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Detection of acute thoracic aortic 
dissection based on plain chest 
radiography and a residual neural 
network (Resnet)
Dong Keon Lee 1,2,9, Jin Hyuk Kim 3,9, Jaehoon Oh 4,5,9*, Tae Hyun Kim 3,4,9*, 
Myeong Seong Yoon 4, Dong Jin Im 6, Jae Ho Chung 4,7,8 & Hayoung Byun 4,7

Acute thoracic aortic dissection is a life-threatening disease, in which blood leaking from the damaged 
inner layer of the aorta causes dissection between the intimal and adventitial layers. The diagnosis of 
this disease is challenging. Chest x-rays are usually performed for initial screening or diagnosis, but the 
diagnostic accuracy of this method is not high. Recently, deep learning has been successfully applied in 
multiple medical image analysis tasks. In this paper, we attempt to increase the accuracy of diagnosis 
of acute thoracic aortic dissection based on chest x-rays by applying deep learning techniques. In 
aggregate, 3,331 images, comprising 716 positive images and 2615 negative images, were collected 
from 3,331 patients. Residual neural network 18 was used to detect acute thoracic aortic dissection. 
The diagnostic accuracy of the ResNet18 was observed to be 90.20% with a precision of 75.00%, recall 
of 94.44%, and F1-score of 83.61%. Further research is required to improve diagnostic accuracy based 
on aorta segmentation.

Acute thoracic aortic dissection is a life-threatening disease, in which blood leaking from the damaged inner 
layer of the aorta causes dissection between the intimal and adventitial layers. The diagnosis of this disease is 
challenging. Although the true incidence rate is difficult to determine, large series of autopsies have reported that 
the rate of prevalence of aortic dissection is 0.2–0.8%1. However, it is one of the most catastrophic cardiovascular 
diseases, with a mortality rate of 50% within 48 h if not diagnosed and treated properly.

The most common symptoms of aortic dissection are severe chest or back pain of abrupt onset, but they are 
highly variable between  patients2,3. A substantial number of patients complain of nonspecific symptoms, such 
as abdominal pain, nausea, discomfort, and syncope, but some do not report discomfort. In addition, physical 
examination results are relatively normal. These characteristics make the diagnosis of aortic dissection difficult.

The modality of choice for diagnosing aortic dissection is contrast-enhanced computed tomography (CT)2. 
Contrast-enhanced CT can reliably identify the dissection flap and false lumen, which are the primary diagnostic 
features of aortic dissection. However, because of possible atypical presentations and other diagnoses that may 
mimic aortic dissection, diagnostic modalities, such as chest X-ray scanning, laboratory tests including D-dimer, 
and bed-side transthoracic echocardiography, are used to screen for aortic dissection. Among them, chest X-ray 
imaging is most commonly used to differentiate the various causes of chest pain rapidly. It is also used as a screen-
ing test for acute thoracic aortic dissection. However, the sensitivity of chest X-ray scanning through a widening 
of the aortic silhouette is only 70%, as reported in previous  studies4,5.
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With recent developments in the application of deep learning technology to image recognition, significant 
research has been conducted on automatic interpretation of medical images, including X-ray images. In particu-
lar, algorithms have been developed to diagnose diseases such as tuberculosis, pneumonia, and pneumothorax 
using chest X-ray  scanning6–9.

Given the need for rapid and accurate diagnosis of acute thoracic aortic dissection, the use of deep learning 
technology may be helpful. During the conception of this study, we hypothesised that the accuracy of diagno-
sis could be improved by analysing chest x-rays, which are the fastest available screening modality in clinical 
practice, using deep learning. Therefore, we sought to investigate the accuracy of a deep learning algorithm for 
screening acute thoracic aortic dissection based on chest X-ray scanning using a Convolutional Neural Network 
(CNN) model.

