcholinesterase (AChE)
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Introduction

Alzheimer’s disease (AD), a most common
neurodegenerative brain disorder, has affected more than 40–50
million worldwide (Prince et al., 2013, 2015; Wu et al., 2017;
GBD 2016 Dementia Collaborators, 2019). This degenerative
brain disease is characterized by various clinical signs, such
as a decline in cognitive function, and thinking abilities (Perl,
2010; DeTure and Dickson, 2019). First, documented more
than a century ago, the etiology of the ailment and pathology
of this dementia is still unclear (DeTure and Dickson, 2019).
Currently, there is no available treatment to restrict/reverse the
progression of this disease. The available therapeutic options
only help to improvise the cognitive symptoms (Rasmussen
and Langerman, 2019). This most common form of dementia
leads to a gradual cognitive impairment, which progresses
in the advanced stages (Tarawneh and Holtzman, 2012).
The current symptomatic therapeutics include memantine,
donepezil, galantamine, and rivastigmine (Yiannopoulou and
Papageorgiou, 2020). Among them, memantine is an N-methyl-
D-aspartate (NMDA) receptor antagonist (Olivares et al.,
2012), while the other three drugs are cholinesterase inhibitors
(ChEIs) (Parsons et al., 2013). AD causes a progressive loss of
cortical neurons at the central level, especially pyramidal cells
involved in higher cognitive functions (Serrano-Pozo et al.,
2011; DeTure and Dickson, 2019). From a molecular aspect,
it is a multifactorial disease which is characterized by various
cellular and molecular processes (Guo et al., 2020). The causes
of oxidative stress, neuroinflammation, protein aggregation, cell
cycle deregulation, and decreased level of acetylcholine are still
unknown (Basile, 2018).

As the “cholinergic hypothesis” suggests, the main factor
contributing to AD is the progressive degeneration of
cholinergic neurons (Hampel et al., 2019).

One of the most productive treatment approaches
is enhancing the acetylcholine (ACh) level, increasing
the brain’s cholinergic neurotransmission (Stanciu et al.,
2019). On the contrary, acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE) hydrolyzed ACh in the brain.
Among two cholinesterases (ChEs), AChE is 1013 folds more
active than BChE, which accounts for almost 80% of ACh
hydrolysis (Feng et al., 2017). Therefore the inhibition of AChE
becomes a promising therapeutic approach for treating AD.

The development of AChE inhibitors remains a major focus
of research for the discovery of AD drug (Mehta et al., 2012;
Dos Santos et al., 2018). The use of modern computer-aided
drug design (CADD) is one of the most prominent approaches
for accelerating the drug discovery process and reducing time
(Baig et al., 2016). CADD methods efficiently hunt for the
most suitable leads via database screening or generate an
entirely novel scaffold (Sliwoski et al., 2014; Baig et al., 2018).
Furthermore, it analyzes the leads for their interactive power
and stability by simulating the binding mode and affinity of

the system. The process is comparatively agile, save time, cost,
and efforts during the efficient discovery of new therapeutic
candidates.

This study utilized three machine learning (ML) approaches
and virtual screening to search for effective AChE inhibitors.
The combination of ML and molecular docking-based virtual
screening was applied to screen the Maybridge compound
database. The top-selected compounds were further evaluated
using the molecular dynamics (MD) simulation and analyzed
for their stability with AChE protein.

Materials and methods

Dataset

The molecular dataset with reported experimental IC50
activity against AChE was downloaded from ChEMBL (Gaulton
et al., 2012). Molecules with absolute values for biological
activity were filtered out. The dataset was further processed to
identify the unique molecules having no redundant, incomplete,
or chemically errant structures. To build the classification
model, all the molecules with IC50 activity values less than
or equal to 5 µM were treated as actives, while those having
activity values greater than 5 µM were treated as inactives.
To preclude the likelihood of data bias, we balanced out
the dataset by generating decoys on the directory of useful
decoys, enhanced (DUD-E) database (Mysinger et al., 2012).
Both active and inactive datasets were initially segregated in
smiles format (Kotsiantis et al., 2006). The molecules in the
dataset were standardized at physiological pH, and hydrogen
atoms were added. The molecules were then converted into
3D-structure using the Open Babel software (version 3.0.0)
(O’Boyle et al., 2011).

