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The incidence and mortality rates of lung cancer are high worldwide, where non-
small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases.
Recent non-small cell lung cancer research has been focused on analyzing patient
prognosis after surgery and identifying mechanisms in connection with clinical
cohort and ribonucleic acid (RNA) sequencing data, including single-cell
ribonucleic acid (scRNA) sequencing data. This paper investigates statistical
techniques and artificial intelligence (AI) based non-small cell lung cancer
transcriptome data analysis methods divided into target and analysis technology
groups. The methodologies of transcriptome data were schematically categorized
so researchers can easily match analysis methods according to their goals. The most
widely known and frequently utilized transcriptome analysis goal is to find essential
biomarkers and classify carcinomas and cluster NSCLC subtypes. Transcriptome
analysis methods are divided into threemajor categories: Statistical analysis, machine
learning, and deep learning. Specificmodels and ensemble techniques typically used
in NSCLC analysis are summarized in this paper, with the intent to lay a foundation for
advanced research by converging and linking the various analysis methods available.
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1 Introduction

According to data published in the Cancer Journal for Clinicians (Sung et al., 2021), the
number of cancer patients worldwide has increased from 10 million in 2000 to 19.3 million in
2020. During this 20 years period, the number of incidences of lung cancer was the undisputed
number one type of cancer. The number of lung cancer patients in 2021 ranked second with
22 million, or 11.4% of all cancer patients. However, as lung cancer ranks first in mortality, it is a
disease that has a great impact on human society. Accordingly, various methods of research are
being conducted worldwide to elucidate growth mechanisms of lung cancer and develop
effective therapeutic agents. Research on non-small cell lung cancer (NSCLC) is predominant
among lung cancer types, as it accounts for 80 ~85% of all lung cancer incidents.
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In this paper, various artificial intelligence (AI) based
transcriptome analysis methods and predictive models are
investigated to provide future guidelines for more effective NSCLC
treatment development. NSCLC can be subdivided into squamous cell
carcinoma, adenocarcinoma, and large cell carcinoma, among which
squamous cell carcinoma and adenocarcinoma are most common.
Mutations are another important element in the study of NSCLC and
being able to accurately classify lung cancer types is essential in
selecting treatment options and identifying oncologic mechanisms.
This is because the targeted therapy or chemotherapy applied to lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)
patients are different (Coudray et al., 2018). In addition to the analysis
method of classifying lung cancer subtypes, detailed classification of
lung cancer mutations can also elucidate mechanisms and help derive
the most effective biomarkers (Zhao et al., 2015; Cohen et al., 2020).

These studies are based on next-generation sequencing (NGS)
analysis (De Luca et al., 2021). As research to elucidate these molecular
biological mechanisms has been actively conducted, various diagnostic
methods and new targeted therapies have become possible. With the
development of NGS technology, various genetic mutations have been
reported in patients with NSCLC. However, in actual clinical practice,
the test methods to determine the treatment policy for NSCLC
patients are limited to epidermal growth factor receptor (EGFR)
gene mutations and anaplastic lymphoma kinase (ALK) fusion
genes (Soda et al., 2007; Hida et al., 2017). Targeted therapy has a
high need for whole exome sequencing (WES) and whole genome
sequencing (WGS), which can explain the mechanism of resistance for
targeted therapies (Kruglyak et al., 2016). However, in the case of
immune-therapeutic agents that have been developed, analysis of the
expression and pattern of immune-related genes has become more
important than mutations secured through genome-wide analysis, so
research on translation analysis has emerged.

In recent years, research that enables direct clinical application by
applying a cancer prognosis (Han et al., 2019; Volckmar et al., 2019),
metastasis (Qi et al., 2017; Kamer et al., 2020; Kim et al., 2020; Tao
et al., 2020), and/or treatment response (Jiang et al., 2018) prediction
model has been in the spotlight. A representative example is a research
method in which a specific overexpressed RNA is discovered and
selected to be used as a targeted therapeutic agent in reference to the
nature of cancer, in which gene mutation is the main etiology.
Although the details will be described later, most studies aim at
discovering biomarkers to determine the overall survival (OS) as
the output (Yuan et al., 2017; Givechian et al., 2019; Xiong et al.,
2020). Although there are limits to accurate analysis of tens of
thousands of features per patient using various techniques, this is
the most widely used method in modern RNA-seq analysis research.