Related works. Contrast CT is the modality of choice used to diagnose aortic dissection. Several studies 
have been conducted on the detection of thoracic aortic dissection based on CT images using CNN. Recently, 
Hata et al. investigated the diagnostic performance of a deep learning algorithm for aortic dissection based on 
CT images. In aggregate, the data of 170 patients were considered, including 85 patients with aortic dissection. 
Only non-contrast CT images were used, and an area under the curve (AUC) of 0.940 was achieved, alongside 
an accuracy of 90.0%, sensitivity of 91.8%, and specificity of 88.2%10. Another study attempted a similar task 
based on contrast CT images. The authors constructed a U-Net-based semantic segmentation architecture to 
segment the aortic lumen and performed aortic circularity analysis on the segmentation results. Their detection 
results exhibited 85.00% accuracy, 90.00% sensitivity, and 80.00%  specificity11. In another study on aorta lumen 
segmentation, 260 type B aortic dissection patients were enrolled and a mean Dice coefficient exceeding 90% 
was  recorded12.

The accuracy of diagnosis of acute thoracic aortic dissection is high when CT images and a CNN are used, 
reaching 85–90%. However, the accuracy is also high when physicians use CT images for diagnosis (the scores 
obtained are: 94.90% accuracy, 82.60% sensitivity, and 100.00% specificity)13. This is because 3-dimensional 
images of the aorta and pathognomonic CT findings of type A acute thoracic aortic dissection are greatly help-
ful in diagnosis.

Moreover, CT images can be obtained hours after an emergency department (ED) visit, as intact kidney 
function must be confirmed with a blood test. Given that the mortality rates of acute thoracic aortic dissection 
increase by 2% per  hour14,15, this time interval might be critical. Even if physicians decide to perform CT without 
checking renal function, performing CT becomes a challenge for all patients presenting chest pain because of 
radiation hazard and cost.

Chest x-rays are currently used as a screening tool in the ED because of the low cost, a 150 to 1350-fold lower 
radiation  hazard16,17, and easy accessibility to the early phase of patients’ presentation in the ED. However, the 
sensitivity for screening acute thoracic aortic dissection is 70% for chest x-rays, which is not high  enough4,5.

To our knowledge, there has been no study regarding improving the accuracy of acute thoracic aortic dis-
section with chest x-rays using CNNs. In this study, efforts are made to do that, and this may further improve 
patient outcomes.

Methods
Study design. This is a multicentre retrospective study aimed at learning and detecting aortic dissection 
using CNN to analyse chest X-ray images obtained from three tertiary academic hospitals (Seoul and Gyeonggi-
do, Republic of Korea) between October 2021 and March 2022. The study was reported in accordance with the 
Checklist for Artificial Intelligence in Medical Imaging (CLAIM)18.

Data collection. Data collected between 2003 and 2020 at Seoul National University Bundang Hospital 
(Hospital A) and between 2005 and 2020 at Hanyang University Hospital (Hospital B) were used to construct the 
training dataset. Considering the versatility of the trained CNN model, data collected between 2018 and 2020 
at Yonsei University (Hospital C) was used as testing data, on which the proposed model had not been trained.

Chest X-ray images were obtained from three tertiary academic hospitals. One trained researcher in each 
institution who did not participate as an author investigated each patient’s age, sex, major symptoms, final diag-
nosis, chest CT readings, and surgical records based on the electronic health records. Based on this, a list was 
prepared comprising patients whose final diagnoses were consistent with acute thoracic aortic dissection and 
who concurrently underwent chest CT. In reference to this list, chest x-rays collected during the initial hospital 
visit of all patients were collected from picture archiving and communication systems. In addition, the type of 
thoracic aortic dissection was classified following the readings of radiologists. Acute thoracic aortic dissection 
was classified based on chest CT readings or surgical records as Stanford type A and B—the former involves 
any part of the aorta proximal to the origin of the left subclavian artery and the latter involves the aorta distal 
to the left subclavian artery.

