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Abstract: A reliable prognostic score for minimizing futile treatments in advanced cancer patients
with septic shock is rare. A machine learning (ML) model to classify the risk of advanced cancer
patients with septic shock is proposed and compared with the existing scoring systems. A multi-
center, retrospective, observational study of the septic shock registry in patients with stage 4 cancer
was divided into a training set and a test set in a 7:3 ratio. The primary outcome was 28-day mortality.
The best ML model was determined using a stratified 10-fold cross-validation in the training set.
A total of 897 patients were included, and the 28-day mortality was 26.4%. The best ML model in
the training set was balanced random forest (BRF), with an area under the curve (AUC) of 0.821 to
predict 28-day mortality. The AUC of the BRF to predict the 28-day mortality in the test set was 0.859.
The AUC of the BRF was significantly higher than those of the Sequential Organ Failure Assessment
score and the Acute Physiology and Chronic Health Evaluation II score (both p < 0.001). The ML
model outperformed the existing scores for predicting 28-day mortality in stage 4 cancer patients
with septic shock. However, further studies are needed to improve the prediction algorithm and to
validate it in various countries. This model might support clinicians in real-time to adopt appropriate
levels of care.

Keywords: cancer patient; septic shock; machine learning; prognosis

1. Introduction

The incidence of all cancer types has increased worldwide and is a major public
health burden [1]. Recent advances in cancer treatment have improved the overall survival.
Nevertheless, there is an increased risk of critical illness requiring intensive care unit (ICU)
management [2]. Reportedly, approximately 5.2% of patients develop a critical illness
within 2 years after a cancer diagnosis and are admitted to the ICU [3]. The mortality rate
in the ICU is reportedly 14.1%, and 24.6% of ICU patients die during their hospital stay [3].
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Critical illness may make an important contribution to the overall cancer outcomes. In
particular, the mortality rate is higher among patients admitted through the emergency
department (ED) than elective admission.

Patients with cancer are at a more than 10-fold higher risk of sepsis than the general
population. In addition, septic shock associated with cancer progression or chemoradiation
therapy is a common life-threatening complication in stage 4 cancer patients [4]. The
decision-making in invasive high-intensity care for stage 4 cancer patients with septic
shock remains challenging, especially in EDs with a shortage of available ICU beds. The
overutilization of an invasive ICU treatment in these circumstances often results in a
more costly and invasive treatment without improving the outcomes [5,6]. Therefore, a
reliable and clinically available prognostic score for advanced cancer patients with septic
shock presenting at the ED is essential to improve the quality and efficiency of the ICUs
care. However, traditional severity scoring systems such as the Sequential Organ Failure
Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II)
have not been validated in patients with advanced cancer and septic shock. Furthermore,
the scores are not reliable at ED presentation because they are calculated on the worst
parameters 24 h after admission [7,8]. To address this issue, a new predictive method is
needed to improve the treatment of advanced cancer patients visiting the ED for sepsis and
the use of the ICU. However, a prognosis prediction is difficult due to the heterogeneity and
complexity of stage 4 cancer patients with septic shock. Machine learning (ML) algorithms
have been published to improve the prognosis and occurrence prediction in other severe
diseases such as sepsis, gastrointestinal bleeding, pneumonia, acute poisoning, and chronic
obstructive pulmonary disease [9–14].

Therefore, the purpose of this study was to develop an ML model for stage 4 cancer
patients with septic shock who visit the ED and to compare the diagnostic performance
with those of the SOFA score, APACHE II score, and initial lactate level.

2. Materials and Methods
2.1. Study Population

This multi-center, retrospective, observational study used data from the Korean Shock
Society (KoSS) septic shock registry between October 2016 and June 2019. The KoSS is a
11 university-affiliated hospital ED collaborative research network in South Korea, estab-
lished in 2013, for improving the quality of the research, diagnosis, and management of
sepsis [15]. The study included patients ≥ 19 years of age who met the inclusion criteria (ev-
idence of refractory hypotension or hypoperfusion in patients with suspected or confirmed
infection) [16,17]. Hypotension was defined as systolic blood pressure (SBP) < 90 mm
Hg, mean arterial pressure < 70 mm Hg, or SBP decrease > 40 mm Hg. Refractory hy-
potension was defined as persistent hypotension despite the administration of a fluid
challenge or the requirement of vasopressors to maintain a BP ≥ 90 mm Hg or mean
arterial pressure ≥ 70 mm Hg [16,17]. Hypoperfusion was defined as the serum lactate
level ≥ 4 mmol/L [18].