To help the RNA-seqeuncing (RNA-seq) analysis process, this
paper focuses on providing a guideline on various AI and
mathematical and statistical methods that can be used in extracting
effective RNA information and discovering biomarkers for NSCLC
patients. Various RNA-seq analysis methods, such as gene expression,
gene fusion, and mutation, have been applied in the past. In addition,
gene set enrichment analysis (GSEA) and pathway analysis have been
used in various medical fields to extract gene expressions. The
accuracy of the prognosis or symptom to be predicted varies
depending on the AI model used, and many approaches already
exist, which are difficult to distinguish the pros and cons.
Therefore, this paper investigates various RNA-seq analysis
methods using AI technologies in hope to help future clinical

research. For example, a binary prediction model that classifies and
clusters a patient’s tumor mutation from raw data of the RNA-seq can
be constructed, or a regression model that predicts whether a patient
will recur or not can be designed.

In this paper, RNA-seq analysis using AI technologies are divided
into three categories, which are statistical analysis, machine learning,
and deep learning. Statistical analysis is effective in finding out which
gene groups have significant values. Statistical techniques help to
visualize the analyzed result as a volcano plot or heatmap to
identify the tendency. Various test techniques are included by
applying existing statistical analysis methods used in other fields
(Sun et al., 2018; Passiglia et al., 2019). The regression method is
represented by the Cox Proportional Hazard model (Cox-ph model)
approach (Sun et al., 2022). Survival analysis based on the Cox-ph
model are predominant. Tools such as TIDE is a representative
example (Jiang et al., 2018). The cox-ph model is a method
extensively and generously used in NSCLC RNA-seq analysis and
is classified as a statistical analysis category because it is standardized
with a specific formula. Machine learning techniques are mainly used
for classification and prediction analysis. For example, subtypes of
NSCLC can be distinguished using SVM, or tumor mutations can be
clustered using logistic regression. Among advanced machine learning
techniques, representative schemes include supervised learning and
AutoEncoder with Cox regression network (AECOX) (Huang et al.,
2020), which discovers specific expression genes by combining models
(e.g., SVM and universal classification tools) to construct an
ensembled-model, and methods combining two or more machine
learning tools are under development. Deep learning-based analysis is
mainly used as a method of substituting a neural network into a
pipeline. For example, Cox-nnet (Travers et al., 2018) inserts a neural
network in front of the Cox-ph model, and DeepSurv (Katzman et al.,
2018) uses a neural network in the survival analysis. DCNet (Wang
et al., 2022) is a good model to classify subtypes of lung cancer.

2 RNA-sequencing analysis identified by
target

2.1 Preprocessing data for analysis

To properly use RNA-seq data, preprocessing is indispensable, as
the range of values varies according to the type of RNA-seq and
because gene expressions are different depending on the patient and
patient group. The order of the preprocessing RNA-seq data method is
slightly different depending on the nature of the RNA-seq data. First,
in the case of bulk RNA-seq data, differentially expressed genes are
derived through trimming, counting, and normalization. An
alignment process may be added after trimming, which is an
additional way to align data. Second, in the case of single-cell
RNA-seq data, Quality Control and Normalization are performed,
and the results are grouped through Clustering. After this, differential
expressed genes were obtained in each group. For more details on the
process, please refer to Figure 2B and Figure 6. Gene selection plays a
role in reducing the absolute amount of RNA-seq data to be analyzed
by extracting a specifically expressed gene mainly through machine
learning. Gene selection creates an environment in which bio-marker
discovery can be made easier by reducing the analysis time and
deriving more effective factors. In particular, genes are selected
through a classifier, such as a decision tree or support vector
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machine (SVM). As shown in Figure 1, by using the normalization
technique, which is often used in statistics, it is possible to unify the
data units and reduce the influence of the size factor. In addition, using
the ranking expression technique, it is possible to determine the
criteria for an appropriate data set by obtaining a differential
expression. Through this, the number of genes can be adjusted
according to the analysis goal and used for further detailed
analysis. Survival analysis is commonly conducted using traditional
statistical analysis methods rather than AI techniques. Prognostic
analysis uses various learning methods from machine learning and
deep learning, where recently, tumor microenvironment analysis
applying convolutional neural network (CNN) technology using
image data is being actively conducted.

2.2 Categorization of RNA-sequencing
analysis techniques

Research using RNA-seq can be subdivided according to various
purposes. Depending on the target, it is broadly classified into
classification and prediction in a wide range, but it can be
subdivided into biomarker, detection, survival analysis, etc. In the
predictive biomarker category, studies were also conducted to identify
immune checkpoint inhibitors (ICB) (Wiesweg et al., 2019) or to
identify the mechanisms of biomarkers that affect responsiveness to
immunotherapy (Jiang et al., 2018). Beyond simple elucidation of
biomarkers, technologies can be further subdivided based on research
that analyzes the prognosis of responsiveness to immunotherapy
(Auslander et al., 2018; Jiang et al., 2018; Kapil et al., 2018;
Althammer et al., 2019; Nikolas Kather et al., 2019; Fu et al., 2020;
He et al., 2020). There are also analysis methods that predict metastasis