Positive images, i.e., chest X-ray images of patients with acute thoracic aortic dissection, were obtained 
from patients diagnosed with acute thoracic aortic dissection in the emergency department. Diagnosis of acute 
thoracic aortic dissection included only those confirmed by contrast-enhanced CT or surgical diagnosis. Chest 
X-ray images of patients who visited the emergency departments after surgery or endovascular treatment at other 
hospitals were excluded. Negative images were obtained from patients who visited the emergency department 
for chest pain but did not receive a specific diagnosis, such as aortic dissection, aortic aneurysm, heart failure, 
pneumothorax, or ischemic heart disease. These diagnoses were excluded by the emergency physician based on 
the patient’s symptoms, laboratory studies, chest x-rays, and, if necessary, CT reports. For example, if a pneu-
mothorax was suspected in the absence of air in the pleural space on a chest X-ray, a CT scan was performed 
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to confirm it. Finally, chest X-rays of chest pain patients who were excluded from specific diagnoses depicting 
readings within the normal range were used as negative images. The obtained images exhibited a positive-to-
negative ratio between 1:3 and 1:5. All chest X-ray images were extracted in Digital Imaging and Communications 
in Medicine (DICOM) format and converted to JPEG format via image pre-processing.

Data pre-processing and augmentation. Personal information, such as name, gender, and age, was 
removed from all chest X-ray images and only the images were used. Since chest X-ray images were collected 
from three different hospitals over an extended period of 18 years, a pre-processing step was necessary to ensure 
consistency (Fig. 1). First, unnecessary black margins were removed, and images were uniformly resized to a 
448 × 448 pixel resolution. Next, the training images were augmented via random transformations, including 
flip, flop, and rotation—this transformation was needed to improve the performance of the model as the col-
lected data included some images that had been flipped, flopped, and rotated. Further, a small amount of data 
was collected—thus, augmentation was needed to increase the size of the data and to secure robustness against 
geometric changes, such as scale, translational, and rotational transformation. Finally, histogram equalization, 
given by the following expression, was performed to reduce the deviation of the contrast:

rk : Brightness of input image pixels, nj : Number of rk , L : Value of maximum brightness, n : Total number of pixels.
Histogram equalization yielded improved images by distributing the image brightness values such that uni-

form brightness values in the range between 0 and 255 were used.

Diagnosis of acute thoracic aortic dissection via image classification. The proposed image clas-
sification architecture was based on residual neural network (ResNet) 18. ResNet is one of the most popular 
deep learning models in image classification, which successfully resolves the vanishing gradient problem, which 
is common during the training of traditional convolutional neural networks (CNNs) using residual  mapping19. 
To construct the residual mapping, skip connections between layers were used to implement the network over 
multiple layers. The overall network architecture is illustrated in Fig. 220.

The Resnet 18 methodology adopted for the detection and classification of aortic dissection is depicted in 
Fig. 3. The primary objective was to classify chest X-ray images into one of two categories—normal and aortic 
dissection. Two main stages were involved in the model—the pre-processing stage (which further included 
data augmentation and normalization) and the classification stage (which involved the use of Resnet18 on pre-
trained models and prediction). The images were rescaled to 448 × 448 pixel resolution. Moreover, the images 
were augmented via: (1) rotation (2) horizontal flipping and vertical flipping.

During the training process of the Resnet18 model, performance degradation induced by data imbalance was 
mitigated by using a weighted random sampling method and a weighted cross-entropy loss function. In addition, 
an ensemble voting system was implemented to prevent overfitting.

The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was employed to determine the 
aortic dissection detection transparency. This technique highlights the regions of the input image where the 
model pays greater attention during the classification process, implying that the feature maps generated in the 
final convolution layer contain the spatial information that aids the capture of the visual pattern. This visual pat-
tern contributes to distinction between the assigned classes. The Grad-CAM technique was applied by utilizing 
the layers and extracted features of the trained model.

T(rk) =
L

n

k
∑

j

nj

Figure 1.  Image pre-processing.
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Network performance and validation. The X-ray images collected from hospitals A and B were com-
bined and used to construct a training dataset to train and validate the network, and the images from hospital 
C were used to construct the testing dataset to evaluate the performance of the network. K-fold (k = 5) cross-
validation was performed on the final network architecture using the training dataset to achieve satisfactory 
performance while avoiding overfitting. During fivefold cross-validation, the training dataset was randomly 
divided into five roughly equal-sized subsets—four of them were used to train the network and the remaining 
one was used to estimate its performance.