The exclusion criteria were patients who refused ICU management, patients who
signed a “do not resuscitation” order before arrival at the ED or at the time of diagnosis,
patients who met the inclusion criteria at 6 h after their ED arrival, patients who were
transferred from other hospitals after their stabilization, and patients who were transferred
directly to the ED of other hospitals. This study included only patients with stage 4 cancer
who were registered in the septic shock database of a participating hospital. In stage 4
cancer, the disease has spread to other organs or parts of the body.

2.2. Ethics

This study complied with the principles of the 1964 Declaration of Helsinki. The
Institutional Review Boards of Asan Medical Center [2015–1253], Korea University Anam
Hospital [HRPC2016-184], Samsung Medical Center [SMC2015-09-057], Yonsei Univer-
sity College of Medicine Severance Hospital [4-2015-0929], Gangnam Severance Hospital
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[3-2015-0227], Seoul National University Bundang Hospital [B-1409/266-401], Seoul Na-
tional University College of Medicine [J-1408-003-599], Seoul National University Boramae
Medical Center [16-2014-36], Hallym University College of Medicine Gangnam Secred
Heart Hospital [2015-11-142], Korea University Guro Hospital [KUGH15358-001], and
Hanyang University Hospital [HYUH2015-11-013-007]) approved the study protocol. In-
formed consent was obtained from all subjects before the data collection if the patient was
conscious, and the consent of the guardian was obtained otherwise.

2.3. Outcome and Data Collection

The endpoint selected to develop ML models was 28-day mortality. Death during
hospitalization was confirmed by a record review, and death after discharge or transfer
was confirmed by telephone. The study coordinator at each hospital confirmed 28-day
mortality by a telephone interview. If the first call did not connect, an additional call
was attempted, and there were no cases where 28-day mortality was not confirmed. The
principal investigator of every site worked with a designated local research coordinator
who was responsible for ensuring the accuracy of the data entry and verifying the records.
A quality management committee of emergency physicians, local research coordinators,
and investigators from every ED was established to monitor and review the data’s quality
regularly. Members from the committee provided feedback on the results of the quality
management process to the research coordinators and investigators, and doubts pertaining
to the data were clarified either through the use of the system’s query function or directly
via a telephone call. The data collection included the patient’s characteristics, clinical
variables, and their laboratory results at presentation which were required to calculate the
SOFA score, APACHE II score, and initial lactate level.

2.4. Machine Learning Model Development and Feature Analysis

During the pre-processing, any missing data were recorded as -1 because machine
learning uses numeric data with no spaces as the input variables. Next, unnecessary data
(attributes and feature selection methods) were excluded, leaving demographic charac-
teristics, underlying diseases, blood test results, and other variables included in the 6 h
bundle treatment after visiting the ED for analysis. However, variables that showed their
worst value within 24 h of admission, such as the SOFA score and APACHEII score, were
excluded from the machine learning model development. To develop an ML model for
predicting the prognosis of advanced cancer patients, the dataset was randomly split in
a 7:3 ratio (training: test) using stratified partitioning. Following initial resuscitation (6 h
bundle therapy), all the identifiable variables (demographic, 6 h bundle therapy compo-
nents, vital signs, laboratory variables, etc.) were used to develop the machine learning
model. Under the stratified condition, the selected samples of each fold have proportions
of class labels equal to those of the original dataset [19]. The best ML model and its op-
timal hyperparameters were determined in the training set using the stratified 10-fold
cross-validation (in which the data set is divided into 10 folds, each of which is used for an
internal validation, with the remaining 90% used for training to develop the model). The
use of cross-validation and hyperparameter tuning for internal validation is considered a
robust method for model evaluation before external validation on a separate data set and
maximizes the potential performance of the ML model [20,21]. The hyperparameters of
the model are optimized by a grid search that exhaustively considers all the parameter
combinations. In the internal validation phase, the best hyperparameters are investigated
to get the best performance. For example, the number of estimators from 100 to 1000 are
investigated in balanced random forest (BRF). The detailed parameters are as follows: the
parameters of LR-bw are C (0.001, 0.01, 0.1, 1, 10, and 100) and penalty (l1 and l2), the
parameters of XGB-bw are the max_depth (3, 5, and 7) and subsample (0.6, 0,8, and 1.0),
a parameter of RF-bw is the n_estimators (100, 200, 300, 400, 500, 600, 700, 800, 900, and
1000), a parameter of BBC is the n_estimators (100, 200, 300, 400, 500, 600, 700, 800, 900, and
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1000), and a parameter of BRF is the n_estimators (100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000).