(Qi et al., 2017; Kamer et al., 2020; Kim et al., 2020; Tao et al., 2020) or
identifies indicators related to recurrence after cure or treatment (Lu
et al., 2012; Galvez et al., 2020). Analysis of mutation patterns in lung
cancer (Zhao et al., 2015; Cohen et al., 2020) and prognostic prediction
(Han et al., 2019; Volckmar et al., 2019), which predicts the prognosis
of lung cancer patients differently from the previous prediction
category, are analyzed as targets, and survival analysis (Yuan et al.,
2017; Givechian et al., 2019; Xiong et al., 2020) can be classified as a
prognostic biomarker category. Subtypes of lung cancer can be
classified by applying ensemble machine learning tools with multi-
class classification capability. The process starts with an analysis
(Huang et al., 2017; Hsu and Dong, 2018) that classifies malignant
and benign based binary classification using various machine learning
techniques (Cai et al., 2015; Tian, 2017; Su et al., 2020; Huang et al.,
2021; Wang et al., 2022).

In connection with cancer classification analysis, AI techniques are
used to classify the reactive prognosis according to the type of surgery
or the patient group that distinguishes between malignant and benign
status. In this case, since there are two final analysis targets, machine
learning tools such as SVM or decision tree are suitable to use as they
are very effective in binary classification (Han et al., 2014; Peng et al.,
2015; Huang et al., 2017; Hsu and Dong, 2018; Reynders et al., 2018).
In addition, analysis based on gender, age, overall survival (OS), etc., is
also needed. In general, classifying cancer subtypes of NSCLC is
treated as a multi-group classification problem because there are
more than three groups to be distinguished (Cai et al., 2015; Tian,
2017; Su et al., 2020).

Prediction techniques are also very important as they help
estimate future prognosis based on surgery or treatment method
(Zhou et al., 2016; Ahmed et al., 2018; Han et al., 2019; Volckmar
et al., 2019; He et al., 2020). In addition, progression-free survival

FIGURE 1
Analysis pipeline according to bulk RNA-seq and single-cell RNA-seq from RNA-seq raw data. Bulk RNA-seq analysis is divided into two pipelines: raw
gene expression quantification (which leads to trimming, counting, and normalization) and differential gene expression analysis. Alignment is performed after
trimming to remove contamination from the sequenced data, and various tools used at this time are generally bowtie-based. Afterwards, the counting process
is performed to remove the biased sequencing data, and after normalization, the processed data goes through the final step of discriminating the
expressed gene through differential gene expression analysis. In single-cell RNA-seq analysis, processes such as trimming andmapping are batch-processed
in the quality control stage, and normalization is performed. After that, a clustering procedure to differentiate between similar cell types is essential. Then the
single-cell RNA-seq analysis workflow is completed with differential expression analysis.
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(PFS) analysis has been used since the 2010s to predict the recurrence
probability (Lu et al., 2012; Galvez et al., 2020). It is also possible to
rank treated patients by extracting expressed genes and analyzing
RNA based on how highly a specific treatment was responsive (Han
et al., 2019). Studies that have focused on survival analysis use various
criteria ranging from simply distinguishing between dead and alive
(Jefferson et al., 1997) to predicting the survival rate (Yuan et al., 2017;
Givechian et al., 2019; Xiong et al., 2020). Among these studies, RNA-
seq data has been used in survival analysis in many ways, which are
based on the various targets of classification. Analysis using only
numerical values of the RNA from a statistical point of view has been
performed by various researchers (Li et al., 2014; Conesa et al., 2016;
Afonso et al., 2019; Sharma et al., 2019). In (Byron et al., 2016), the
authors only use RNA-seq data in making survival predictions, where
the data was transformed to fit the format of clinical data.

2.3 Process of RNA-sequencing data analysis

After setting the analysis target, the overall process flow is
explained in the following. First, it is critical to pre-process the
data in accordance with the analysis module and decide if clinical
data will be combined. If the goal is to analyze a patient’s prognosis,

adding clinical data increases the accuracy. On the other hand, a
simple classification process that distinguishes between malignant and
benign NSCLC patient predictions can be conducted without clinical
data. Therefore, it is important to add or subtract data according to the
analysis target. Once the data is ready, it should go through a
normalization process. This process facilitates gene expression
analysis because each RNA has a different scale. For example, the
RNA normalization process includes fragments per kilobase of
transcript per million mapped reads (FPKM), reads per kilobase
per millions mapped reads (RPKM), and transcripts per million
(TPM). However, if the extracted RNA-seq data does not show a
significant difference in scale, the raw counts of RNA data itself can be
directly used.