An ensemble voting system was used to further improve the robustness and reduce the risk of overfitting. In 
the proposed model, five models resulting from fivefold cross-validation were ensembled (Fig. 4). After using 
a soft voting classifier to assign probabilities to target variables, the training data were first shuffled and then 
divided into five groups, and passed to a fivefold training model. Individual predictions were obtained from 
each model using a voting aggregator and the soft voting technique. Finally, the majority vote was calculated, 
yielding the final  prediction21,22.

Data imbalance. In the collected training dataset, 20% of the images were positive images and the remain-
ing 80% were negative images. To prevent performance degradation caused by data imbalance, a weighted ran-
dom sampling method and a weighted cross-entropy loss function were used. Random sampling is a part of the 
sampling technique, in which each sample is assigned an equal probability of every mini-batch. In the mini-
batch (size = 16) for learning, the ratio of the positive and negative images was set to 1:1. The weighted Cross-
Entropy loss function was used to solve the negative effect of overfitting on the training dataset on the accuracy 
of the deep learning model due to a decrease in the imbalance of the convergence speed of the loss  function23. 
The following standard weighted binary cross-entropy loss function was used:

Figure 2.  Model architecture of ResNet 18.

Figure 3.  Overview of main architecture used for the diagnosis of aortic dissection.
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where xm and ym denote input and target labels during training, and hθ denotes a model with neural network 
weights, θ . Here, w denotes a weight, which is taken to be 0.7 in the following experiment based on experience.

Visual verification via grad-CAM. For visual verification of the diagnostic results of the proposed deep 
learning network, Grad-CAM was implemented on the final convolutional layer. Grad-CAM uses the gradients 
of any target classes passing through the final convolutional layer of the CNN to generate a highlighted localiza-
tion map depicting the essential regions of the image for the prediction of acute thoracic aortic dissection. The 
class-discriminative localization map is given by:

where Ak denotes feature map of the kth channel, and αc
k represents partial linearization of the deep network, 

which is the primary function of the feature map.

Primary outcomes and performance evaluation. The primary outcome of this study was the detec-
tion of acute thoracic aortic dissection based on chest X-ray scanning using a CNN model. To validate the per-
formance of five models trained via fivefold cross-validation, accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and F-1 score were calculated. In addition, the performance of 
the ensemble model, which yields the final prediction via soft voting of the five models created during the cross-
validation process, on the testing dataset was estimated.

To evaluate the performance of the model, we calculated its precision, recall, F1-score, and accuracy. The 
normal case and acute thoracic aortic dissection were considered as negative and positive cases, respectively. 
True positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were estimate based on 
the confusion matrices. These were calculated using the following parameters and equations:

True positive (TP). An image with acute thoracic aortic dissection is classified in the acute thoracic aortic dis-
section category.

True negative (TN). A normal image is classified in the normal category.

False positive (FP). A normal image is incorrectly classified in the aortic dissection category.

False negative (FN). An image with acute thoracic aortic dissection is incorrectly classified in the normal cat-
egory.

Precision denotes the fraction of correct positive detection of acute thoracic aortic dissection.
Recall represents the quality of all the positives, which depends on the percentage of total relevant cases 

correctly classified by the model.

Jwbce = −
1

M

M
∑

m=1

[

w × ym × log log (hθ (xm))+
(

1− ym
)

× log log 1− hθ (xm)
)

]

LcGrad−CAM = ReLU

(

∑

k

αc
kA

k

)

Figure 4.  Ensemble voting system using fivefold cross-validation.
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F1-score denotes the harmonic mean of precision and recall.