To develop the ML model, a total of five classifiers were considered [10,22]. The dataset
in this study showed the characteristics of an imbalanced dataset, because the number of
data points were not balanced among the classes. Therefore, we used five weighted or
balanced machine learning models in the machine learning model’s development. The
three basic ML classifiers with balanced weights are considered (LR-bw, XGB-bw, and
RF-bw). In addition, two ensemble classifiers that are designed for handling an imbalanced
dataset are selected: the balanced bagging classifier and the balanced random forest
classifier [23–25]. The best ML model was selected using the AUC and F1 score. The
F1 score is a useful indicator for analyzing disproportionate data like ours (minor class
prediction, 28-day mortality). After selecting the best ML model and its hyperparameters,
the final ML was built using the training set. The performance of the ML was evaluated
using the test dataset. The F1-score (F-measure) is a popular and suitable metric for an
imbalanced classification [26,27]. It is widely used in many applications with an imbalanced
dataset since it measures how well the classification model handled the minority class
classification [28]. The F1 score is the harmonic mean of the precision and recall. Therefore,
this metric balances a model in terms of the precision and recall.

For feature analysis, Shapley Additive exPlanations (SHAP) values were used. The
SHAP values quantify the effects of the features on the outcome of the ML model [29]. In
addition, the performance of the final ML model was compared with the existing severity
scores of the SOFA, APACHE II, and initial lactate level. For the SOFA and APACHE II
scores, the worst values obtained within 24 h of the ED visit were used. The calibration
and discrimination of the final ML model and other scores were compared based on the
calibration curve and AUC.

2.5. Statistical Analysis

The continuous variables were analyzed as the mean ± standard deviation or median
with an interquartile range being appropriate, and the categorical variables were analyzed
as the absolute or relative frequency. Student’s t-test and Mann–Whitney U test were used
to compare the continuous variables, and the Chi-square test and Fisher’s exact test were
used for the categorical variables. The discrimination and calibration of the final ML model
and other scores were compared based on the AUC and calibration curve. The AUC was
calculated and then compared using a 2-tailed nonparametric method [30].

A two-sided p-value < 0.05 was considered to be statistically significant. All the statistical
analyses were performed using SPSS Statistics version 18 (SPSS Inc., Chicago, IL, USA) and R
version 4.0.4 (R Foundation for Statistical Computing, Vienna, Austria). In addition, we used
development software (Anaconda 3) for the ML on the Python platform. The Python version
is 3.7 for windows (Python Software Foundation, Wilmington, DE, USA).

3. Results
3.1. Participant Characteristics

A total of 2132 patients were screened after excluding 210 patients with DNR orders
(Figure 1). In addition, the cases diagnosed as septic shock 6 h or longer after arriving at
the ED (n = 125) were excluded. Another 83 patients who were transferred from another
hospital for septic shock but were stable were also excluded. In addition, 43 patients
who were transferred directly from the ED to another hospital without admittance were
excluded. After excluding 774 non-stage 4 cancer patients, a final 897 adult patients were
included in the analysis. The dataset was split randomly in a 7:3 ratio (training: 627,
test: 270). The baseline characteristics of 897 patients are shown in Table 1. The mean
ages of the survivors and non-survivors were 65.6 and 66.9 years, respectively (p = 0.165).
The proportion of males did not differ between survivors and non-survivors (61.8% vs.
64.6%, p = 0.482). The mean SBP of the non-survivors was significantly higher than that
of survivors (99.5 vs. 94.9 years, p = 0.033). The median SOFA score for the non-survivors
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was significantly higher than for the survivors (10 vs. 7, p <0.001). The other characteristics
between the survivors and non-survivors are presented in Table 1.
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Table 1. Comparison of characteristics of survivors and non-survivors between October 2016 and
June 2019 in 11 university-affiliated hospital emergency departments in South Korea.