2.3.1 Analysis pipeline of bulk RNA-sequencing
This procedure is a preparation step for analysis using FASTQ

from raw RNA-seq data. FASTQ is a text-based format to store all
quality (Phred) scores for each nucleotide expressed in ASCII code in
the adenine, guanine, cytosine, thymine (AGCT) biological sequence.
It can be divided into a technique to quantify and analyze gene
expression from RNA-seq raw data and a technique to analyze
differential gene expressions. First, considering the gene expression
quantification technique, it mainly proceeds to 1) Trimming, 2)

TABLE 1 Analysis methodology identified by target. Three categories of analysis methodology are identified based on by the target: analysis methods that identifies a
predictive biomarker according to the target of the analysis, identify biomarkers related to the prognosis of the patient, and classify the type of cancer.

Category Target Author and year of publication

Predictive Biomarker ICB Wiesweg et al. (2019)

Response to Immunotherapy Jiang et al. (2018)

Metastasis Qi et al. (2017)

Kim et al. (2020)

Kamer et al. (2020)

Tao et al. (2020)

Recurrence Lu et al. (2012)

Galvez et al. (2020)

Prognostic Biomarker Mutation Cohen et al. (2020)

Zhao et al. (2015)

Prognostic prediction Han et al. (2019)

Volckmar et al. (2019)

Survival Analysis Yuan et al. (2017)

Givechian et al. (2019)

Xiong et al. (2020)

Cancer Classification Malignant or Benign Hsu and Dong (2018)

Huang et al. (2017)

Cancer subtype Tian (2017)

Su et al. (2020)

Cai et al. (2015)

Huang et al. (2021)

Wang et al. (2022)
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Counting, and 3) Normalization. Trimming is the procedure of
removing contaminated or low-quality data from raw data. It is an
optional step, but the quality of the data increases when it is executed,
and the final analysis accuracy increases. Differentially expressed
genes (DEG) analysis is a process of extracting meaningful RNAs.
For this purpose, various test techniques can be used based on the
p-value and the fold change (FC) value. DEG analysis can be
performed with the Kaplan-Meier test using the log-rank test, or
DEG analysis can be performed through gene pathway analysis. As
shown in Figure 2A, the input data to be applied to the AI module
needs to be prepared through this process. The next step is to build a
learning module to apply the input data based on the analysis target,
which can be assisted by the methods presented in Table 1 and Table 2.
In AI analysis, the ratio of dividing the data for training, testing, and
validation are important. In general, the analysis performed is good
when the data is divided in a balanced form among the training and
test sets, and it is useful to use validation techniques such as cross-
validation. However, in addition to various validation methods and
test set split methods, genetic algorithm-based approaches also exist,
which are effective when the data is unbalanced. Genetic algorithms
help in selecting several solutions in advance and obtains the most
suitable solution over generations. If a genetic algorithm is applied to
spilt the data, the genetic algorithm can be used to appropriately divide
the training data set and the test data set so artificial intelligence
technologies can be effectively applied. When there is abundant
patient data, this is less of a problem, but in most cases, patient

data is limited, and the ratio of dividing the training, validation, and
test set is dependent on the data features and AI analysis algorithm.

After completing the previous three steps of Figure 2B, in the final
performance evaluation process, the performance of the area under
the curve (AUC) and receiver operating characteristic (ROC) curves
need to be analyzed. Or the ranking of RNA expressions through the
Sharpe value needs to be analyzed. These processes are summarized in
Figure 2 and Table 1. Through the analysis that actively utilizes
Table 2, the entire process of RNA-seq data analysis of NSCLC
patients can be confirmed.

2.3.2 Analysis pipeline of single-cell RNA-
sequencing

Until now, the transcriptome of a cell population has been studied,
but the precise results of the study are limited because the expression
patterns of each cell are different. Therefore, there is a limit to the
analysis to understand the cancer microenvironment in which various
types of cells exist only by bulk RNA-seq. A method for deconvolution
of the cell type ratio was developed from the bulk RNA-seq results
(Sun et al., 2022). But since this method requires significant reference
data, this increases the complexity even more, and therefore may need
to be verified in another way, which may be difficult in reality.
Accordingly, there was a demand to study cell interactions and
tissue functions through cell-level analysis, and as a part of this,
research on single-cell RNA-seq emerged. Single-cell RNA-seq
analysis can be largely divided into a pre-processing part and a

TABLE 2 Analysis methodology identified by AI technique. The statistical part includes analysis using simple mathematical models including test techniques and
regression represented by the Cox-ph model. AI techniques using big data can be divided into machine learning and deep learning. In the machine learning part, SVM
is mainly used, and the ensembledmodel with Decision Tree added is also increasing in frequency recently. In the Deep Learning part, research is actively underway by
adding neural networks to various models.