Descriptor generation

The standardized 3D MDL MOLfiles of the selected dataset
were used for molecular descriptor generation. An open-source
PaDEL software was utilized to calculate molecular descriptors
and fingerprints (Yap, 2011). A total of 1,444 1D and 2D
descriptors, 431 3D descriptors, and 881 PubChem substructure
fingerprints were estimated. Statistical analyses like ANOVA, the
Kruskal test, and a chi-square test in R packages were used to
reduce the chances of overfitting the descriptor feature selection.

Machine learning

The feature selection, ML model generation, and validation
were performed using Weka version 3.8.4 (Bouckaert et al.,
2010). The feature selection was done using CFS subset Eval
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(Attribute Evaluator); subsequently, the relevant features were
picked up by Best First search.

The entire dataset containing active and inactive categories
was split into train and test sets in a ratio of 30:70 randomly.
We used three different algorithms, namely, random forest
(Schonlau and Zou, 2020), support vector machines (SVM)
(Chang and Lin, 2011), and multilayer perceptron (MLP) (Taud
and Mas, 2018) for building ML models.

All the models built were validated for their performance
using a test group of molecules. The models were ranked
according to the Matthews correlation coefficient (MCC)
(Chicco and Jurman, 2020), the best-performing algorithm was
selected. Subsequently, the selected model was further used
for screening the Maybridge database. The database was also
preprocessed to contain the descriptor information required
for screening purposes. Finally, we filtered out the molecules
predicted to be over 90% active.

Molecular docking

The structure of human AChE in complex with Donepezil
was extracted from the RCSB, PDB ID: 4EY7 (Cheung et al.,
2012). Donepezil was redocked within the binding site of AChE
using the CCDC Gold software package (Verdonk et al., 2003).
The binding orientation of the redock and crystal confirmation
of Donepezil within the active site of AChE was compared. The
molecules screened from the ML were filtered further against
AChE using the molecular docking approach. The top molecules
were selected based on their piecewise linear potential (PLP)
fitness scores.

Molecular dynamics simulations

The top five high-scoring molecules in complex with AChE
were subjected to MD simulation studies to evaluate their
binding stability. GROMACS (version 2020.04) was used to
perform the MD simulation of all the selected complexes
(Abraham et al., 2015). A cubic box with margin radius
of 10 Å was selected for solvation with TIP3P solvent
model. The system was treated with CHARMM27 force field
(Vanommeslaeghe et al., 2010). Ligand topology was generated
at the SwissParam web server (Zoete et al., 2011). The
system was neutralized using sodium ions and chloride ions.
The complex box was energy minimized using the steepest
descent minimization algorithm, keeping at constant force
for 50,000 steps. Isothermal and isochoric equilibration was
done using particle-mesh Ewald for long-range electrostatics.
Isothermal and isobaric equilibrations were carried out using
particle-mesh Ewald followed by a production run of 500 ns.
The biophysical parameters for proteins and ligands were
calculated using the initial starting structure as a reference
frame.

Results

Data processing and model building

A total of 2,538 unique molecules reported against AChE
were selected from the ChEMBL database. The dataset was
segregated into 2,037 active (IC50 ≤ 5 µM) and 501 inactive
molecules (IC50 > 5 µM). Imbalance data can seed a biased
input data load, leading to a faulty model and therefore,
1,536 DUD-E inactive decoys were generated to rule out
experimental parti pris. The PaDEL software created 1,024
MACCS and PubChem physicochemical property fingerprints
for 2,037 active and an equal number of inactive small molecules
as an input data for modeling.

The ML quantitative structure-activity relationship (QSAR)
model generated using three different approaches- namely,
random forest, support vector machine, and multi-layer
perceptron. The characteristic validation terms for comparing
different models in terms of their predictive power and
robustness are given in Table 1. The random forest model
displayed the best performance for accuracy, precision, recall,
F-measure, MCC, and receiver operating characteristic (ROC)
area among the three models. The Mathews coefficient of
correlation value for the RF model was 0.85, the highest among
the three models.

Internal 10X cross-validation was performed, and the data
regarding true positives, true negatives, false positives, and false
negatives for the confusion matrix, which is reflective of the
classifier’s quality parameters, are illustrated in Figures 1A–
C.

The ROC plot was generated for the truly predicted positive
classes among all actual positive classes and the incorrectly
predicted negative classes among all actual negatives. The RF
binary classifier’s performance was found to have the highest
area under the ROC curve (AUC) of 0.97 (Figures 1D–F).
Collectively, the RF model achieved the best for all the validation
terms; hence, it was selected for further ligand-based virtual
screenings studies.