Total Patients Survivors (n = 660) Non-Survivors (n = 237) p-Value

Age, mean ± standard deviation, y 66 ± 11.5 65.6 ± 11.2 66.9 ± 12.4 0.165
male, no. (%) 561 (62.5%) 408 (61.8%) 153 (64.6%) 0.482

Vital signs, mean ± standard deviation

Initial systolic blood pressure, mmHg 96.1 ± 27.1 94.9 ± 26.2 99.5 ± 26.1 0.033
Initial diastolic blood pressure, mmHg 59.5 ± 18.5 58.82 ± 17.6 61.2 ± 20.7 0.11

Initial heart rate, beats per min 114 ± 25.1 113.9 ± 24.9 114.3 ± 25.6 0.818
Initial respiratory rate, breaths per min 21.4 ± 4.9 20.8 ± 4.1 23.1 ± 6.4 <0.001

Initial body temperature, ◦C 37.8 ± 1.3 38 ± 1.3 37.2 ± 1.2 <0.001

Laboratory findings, median
(interquartile range)

White blood cells, 103/mm3 8.1 (3.0–15.4) 7.9 (3.1–15) 8.9 (2.5–18) 0.165
Hb, g/dL 10.2 (8.6–11.7) 10.2 (8.7–11.6) 9.9 (8.5–11.8) 0.604

Platelets, 103/mm3 143 (71–232) 147 (78–238) 129 (61–226) 0.043
Albumin, g/dL 2.8 (2.3–3.2) 2.8 (2.5–3.3) 2.5 (2.1–3) <0.001

Blood urea nitrogen, mg/dL 25 (17–38) 23 (16.4–34.5) 31 (20.3–47.2) <0.001
Creatinine, mg/dL 1.3 (0.9–1.9) 1.2 (0.9–1.9) 1.4 (0.9–2.2) 0.023

C-reactive protein, mg/dL 12.8 (6.1–22.1) 12.5 (5.5–21.6) 13.6 (6.9–25.1) 0.137
Lactate, mmol/L 3.6 (2–5.5) 3.3 (1.9–5) 5 (3.1–7.7) <0.001

Cancer type, no. (%)
Stomach 55 (6.1%) 39 (5.9%) 16 (6.8%) 0.753

Colorectal 63 (7%) 53 (8%) 10 (4.2%) 0.054
Liver 113 (12.6%) 90 (13.6%) 23 (9.7%) 0.138

Biliary 85 (9.5%) 67 (10.2%) 18 (7.6%) 0.301
Pancreas 88 (9.8%) 70 (10.6%) 18 (7.6%) 0.204

Lung 151 (16.8%) 81 (12.3%) 70 (29.5%) <0.001
Gynecologic 82 (9.1%) 67 (10.2%) 15 (6.3%) 0.088

Urologic 78 (8.7%) 65 (9.8%) 13 (5.5%) 0044
Other 182 (20.3%) 128 (19.4%) 54 (22.8%) 0.3
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Table 1. Cont.

Total Patients Survivors (n = 660) Non-Survivors (n = 237) p-Value

Infection focus, no. (%)
Lung 256 (28.5%) 151 (22.9%) 105 (44.3%) <0.001

Urinary tract 146 (16.3%) 113 (17.1%) 33 (13.9%) 0.262
Gastrointestinal 163 (18.2%) 115 (17.4%) 48 (20.3%) 0.377
Hepatobiliary 257 (28.7%) 210 (31.8%) 47 (19.8%) 0.001

Bone soft tissue 20 (2.2%) 16 (2.4%) 4 (1.7%) 0.616
Others 35 (3.9%) 32 (5.6%) 3 (1.6%) 0.026

Comorbidities, no. (%)
Hypertension 281 (31.3%) 207 (31.4%) 74 (31.2%) 1.000

Diabetes mellitus 207 (23.1%) 152 (23%) 55 (23.2%) 1.000
Cardiac disease 77 (8.6%) 47 (7.1%) 30 (12.7%) 0.011

Cerebrovascular accident 39 (4.3%) 17 (3%) 14 (7.3%) 0.011
Chronic lung disease 60 (6.7%) 37 (6.5%) 17 (8.9%) 0.328
Chronic renal disease 33 (3.7%) 28 (4.2%) 5 (2.1%) 0.161
Chronic liver disease 78 (8.7%) 62 (9.4%) 16 (6.8%) 0.23

SOFA score,
median (interquartile range) 8 (6–10) 7 (5–10) 10 (7–13) <0.001

APACHE II score,
median (interquartile range) 20 (15–26) 19 (14–24) 24 (19–32) <0.001

Outcomes, no. (%)
28-day mortality 237 (26.4%)

Time to death, day 8 (2–7)
Vasopressor 653 (72.8%) 493 (86%) 160 (83.8%) 0.477

Renal replacement treatment 80 (8.9%) 30 (4.5%) 50 (21.1%) <0.001
Intensive care unit admission 412 (45.9%) 324 (49.1%) 88 (37.1%) 0.002

Mechanical ventilation 192 (21.4%) 88 (13.3%) 104 (43.9%) <0.001
DNR in intensive care unit or general ward 246 (27.4%) 80 (12.1%) 166 (70%) <0.001

These data were measured or confirmed immediately after the emergency department visit. APACHE II, Acute
Physiology and Chronic Health Evaluation II; DNR, do not resuscitate; SOFA, Sequential Organ Failure Assessment.