Category Model & algorithm Author and year of publication

Statistical Analysis Copy Number Variant (CNV) Zhao et al. (2015)

Kaplan-Meier, Log-rank Test Sun et al. (2018)

Gene-Expression Lu et al. (2012)

Cox-ph model Sun et al. (2022)

TIDE Jiang et al. (2018)

Machine Learning Ensembled-model Wiesweg et al. (2019)

SVM Zhou et al. (2016)

Cai et al. (2015)

Su et al. (2020)

LR Tian (2017)

Cai et al. (2015)

WGRFE Su et al. (2020)

AECOX Huang et al. (2020)

Deep Learning Neural Network Faraggi and Simon (1995)

Travers et al. (2018)

DeepSurv Katzman et al. (2018)

Jiang et al. (2020)

Huang et al. (2021)

Wang et al. (2022)
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downstream analysis part. In the pre-processing part, quality control is
performed first. Quality control in raw read is tested through various
methods to confirm sequencing fish, PCR artifacts, and
contamination. This is an essential step to remove outliers. In
simple terms, it can be said that it is the task of selecting data for
easy analysis. Data that has undergone quality control goes through
normalization, and then the pre-processing (for analysis) is finished.
Then by clustering similar references, differential expression analysis
can be performed. The data after this process is now ready to be
applied to machine learning tools.

3 RNA-sequencing analysis using
artificial intelligence techniques

RNA-seq analysis methods can be classified based on the data type
to be analyzed and the AI technique to be applied. Analysis methods
using AI can be divided into three categories: statistical analysis,
machine learning, and deep learning. First, statistical analysis
methods can be divided into test technique, proportional hazard
model, and regression. Test techniques can be subdivided into the
Kaplan-Meier test (Fu et al., 2020) and log-Rank test (Sun et al., 2018),
which are frequently used in survival prediction and deriving gene
expressions (Lu et al., 2012). A more advanced analysis method is the
regression method represented by the Cox-ph model. Survival analysis
based on the Cox-phmodel has shown a predominant performance, in

which TIDE is a representative example (Jiang et al., 2018). Statistical
analysis techniques are advantageous when the data set is small or
when the target to be analyzed is clear. For example, it is effective to
use statistical analysis when identifying the tendency in the presence or
absence of cancer recurrence. Second, in machine learning, supervised
learning and AECOX (Huang et al., 2020), which discovers specific
expression genes by combining models (e.g., SVM), universal
classification tools (to construct ensembled-models), and methods
combining two or more machine learning tools have been developed.
Machine learning techniques such as SVM, random forest and
decision trees are mainly used for classification and prediction,
which help distinguish the subtype of the NSCLC or the normal
and abnormal status. Machine learning algorithms show a good
performance in binary classification (Han et al., 2014; Peng et al.,
2015; Huang et al., 2017; Hsu and Dong, 2018; Reynders et al., 2018)
and multi-class classification (Tian, 2017; Su et al., 2020), where the
analysis method differs depending on the nature of the input data.
Depending on the raw-data and target classification domain, there are
various methods that can be applied from basic machine learning
techniques, which include SVM, logistic regression, artificial neural
network (ANN) (Khan et al., 2001), and AECOX (Huang et al., 2020),
which combines neural networks. Third, deep learning is a category of
machine learning that uses ANNs with multiple hidden layers (and
each hidden layer consists of more artificial neurons) to provide higher
levels of precision, classification, and estimations. Deep learning has
been used in AECOX models and regression models like Cox-nnet

FIGURE 2
The RNA-seq data analysis process. (A) Before the analysis of RNA-seq data. The pre-analysis part includes the conversion process to form the input data
into an appropriate format that can help in analyzing the RNA-seq data. Since the detailed tools used for processing and gene expression analysis are different
in single-cell RNA-seq and bulk RNA-seq analysis methods, they are indicated separately. (B) The learning process part after the analysis of RNA-seq data. In
accordance with the target to analyze the input data obtained in this way. It it beneficial to pre-process the data using various normalization tools again
and learn through the AI model.
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(Travers et al., 2018). In case the data set is small, deep transfer
learning can be applied, or a pre-trained model can be imported and
used in the analysis (Jiang et al., 2020). In the following, an overview of
AI models used in NSCLC research is provided.