Ligand-based virtual screening

The model generated was used to screen the Maybridge
library of 51,775 molecules. The library consists of highly active
molecules, and we intend to identify novel and potent AChE
inhibitors. The ML screening eventually spotted 922 molecules
with a prediction score of above 90%.

Molecular docking

The selected 922 molecules were further evaluated using
the docking-based virtual screening approach. These molecules
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TABLE 1 Evaluation of machine learning models (RF, SVM, and MLP).

Accuracy Precision Recall F-measure MCC ROC area

Random forest 94.1056 0.942 0.941 0.941 0.846 0.976

Support vector machine 90.0532 0.900 0.901 0.900 0.734 0.863

Multi-layer perceptron 93.1232 0.932 0.931 0.932 0.820 0.960

FIGURE 1

(A–C) Confusion matrix for the RF, SVM, and MLP models. (D–F) ROC curve for the performance of binary class models.

TABLE 2 The ChemPLP binding scores of the reference inhibitor drug
and the best predicted active molecules.

Molecules ChemPLP score

Donepezil −102.7

Compound 1 (42362) −123.99

Compound 2 (48151) −122.25

Compound 3 (34544) −121.32

Compound 4 (19300) −119.49

were docked using the CCDC GOLD software within the
active site of the AChE enzyme to evaluate the binding affinity
along with Donepezil, an approved AChE inhibitor. The top
four scoring molecules, viz. 42362 (Compound 1), 48151
(Compound 2), 34544 (Compound 3), and 19300 (Compound
4), were selected based on their PLP Fitness score (Table 2 and
Figure 2).

All four identified molecules had an elongated chain-
like structure with different moieties attached to the central
frame. We further performed MD simulation, and free
energy calculation to establish their stability within the
protein’s active site.

The selected molecules showed better docking scores than
the reference drug (Donepezil), indicating their higher binding
affinity. The selected molecules showed a strong interaction
with the AChE active site residues. The results are promising
and suggest an appreciable probability of them acting as a
potential AChE inhibitor molecule transcending the current
therapeutic drugs.

Compound 1 had the highest interaction affinity score
of −123.99, followed by Compound 2, Compound 3, and
Compound 4. These hits are symmetrical, having a similar
heterocyclic aromatic nucleus in their chemical structures.
A known challenge to all inhibitors for neurological diseases
such as AD is the ability to cross the blood–brain barrier
to inhibit AChE (Michalska et al., 2000). This makes it an
essential characteristic requirement for any AD drug candidate
(Michalska et al., 2000). Compound 2 has a naphthalimide
moiety that confers a unique physicochemical characteristic that
allows it to cross biological membranes easily.

An MD trajectory analysis was also performed for the four
identified molecules and the reference inhibitor (Donepezil)
to evaluate the stability and consistent interactions with the
AChE protein. The root-mean-square deviation (RMSD) was
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FIGURE 2

Stick representation of the 2-dimensional structure of the top four selected molecules in ligand-based virtual screening.

FIGURE 3

Biophysical simulation analysis of the complexes. Root-mean-square deviation (RMSD) plot of AChE in complex with (A) Donepezil, (B)
Compound 1, (C) Compound 2, (D) Compound 3, and (E) Compound 4; RMSF plot of AChE in complex with (F) Donepezil, (G) Compound 1,
(H) Compound 2, (I) Compound 3, and (J) Compound 4.

TABLE 3 Variations of the total Gibbs free energy of the molecules
analyzed in the study of molecular dynamics.

Molecules Poisson Boltzmann–1GTOTAL
(differences: complex–receptor–ligand)

Donepezil −27.73 ± 4.03

Compound 1 −30.97 ± 2.41

Compound 2 −50.44 ± 1.06

Compound 3 −25.21 ± 1.96

Compound 4 −23.50 ± 2.47

calculated separately for the ligand and the protein for the
entire dynamics time to analyze the thermal fluctuations
(Figures 3A–E). The mean value of RMSD was approximately

0.2 Å for the AChE-Donepezil, and its value decreased to
∼0.17 Å in the later part of the dynamics. Compound 3 was
slightly unstable until 100 ns, which was later stabilized with
high amplitude (2 Å) for the remaining time. For Compounds
1, 2, and 4, the RMSD consistently remained stable throughout
the simulation with an average RMSD of 0.23 Å.