Statistical analysis. All data processing and statistical analyses were performed using the Pytorch (ver.1.6.0, 
https:// pytor ch. org) environment for Resnet construction, training, and evaluation. Kolmogorov–Smirnov tests 
were performed to demonstrate the normal distribution of all datasets. We generated descriptive statistics and 
presented them as frequency and percentage for categorical data and as either median and interquartile range 
(IQR) (non-normal distribution) or mean and standard deviation (SD) (normal distribution) or 95% confidence 
interval (95% CI) for continuous data. The AUC of the receiver operating characteristic (ROC) was used to 
measure the performance of the deep learning model. Two-tailed p < 0.05 was considered to be significantly 
different.

Experimental environment. Weighted binary cross-entropy was adopted as the loss function to fit the 
binary classifier (weight for type A = 3:7, type B = 1:9), and Adam was used as the optimiser function (learning 
rate = 0.0001). Training and testing were performed using a GeForce RTX 2080 Ti GPU (NVIDIA, Santa Clara, 
CA, USA). The network weights were initialised based on a pre-trained model on Resnet18, and the network 
was trained end-to-end using stochastic gradient descent (SGD). We trained the model in batches of 16, with an 
initial learning rate of 0.0001, which was decreased by 0.5 gamma every 10 epochs.

Ethics approval and consent to participate. This study was approved by the Institutional Review Board 
(IRB) of Seoul National University Bundang Hospital (B-2002/597–102), IRB of Hanyang University Hospital 
(2021–01-005), and IRB of Yonsei University Hospital (4–2022-0770). All methods and procedures were carried 
out in accordance with the Declaration of Helsinki.

Results
In aggregate, 3,331 images, containing 716 positive images and 2615 negative images, were collected from 3,331 
patients. Overall, 1,972 images consisting of 507 positive images (gender: 62.7% male; age [SD]: 61 [15] years) 
from hospital A, 1,155 images consisting of 155 positive images (gender: 56.1% male; age [SD]: 63 [13] years), 
and 204 images consisting of 54 positive images (gender: 55.6% male; age [SD]: 61 [17] years) were analysed 
(Table 1). All patients with negative images visited the emergency department with chest pain and no specific 
diagnosis. 422 (83.2%), 123 (79.4%) and 31 (57.4%) patients were diagnosed with Stanford type A aortic dissec-
tion at hospitals A, B, and C, respectively. The datasets of hospitals A and B were separated into training data 
(80%) and internal validation data (20%) to verify the performance of the proposed method. The dataset of 
hospital C was used for testing (Fig. 5).

Precision =
TP

TP + FP

Recall =
TP

FN + TP

Accuracy =
TP + TN

FP + TP + TN + FN

F1− score = 2×
Precision× Recall

Precision+ Recall

Table 1.  Baseline characteristics of participants who provided images for the data sets. Continuous variables 
are presented by mean [standard deviation] and categorical variables are presented by N (%); SD standard 
deviation.

Aortic dissection

Type A + B Type A Type B Control

Hospital A (n = 1972) n = 507 n = 422 n = 85 n = 1465

Age, year, mean [SD] 61 [15] 61 [15] 63 [14] 59 [18]

Sex, male, n (%) 318 (62.7) 269 (63.7) 49 (57.6) 691 (47.2)

Hospital B (n = 1155) n = 155 n = 123 n = 32 n = 1000

Age, year, mean [SD] 63 [13] 63 [13] 65 [13] 44 [11]

Sex, male, n (%) 87 (56.1) 66 (53.7) 21 (65.6) 526 (52.6)

Hospital C (n = 204) n = 54 n = 31 n = 23 n = 150

Age, year, mean [SD] 61 [17] 63 [13] 65 [13] 39 [14]

Sex, male, n (%) 30 (55.6) 14 (45.2) 16 (69.6) 64 (42.7)

All (n = 3331) n = 716 n = 576 n = 140 n = 2615

Age, year, mean [SD] 62 [15] 61 [15] 63 [14] 52 [17]

Sex, male, n (%) 435 (60.8) 349 (60.6) 86 (61.4) 1281 (49.0)

https://pytorch.org
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Performance of the deep learning model
The diagnostic performance matrix and outcomes are presented in Tables 2 and 3, respectively. The average accu-
racy on the validation set was 90.20%. The testing data set was obtained from data collected at hospital C, and 
the deep learning model was not trained on this data set. To evaluate the performance of the final deep learning 
model, the ROC curve was drawn and its AUC was calculated to be 0.955 on the testing data set (Fig. 6). The 
diagnostic accuracy of the deep learning model was 90.20%, with 75.00% precision, 94.44% recall, and 83.61% 
F1-score, on acute thoracic aortic dissection images.