3.1 Statistical analysis and simple regression

Medical practitioners who study cancer patients as well as NSCLC
mainly use the survival model. It is a statistical analysis method that

estimates the survival time from the start of treatment to death of a
patient (Kapil et al., 2018; He et al., 2020). However, since it focuses on
simple ‘death,’ it is an analytical method that has limitations in being
able to accurately analyze causal relationships. Regression techniques
include the Kaplan-Meier test, log-Rank test, and the Cox’s
proportional hazard (Cox-ph) model. The Kaplan-Meier test has a
disadvantage in that it cannot control its variables, whereas the Cox-ph
model enables variable control and is therefore most frequently used.
Among regression methods, Kaplan-Meier (Fu et al., 2020), log-rank
test (Auslander et al., 2018; Fu et al., 2020), and Cox-ph are most

FIGURE 3
Schematic workflow of analysis to classify a normal patient from an abnormal patient using deep learning and machine learning. The pre-processed
RNA-seq data is subjected to feature extraction using a neural network, and machine learning-based binary classification is performed using these features.
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frequently used, so they are briefly described in the following. Most
regression analysis algorithms use standard methods (e.g., p-value),
where it is possible to cluster patients based on a major classification
criterion. For example, regression is commonly used to divide the
overall survival rate, disease-free survival rate, and median survival
value into groups of patients who have undergone different treatment
methods and determine the significance of the survival rate between
the two groups.

3.1.1 Kaplan-Meier
In (Qi et al., 2017), the Kaplan-Meier method was used based on the

time of lung cancer surgery as the starting point to analyze the prognosis
of patients who underwent surgery for metastatic lung cancer. The
Kalman-Meier method (which is also called the product limit method)
is effective in calculating the interval survival rate (at each event point
during the entire study or analysis period) and finally calculates the
cumulative survival rate. Applying this method to the RNA-seq data set,
the survival rate can be calculated based on the occurrence of cancer. After
that, the data can be arranged in the order in which cancer patients were
observed, and the interval survival rate P(k) can be calculated based on the
ratio of the number of survivors in each interval. For example, if one
person dies during the observation period, the interval survival rate is (n −
1)/n, where n is the number of patients under observation. Finally, the
cumulative survival rate S(k) required for the Kalman-Meier test can be
obtained by sequentiallymultiplying the interval survival rate according to
Eq. 1, where Ns is the number of survivors up to period k and No

represents the number of observations up to period k

P k( ) � NS

NO
(1)

3.1.2 Log-rank test
The Kaplan-Meier test is an effective method for estimating the

interval survival rate and cumulative survival rate, the log-rank test is
effective in checking whether the difference in the survival rate
between two groups to be discriminated is significant. For example,
after using the Kaplan-Meier method, the log-rank test (applying the
criteria of p-value less than 0.05) is used to compare the survival rates

according to the disease-free survival period in (Qi et al., 2017). After
the survival curve is drawn using the Kaplan-Meier method, the log-
rank test plays a role in determining whether the groups have a
significant statistical difference. The log-rank test is most effective
when it is simply not possible to visually distinguish differences in
survival curves. For example, in some cases a group that appears to
have a relatively low survival rate may actually have a high survival
rate, which can be accurately confirmed using the log-rank statistical
test method.

3.1.3 Cox Proportional Hazard model
The Cox-ph model is the best-known method for screening

prognostic variables that have a significant effect on the survival rate
of lung cancer. In particular, the Cox-ph model is commonly used to
compare patients with any RNA factor in two patient groups. For
example, a group of patients with a high and low TGFB1 ratio has
been analyzed as a survival fraction over time in (Cohen et al., 2020). A
new biomarker can be estimated by selecting significant RNA groups
among multiple RNA groups using the Cox-ph model. Most RNA
sequence studies aim to calculate a significant biomarker candidate
group by using this proportional hazard model and set a standard
using the built-in p-value and fold change value. The previous Kaplan-
Meier test and log-rank test are non-parametric analysis methods because
they do not reflect the characteristics of the data. On the other hand, the
Cox-ph model can predict the survival period using a regression model
under the assumption that the survival time distribution (e.g., normal
distribution) of lung cancer patients exists. In addition, the Cox-phmodel
utilizes the hazard ratio (HR), where it assumes that the HR is always
constant. The Cox-ph model uses survival functions like Kaplan-Meier,
where a survival function expressed by S(t) represents 1 at first, and S(t)
would converge to 0 when infinite time has elapsed. Using a NSCLC
patient as an example, the Cox-ph model will have S(t) = 1 at the starting
point of observation. Through the survival function, it is possible to derive
the lifetime distribution function F(t), which represents the probability
that the observed event will occur within a specific time. By differentiating
the lifetime distribution function, it is possible to obtain the survival
density function f(t), which represents the event rate at a specific time. The
relation of S(t), F(t), and f(t) is expressed in Eq. 2.