Residues with higher atomic variations impart instability,
making the ligand diffuse away from its initial binding site.
We identified root-mean-square fluctuations (RMSFs) for the
proteins in all the complexes (Figures 3F–J). The residual RMSF
values were found to be similar for all the complexes in the
study. Protein residues 75, 76, 121, 292, 294, 295, 339, and
340 positioned in the interacting vicinity of Donepezil have no
significant fluctuation.
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FIGURE 4

(A–D) 2D projection of the trajectory allocation for the motion of the proteins in complex with (A) Donepezil, (B) Compound 1,
(C) Compound 1, (D) Compound 3, and (E) Compound 4 in the essential subspace.

Furthermore, we applied the molecular mechanics Poisson-
Boltzmann surface area (MMPBSA) approach to determine
Gibbs free energy of binding (Genheden and Ryde, 2015). It
is a valuable equation to understand physiological interfaces,
describing the distribution of electrical potential in solution in
the normal direction for a charged surface (Yap, 2011). Table 3
shows the binding free energy value of the selected compounds
using the simulation trajectories.

We found that Donepezil has a 1G value of −27.73 ± 4.03,
which is higher than Compounds 1 and 2. The energy
attained a constant value after ∼120,000 ps of dynamics.
Molecule 48151 displayed the lowest 1G value (−50.44 ± 1.06)
transcending Donepezil.

Principal component analysis

To mark out the significant atomic motions in proteins,
we carried out principal component analysis (PCA) on the
simulation trajectories (David and Jacobs, 2014; Khan et al.,
2021). We identified and evaluated the most prominent
eigenvectors and analyzed the average trajectory (Mazanetz
et al., 2014). We extracted the projection from the top six
eigenvectors for the PCA of AChE bound with Donepezil
and four high-scoring hits. The trajectory suggested different
atomic motions during the simulation. The 2D projection
of the trajectories in the essential subspace is projected
in Figures 4A–E. The results showed that Compounds
1 and 2 bound structure of AChE occupied a common
conformational space, indicating higher complex structural
stability.

We inspected the trajectories extracted by averaging the
ensembles after attaining stability to get more insight into
the binding interaction (Figures 5A–E). Compound 1 has a
central benzo di-succinimide moiety. It is identically attached to
two dimethylethylbenzene groups on both sides. The molecule
exhibited some crucial stabilizing interactions with the amino
acid residues on the active site of AChE. The oxygen atom of the
benzo di-succinimide ring consistently formed hydrogen bond
interactions with S292 and D73 residues. In addition to it, the
hydroxyl group of the dimethylethylbenzene interacted through
a hydrogen bond with Y336. The benzyl ring in the central
moiety was found to interact with Pi-Pi stacking interaction to
the aromatic ring of the W285 on the P-site of the AChE protein.
The molecule showed an appreciable binding affinity to the
AChE protein with binding free energy better than Donepezil
(Figure 5B). Compound 2 has a centrally located piperazine
ring. The moiety is attached to the fused benzopiperidine-
dione from both sides at the amino position via an ethyl
bridge. The oxygen atom of the benzopiperidine-dione moiety
was found to interact with imidazole side chain nitrogen of
H446 and with hydroxyl group of Y123. While the second fuse
benzopiperidine-dione moiety had hydrogen bond interaction
with the backbone nitrogen of S292. These bonds were found
consistent throughout the simulation period (Figure 5C).

Compound 3 has a central inorganic urea which has its
amine group attached to the aromatic benzylic pyridine and
benzylic chlorobenzene one one side. While the second amide
group on the central moiety is attached to the benzene group
with a long and heptane chain attached. The molecule is
bonded to the active site residues predominantly via sandwich
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FIGURE 5

Conformation of (A) Donepezil, (B) Compound 1, (C) Compound 2, (D) Compound 3, and (E) Compound 4 in the AChE protein active site
(ribbon representation) showing intermolecular interaction.

pi stacking type hydrophobic interaction with W85. A hydrogen
bond between the hydroxyl group of Y123 and the amide
nitrogen atom on the central core of the molecule was very
consistent throughout the simulation period (Figure 5D).
Compound 4 consists of a 4-pentoxy benzoic acid attached
to the fluorene group. A hydrophobic n-pentane chain was
attached to the fluorene moiety. The molecule has a 1G value,
relatively higher than the reference molecule, Donepezil. The
molecule was found to fit deep along the pocket with its long
pentane chain lying along the hydrophobic patch at the end of
the protein binding pocket. It was found to interact with Y340,
W285, and Y71 residues (Figure 5E). The molecule possessed
a long aromatic chain-like structure and due to this structural
characteristic, it developed dominant Pi, Pi-Pi stacked, Pi-
Sigma, and Pi-alkyl-type interactions with the protein.