Regions of interest for aortic dissection
Figure 7. depicts the classification results obtained using the deep learning network. The model trained using 
the results of the true positive category emphasised the aortic region. Conversely, the highlighted parts were 
scattered in the true negative category. In the false positive and false negative categories, cases focusing on the 
aorta and scattered regions were mixed.

Discussion
Several studies have investigated the detection accuracy of aortic dissection by applying CNN on CT images. 
Since contrast chest CT uses a contrast material to enhance blood vessels, it is a modality of choice for the diag-
nosis of acute thoracic aortic dissection. It aids physicians to distinguish between an enhanced dissected aorta 
and a normal one. However, the detection of dissected aorta based on chest x-rays is more challenging due to 
the lack of enhancement of blood vessels, unlike in CT images. Therefore, in this study, we improved the diag-
nostic accuracy of aortic dissection based chest x-rays using a CNN. To the best of our knowledge, this is the 
first attempt to improve the diagnostic accuracy of aortic dissection by learning chest X-rays using a CNN. As 
chest X-ray is the most basic examination modality for patients visiting the emergency department with chest 
pain and a common screening test for aortic dissection, the proposed model is expected to facilitate clinical 
screening for aortic dissection.

To determine the model with the best performance, ResNet (18 and 34), DenseNet, and EfficientNet (b0 and 
b1) were used. Table 1 presents the number of parameters in each network and the accuracy on the test data 

Figure 5.  Flow chart of data collection and analysis during acute thoracic aortic dissection detection based on 
deep learning algorithms.
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Table 2.  Diagnostic performance matrix. Fivefold validation was performed with the dataset from hospital 
A and B. A hard voting method was used with five models from fivefold cross-validation to obtain the final 
classification result. Type A, type A aortic dissection; Type B, type B aortic dissection.

Internal validation

Onefold Actual positive Actual negative Twofold Actual positive Actual negative

0.5 of Cut-off Value

Predicted positive 113 23 Predicted positive 112 31

Predicted negative
20
(Type A 19/117, 16.3%; Type B 1/16, 
6.2%)

470 Predicted negative 21 (Type A 17/114, 14.9%; Type B 
4/19, 11.1%) 462

Internal validation

Threefold Actual positive Actual negative Fourfold Actual positive Actual negative

0.5 of Cut-off Value
Predicted positive 108 34 Predicted positive 119 38

Predicted negative 24(Type A 21/105, 20.0%; Type B 
3/27, 11.1%) 459 Predicted negative 13 (Type A 10/111, 9.1%; Type B 

3/21, 14.3%) 455

Internal validation Test

Fivefold Actual positive Actual negative Actual positive Actual negative

0.5 of Cut-off Value
Predicted positive 117 38 Predicted positive 51 17

Predicted negative 15 (Type A 14/109, 12.8%; Type B 
1/23, 4.3%) 455 Predicted negative 3 (Type A 0/31, 0.0%; Type B 3/23, 

13.1%) 133

Table 3.  Diagnostic performance matrix on the internal validation using fivefold validation and Test data set. 
Fivefold validation was performed with the dataset from hospital A and B. A hard voting method was used 
with five models from fivefold cross-validation to obtain the final classification result.