FIGURE 4
Architecture of Cox-nnet. The neural network structure is composed of the input layer, one fully connected hidden layer, and an output Cox regression
layer. Finally, among many features of the patient, features related to prognosis are extracted.
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S t( ) � P T> t( ) � 1 − F t( ) � ∫
∞

0
f u( )du (2)

The hazard function H(t) uses the probability that an event will
occur at an arbitrary point in time h(t). The hazard function is based
on a conditional probability that represents the probability that an
event will occur for a case in which the event has not occurred until a
specific time. That is, the hazard function H(t) uses the probability
relation of h(t) = f(t)/s(t) and is defined in Eq. 3.

H t( ) � ∫t

0
h u( )du � −logS t( ) (3)

3.2 Machine learning

In the analysis of RNA sequencing of NSCLC using machine
learning, supervised learning techniques represented by SVM classify
subtypes of cancer, and regression models represented by LR are used
for survival analysis. Machine learning is used to assist decision-
making in clinical studies of various cancer types (including lung
cancer) and can be used with a combination of various other analysis
techniques (Huang et al., 2020). NSCLC related candidate RNAs with
high rankings can be derived from the RNA-seq data using pre-
processing techniques. In addition, by analyzing expression
differences, normal and abnormal lung adenocarcinoma (LUAD)
patient groups can be comparatively analyzed. For example, in (Cai
et al., 2015; Zhou et al., 2016; Su et al., 2020) a classifier for diagnosis of
LUAD using SVM is proposed where molecular markers are
discovered from this classifier.

Machine learning techniques do not stand alone. Machine
learning techniques use a combination of two or more techniques
depending on their purpose. In (Afonso et al., 2019), genes were
selected using the whole gene recursive feature elimination
(WGRFE) technique and then subtypes of NSCLC were classified
using SVM. If these ensembled models are properly combined, more

accurate results can be obtained. As shown in Figure 3, by applying a
classification model after analyzing with statistical analysis or deep
learning tools, modules such as WGRFE and SVM can be applied in
the last analyzing stage to assist the final criterion decision making.
The results show that the performance can be significantly improved
when machine learning techniques are used in conjunction with
other analysis techniques. After pre-processing the RNA-seq data to
extract the features, various techniques (e.g., statistical tools and
neural networks) can be applied. The next technique to apply
depends on the analysis target and the extracted features, where
Figure 3 can be used to help choose the final algorithm needed to
distinguish the abnormal and normal status as well as the level of
difference.

3.3 Deep learning

Deep learning based RNA-seq analysis has been in the spotlight
recently. Deep learning in the medical field has been mostly used for
pattern recognition and medical image processing. For example,
various imaging methods have been introduced to detect and
analyze cell tissues (Volckmar et al., 2019). This is a representative
method that can help reveal the origin of lung cancer, which applies
imaging the tissue of cells. In these studies, deep learning is used to
analyze the tumor’s microenvironment through comparative analysis
between the cancer microenvironment and surrounding cells. In
particular, deep learning CNN analysis on CT image data is widely
used (Ma et al., 2013; Su et al., 2020). In addition, non-image data has
been converted into image-like data such that CNN analysis can
applied (Arbour et al., 2021). Recently, research on survival prognosis
of cancer patients using deep learning has been actively conducted.
However, deep learning models are rarely used as a stand-alone
method in predicting a prognosis. The most widely used NSCLC
deep learning models include Cox-nnet, DeepSurv, and AECOX,
which are briefly described below.

FIGURE 5
Architecture of DCNet. Gene expression levels were considered to be input and output neurons in DCNet. The expression levels of marker genes and all
genes are used as input and output neurons, respectively. Finally, the encoder layer and latent layer of the neural network are transferred, and the activation
value of the latent layer indicates the abundance ratio of cells.
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3.3.1 Cox-nnet
Classification or prognostic prediction using the machine learning

techniques described above have meaning only in the final stage
analysis. Thus, research on combining the characteristics of deep
neural networks (DNNs) with regression models was attempted, and

an extension of the Cox-regression model using a DNN was proposed
in (Travers et al., 2018), which was named Cox-nnet. The
characteristics of Cox-nnet are explained in Figure 4. Cox-nnet is
used to make predictions, where it was first used in cancer survival
predictions. However, its simple model has a disadvantage in that it is

FIGURE 6
RNA-seq workflow of how to preprocess data and conduct analysis. The preprocessing section is divided into bulk RNA-seq and single-cell RNA-seq,
where each require quality control. In addition, differential gene expressions are derived to obtain data for analysis. In the Analysis section, the target is
classified into Predictive Biomarker, Prognostic Biomarker, and Cancer Classification, and analysis methods are sub-classified according to each purpose. In
addition, the necessary tools according to the data type are indicated in green for Statistical Analysis, orange for the Machine Learning techniques, and
blue for the me`thods using Deep Learning.
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difficult to apply when the dimension of the input data (i.e., number of
input data types) increases.