Discussion

Alzheimer’s disease is a chronic progressive
neurodegenerative disorder and one of the most studied
diseases (Kirkitadze et al., 2002). Prevailing AD therapeutics
work to relieve symptoms and delay the progression (Duraes

et al., 2018). In this study, we targeted AChE to modulate the
ACh level in the brain.

The protein has four isoforms with almost similar
sequences. The shortest one is 526 amino acids long, while the
other three have 603, 614, and 617 amino acids, respectively. The
mature part of the protein starts after 31 signal peptides. The 3D
structure is composed of a beta sheet made up of 12 beta strands
surrounded by alpha helices on both sides. The structure is
compact. The active site is deep and surrounded by residues with
stable regular secondary structure orientation. Y103, W117,
G152, Y155, E233, S234, W317, S324, V325, F326, Y368, F369,
Y372, H478, and G479 are active site residues dictating the
binding interactions at the active site. A deep tunnel-shaped
binding pocket is acidic in nature. Donepezil, an AChE inhibitor,
is a widely used drug in treating AD and its mechanism of
action is very clear (Shintani and Uchida, 1997). We identified
AChE inhibitors through the ML predictive modeling approach,
an integral part of the novel drug discovery process to prevent
cholinergic neurons from degeneration (Vamathevan et al.,
2019; Dara et al., 2022). Ligand-based drug design methods
that employ quantitative descriptor information of a known
chemical structure with an identified biological activity to form
an ML model are cost-effective method to develop novel lead
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molecules (Baig et al., 2016; Neves et al., 2018; Selvaraj et al.,
2021).

We used three different ML algorithms (random forest,
support vector machine, and multi-layer perceptron) to build
classification models. Y-scrambling test, k-fold cross-validation,
and k-holdout validation were performed on the activity dataset
to rule out the fortuitous results during modeling. The random
forest model was the best-identified method against the AChE
enzyme. The statistical parameters such as accuracy, precision,
recall, F-measure, MCC, and ROC values were highest for the
RF model. The model was used to screen the Maybridge library,
and we identified the top four scoring molecules. These ML
leads were then evaluated for tier-two validation. The identified
molecules and the reference drug molecule were subjected
to molecular docking and MD simulation to compare their
potency against the target enzyme. The PLP score for binding
to AChE for Compound 1 (−123.99), Compound 2 (−122.25),
Compound 3 (−121.32), and Compound 4 (−119.49) was
higher as compared to the known drug, Donepezil (−102.7).

The docked pose and the crystal orientation showed that
the benzylic ring of Donepezil was involved in a hydrophobic
interaction with the amino acid residue W85, Y123, F337, Y340,
and Y336 (Figure 5A). The indanone ring showed a pi-stacking-
type interaction with the residue Trp 286. The RMSD values
for all four molecules throughout the simulation remained
stable, with their values around 2 Å, similar to Donepezil,
indicating that these compounds could be used as potential
AChE inhibitors.

The PCA showed no significant changes among the
complexes. Compound 4 showed a relatively high thermal
motion with states scattered in the broader conformational
space. Protein secondary structures were found to be stable
without any major conformation transition. These findings
suggest uniform packing and stability of the complexes.

The Gibbs free energy calculated is in agreement with
the previous results. Compounds 1, 3, and 4 have energies
comparable to the reference drug, while Compound 2 reflected
the binding free energy ∼1.8 times higher than Donepezil.

In this study, we proposed the four highly potent molecules
against AChE. The selected compounds performed well at
different levels of analysis in the scope of our findings.
A structured in vitro experiment can help confirm its potency
in inhibiting the AChE protein.

Conclusion

Alzheimer’s disease, a multifaceted neurodegenerative
disease with no available cure, has presented significant
challenges. Despite great scientific efforts, no major success
has been made in successfully treating this neurodegenerative
disorder. In this study, we have employed the ML approach
to deduce a ligand-based mathematical model. The model
was trained and tested on the experimental biological activity

bioassay data. Subsequently, the best model was employed to
screen the Maybridge molecular database for potent hits against
AChE. This study identified four high-performing AChE
inhibitors. These molecules showed more improved binding
affinity as compared to the known drug molecule. Furthermore,
we proposed that the identified molecules can act as a highly
active starting scaffold which may be further used and studied
for developing putative anti-AD drugs.
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