Training
Accuracy 
(%)

Precision 
(%) Recall (%)

F1-score 
(%) Test

Accuracy 
(%)

Precision 
(%) Recall (%)

F1-score 
(%)

Onefold 93.13 83.09 84.96 84.01 Onefold 81.86 60.71 92.59 72.99

Twofold 91.69 78.32 84.21 81.16 Twofold 87.25 71.88 85.19 77.97

Threefold 90.72 76.06 81.82 78.83 Threefold 87.75 70.42 92.59 80.00

Fourfold 91.84 75.80 90.15 82.35 Fourfold 89.22 78.57 81.48 80.00

Fivefold 91.52 75.48 88.64 81.53 Fivefold 87.25 71.21 87.04 78.33

Average 91.78 77.75 85.96 81.57 Soft voting 
result 90.20 75.00 94.44 83.61

Type A 100.00

Type B 86.96

Figure 6.  The ROC for the trained classification model. The AUC was 0.955.
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set. DenseNet and EfficientNet (b0, b1) exhibited poorer performance in representative cases despite a slight 
increase in parameters compared to the original ResNet (18 and 34). ResNet 18 required fewer parameters than 
ResNet 34 and exhibited superior performance than the other models. Therefore, we used ResNet18 as our final 
model (Supplementary table 1).

In chest X-ray scanning images, the aorta is distinguished based on the contrast between the air-filled lungs 
and the fluid-filled aorta. The ascending aorta can be identified outside the upper-right cardiac silhouette on a 
normal chest X-ray image. Moreover, the aortic arch is typically small and distinct in the upper left mediastinum, 
and the descending aorta can be distinguished as a clean, crisp stripe to the left of the vertebral column on a 
normal chest X-ray  image24.

In chest x-ray images, aortic dissection is characterised by certain features, including mediastinal widening, 
expansion of aortic diameter, presence of double density due to enlargement of the false lumen, irregular contour 
due to edema and haemorrhage in the tissues, blurred aortic knob, displacement of intimal calcium, discrepancy 
in diameters of ascending and descending aorta, displacement of trachea/left main bronchus/oesophagus, and 
pleural  effusion25. Moreover, abnormal findings on the lung field are possible, which are indicative of impending 
aorta rupture, such as pneumonitis caused by transmural aortic bleeding, nonspecific inflammatory reaction, 
secondary bronchopneumonia, regional compression atelectasis, and para-aortic  hematoma26.

Although X-ray scanning is a useful screening tool based on the aforementioned guidelines, its diagnos-
tic accuracy is not satisfactory considering the fatality of aortic dissection. According to a meta-analysis, the 
sensitivity of chest X-ray scanning was 64% when evaluated based on wide mediastinum and 71% based on a 
combination with abnormal aortic  contour4. Even though a sensitivity of 90% was achieved when all nonspe-
cific abnormal findings, such as pleural effusion, were combined, the development of a more accurate method 
is required since it is difficult to assume that all patients with nonspecific abnormal findings on X-ray scanning 
suffer from aortic dissection.

Figure 7.  The regions of interest for aortic dissection diagnosis were visualised as heat maps based on Grad-
CAM following the confusion matrix categories: (a) true positive, (b) true negative, (c) false positive, and (d) 
false negative.
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Christoph et al. used transthoracic echocardiography (TTE), transoesophageal echocardiography (TEE), 
CT, and magnetic resonance image (MRI) to diagnose aortic dissection, achieving sensitivities of 59.3%, 97.7%, 
93.8%, and 98.3%, respectively; accuracies of 69.8%, 90.0%, 91.1%, and 98.0%, respectively; and precisions of 
81.4%, 87.7%, 91.8%, and 98.3%,  respectively27. In the present study, chest X-ray images were analysed using a 
CNN to detect acute thoracic aortic dissection, yielding a sensitivity of 94.44% and an accuracy of 90.20%—thus 
the performance was comparable to those of TEE and CT, and better than that of TTE in terms of accuracy. 
Although the precision achieved was low, the results were deemed to be relevant considering the ease of obtain-
ing chest X-ray images and using them as a screening test.

The results were also notable compared to manual chest x-ray readings of radiologists. William et al. reported 
a sensitivity of 86%, an accuracy of 60%, and a precision of 53% during the diagnosis of aortic dissection based 
on abnormal chest x-ray findings, which is lower than the result obtained using the proposed  CNN28.