3.3.2 DeepSurv
DeepSurv is a multilayer perceptron model which consists of

hidden layers consisting of fully-connected non-linear activation
functions similar to the Faraggi-simon network consisting of a
single hidden layer with two or three nodes (Faraggi and Simon,
1995). DeepSurv uses a non-linear proportional hazard model, which
uses a neural network inside a Cox hazard model. DeepSurv includes
one or more hidden layers, weight decay regulation, and activation
functions such as an exponential linear unit (ELU) or a rectified linear
unit. The DeepSurv performance can be improved by adding hidden
layers to form a DNN so that the covariates of the first hidden layer of
the DNN are used as input to the Cox proportional hazard model. The
output of the DNN can be made to be a single node that estimates the
hazard function Hθ(x) parameter based on the DNN weight θ

(Katzman et al., 2018). DeepSurv can adjust the spacing of the
non-linear model distributions by adjusting the network output
nodes and can predict individual non-linear distributions for a
single data input. DeepSurv can be used in a variety of survival
analysis applications. Examples of this approach can be found in
many treatment recommendations, which is a medical application that
provides treatment recommendations based on a set of patient
observations.

3.3.3 DCNet
DCNet is an autoencoder-based deep learning model that

predicts about 400 cell types from a bulk RNA-seq dataset and
discovers marker genes (Wang et al., 2022). As presented in Figure
5, the DCNet model consists of a total of three layers: an input layer
corresponding to the marker gene, a hidden layer represented by the
cell type, and an output layer composed of TCGA gene data.
Therefore, it is possible to identify the relationship between a
marker gene and a cell and identify a TME-specific biomarker
through DCNet. DCNet can also be used for the purpose of
classifying cancer subtypes. However, as in other deep learning
models, the lack of data greatly affects the final performance, so to
prevent this, oversampling techniques were introduced to solve the
class label imbalance problem. In order to use the deep learning
model effectively, a sufficient amount of training data must be
secured. Then the insufficient part can be solved by using fine-
tuning techniques to update the weights of the network. The DCNet
model is meaningful in that it improves robustness and stability by
applying a deep learning-based framework to RNA-seq research
that uses simple machine learning or simple statical analysis
techniques.

4 Conclusion

Selection of a RNA-seq method to apply to NSCLC data depends
on the target of the analysis type, which may not be easy to select. To
assist this process, in this paper, various analysis methods depending
on the objective of RNA-seq are summarized in Table 1, and a
methodological approach guideline is presented in Figure 6. For
RNA-seq analysis of NSCLC patients, separate pipelines must be
used by dividing bulk RNA-seq and single-cell RNA-seq. There is no
big difference between bulk RNA-seq and single-cell RNA-seq in the

basic principle of analyzing RNA-seq. However, whereas bulk RNA-
seq analyzes the average value of whole cells, single-cell RNA-seq
outlines each cell separately and analyzes the average value of each
cell type. As shown in Figure 6, trimming to remove contamination
or low-quality data and subsequent quantification are performed
using various counting tools such as HTSeq. The sequence alignment
process is preemptively performed. Then the pre-processing of the
bulk RNA-seq can be completed by using DEseq2 or Limma to check
differential gene expressions. In single-cell RNA-seq, the quality
control process is carried out in units of 1 cell, where the information
obtained from several cells is well classified, the similar cells are
collected, and the clustering process is added, in which groups of
similar cells are grouped and analyzed. Differential gene expression
analysis is also performed in single-cell RNA-seq, and various tools
such as MAST are used in addition to DESeq2. One effective way to
analyze the subtypes of NSCLC patients would be to first cluster the
NSCLC patient data corresponding to each subtype and then divide
the RNA-seq data into different data sets. Using this as the input
data, a classification scheme can be selected based on the analysis
objective using Figure 6, and the data can be analyzed according to
the number of classes. As a result, RNA that affects the subtype of the
tumor can be extracted by sharp value-based ranking.

This paper investigates various AI analysis methods of RNA-seq
research and provides guidance on how to apply this in NSCLC
analysis and predictions. Although there are many papers on this
area, there is no known single dominant method on how to apply
systematic AI learning technologies in analyzing NSCLC RNA-seq
data. The best way to obtain the most accurate analysis result is to
select the research goal and the corresponding model properly, in
which Table 1 and Figure 6 can provide some guidance. Although
this paper is limited to NSCLC patients, it can be applied to other
cancer types, such as breast cancer or colorectal cancer, which will be
the focus of future research.
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