The high aortic dissection detection accuracy of the proposed CNN can be explained based on the heat maps. 
Since the area highlighted in the heat map of the true positive category surrounded the aortic knob, mediastinal 
widening, aortic diameter expansion, and double contour of the aorta, which are directly related to aortas, were 
focussed on by the CNN. Additionally, the aortic diameter tends to taper from the origin to the downstream 
region  gradually29. If the diameter of ascending aorta or descending aorta is larger than the diameter of the origin, 
the possibility of aortic dissection must be considered even if the range is normal. There may be a possibility that 
these points were reflected in the CNN, which is why the achieved accuracy was higher than that of a radiologist.

Considering the aforementioned comparisons with other diagnostic tools and radiologists, the proposed deep 
learning algorithm for acute thoracic aortic dissection based on chest X-ray scanning can be considered to be 
a reliable, quick method to detect acute thoracic aortic dissection. Its application as a screening test on patients 
visiting the emergency department is expected to enable the detection of cases that might otherwise have been 
missed. Based on the preliminary result, immediate confirmatory tests may be performed.

The accurate identification of aortic contour based on medical images and detection of aortic dissection 
accordingly are challenging. In a previous report, aortic contours were automatically distinguished from non-
contrast CT  images30, and Hata et al. classified aortic dissection using ML in non-contrast CTs. They achieved 
an accuracy of 90.0% and a sensitivity of 91.8%10. Even though the identification of the aorta by applying ML 
algorithm on chest X-ray scanning was not performed in this study, our results are still compelling because the 
reported accuracy and sensitivity are as high as those of CT studies, including the accuracy of identification of 
the aorta.

Regarding aorta identification based on chest X-ray scanning, the attention mechanism, which is known to 
function well in image classification tasks by increasing the representation power, was utilised to increase the 
accuracy of the diagnostic network. As depicted in Fig. 3, the trained model emphasises the thoracic aortic region 
in the true positive category, while the highlighted parts are scattered in the true negative category. This indicates 
that the proposed deep learning model concentrates on the thoracic region during the detection of acute thoracic 
aortic dissection without distinguishing aortic contours in chest X-ray images. Further, in the false positive and 
false negative categories, a combination of cases of aortic concentration and vice versa were observed, which 
corroborates the emphasis on the aortic region without thoracic aortic classification. Given that abnormal X-ray 
findings in acute thoracic aortic dissection are not limited to the aorta, this result seems reasonable. However, 
further research is required to classify acute thoracic aortic dissection after segmenting the aortic contour.

Limitations
This study suffers from certain limitations. Firstly, the age and sex of the patients were not completely matched 
to the presence of aortic dissection because aortic dissection is more prevalent corresponding to a certain age 
and sex. Secondly, radiographic images of assorted sizes taken in different environments were pre-processed and 
used as input images. Even though they were cropped around the aorta, except for the outer edges and margins 
of the image, the trained model could not identify the aorta properly in some images and sometimes misclas-
sified it. Therefore, better results can be expected if classification is performed following aortic segmentation. 
Third, although equal proportions of the training dataset were allocated for acute thoracic aortic dissection and 
normal imaging, an imbalanced test dataset may reduce the reliability of the test results. Fourth, in this study, 
binary classification of normal images and acute thoracic aortic dissection images was performed without clas-
sifying the type of acute thoracic aortic dissection, and performance was not evaluated by including images of 
other aortic syndromes and other specific conditions causing chest pain. Finally, although the performance of 
the aortic dissection classification model was good, our observations are not sufficient to conclude that chest 
x-rays can be used to replace CT scans completely in patients with suspected aortic dissection.

Conclusions
The detection accuracy of acute thoracic aortic dissection using Resnet 18 was 90.20%. This model is expected to 
facilitate the screening of patients with suspected acute thoracic aortic dissection among patients who visit the 
emergency department with chest pain. Given the high severity and acuity of thoracic aortic dissection, early 
suspicion based on chest X-rays and CNN could accelerate the diagnosis and improve the prognosis. In future 
works, the accuracy should be improved based on segmentation, and research directly applicable to clinical 
practice should be prioritised.

Data availability
The data presented in this study are available on request from the corresponding author.
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