3.2. ML Model Development

Five weighted or balanced ML models were considered candidates for ML development
because our data showed a disproportionate proportion of patients who died and survived.
The best ML model in stratified 10-fold cross-validation was selected as the final ML model.
The AUC of the BRF for 28-day mortality in the training set was 0.823 (95% confidence interval
(CI): 0.782–0.864; Table S2), and the F1 score was 0.604 (95% CI: 0.548–0.66). The AUC of the
BRF with a 10-fold validation in the training set is shown in Supplementary Figure S1. Based
on this, the final chosen ML model was BRF. The AUC of the BRF for 28-day mortality in
the test set was 0.826 (Table 2). The F1 score of the BRF was 0.64. The F1 score of the SOFA,
APACHE II, and initial lactate was 0.321, 0.294, and 0.36, respectively.

Table 2. Comparison of machine learning models for predicting 28-day mortality in the test set between
October 2016 and June 2019 in 11 university-affiliated hospital emergency departments in South Korea.

AUC (95% CI) F1 Score

LR-bw 0.763 (0.696–0.831) 0.596
XGB-bw 0.779 (0.717–0.841) 0.562
RF-bw 0.811 (0.755–0.868) 0.292

BBC 0.796 (0.738–0.855) 0.605
BRF 0.826 (0.77–0.881) 0.64

SOFA score 0.672 (0.596–0.748) 0.321
APACHE II score 0.662 (0.587–0.736) 0.294

Initial lactate 0.683 (0.609–0.757) 0.36
AUC, area under the curve; APACHE II, Acute Physiology and Chronic Health Evaluation; BBC, balanced bagging
classifier; BRF, balanced random forest; CI, confidence interval; LR-bw, logistic regression with balanced weight;
ML, machine learning; SOFA, Sequential Organ Failure Assessment; RF-bw, random forest with balanced weight;
XGB-bw, XGB with balanced weight.
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3.3. Comparison of Diagnostic Performance of ML Model with Other Scores

The AUC of the BRF in the test set was 0.826. The AUCs of the SOFA, APACHE II,
and initial lactate level in the test set were 0.672, 0.662, and 0.683, respectively (Figure 2).
The AUC of the BRF was significantly higher than those of the SOFA, APACHE II, and
initial lactate level (p = 0.0001, p < 0.0001, and p = 0.0001, respectively. After the Bonferroni
correction on the test set, the AUC of the BRF model was significantly higher than the those
of the SOFA and APACHE II score (Supplementary Table S3 and Figure S2).
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Figure 2. AUCs (areas under the curve) comparing the ML (machine learning) model with SOFA
(Sequential Organ Failure Assessment), APACHE (Acute Physiology and Chronic Health Evaluation)
II score, and initial lactate level for 28-day mortality in the test set.

The top 20 most important variables for predicting 28-day mortality with BRF are
summarized in Figure 3 with visible explanations across all the patients. The impacts of
these features on the 28-day mortality were quantified by the Shapley values. Most of
the variables were found to be related to the patient’s prognosis, similar to the results of
previous studies, but the activated prothrombin time and potassium level were unexpected
predictors. The initial body temperature had the highest overall (total 0.032) on the 28-day
mortality, followed by the initial albumin level (0.028) and CK MB level (0.028). Calibration
was evaluated with the plots of the predicted and observed probability. The ML model
showed a better calibration compared with the SOFA score, APACHE II score, and initial
lactate level in the test set (Figure S3). The ML model was closest to the ideal line and
predicted the actual 28-day mortality rate well.
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Figure 3. Summary of feature effects in the BRF model. (A) Overall effects of the top 20 variables.
(B) Beeswarm plots showing the top 20 variables’ effects for all patients; Body_temperature1, initial
body temperature; Lactate_after_fluid, lactate level following fluid administration; Respiratory_rate1,
initial respiratory rate; Lactate1, initial lactate level; Focus_lung, lung as the site of infection; BUN,
blood urea nitrogen level; pH, initial pH on arterial blood gas analysis; Body_temperature_enroll,
body temperature when septic shock is recognized; Lactate_enroll, lactate level when septic shock is
recognized; SaO2, initial arterial O2 saturation on arterial blood gas analysis; Heart_rate_enroll, heart
rate when septic shock is recognized. All other variables are the first test values after the emergency
department visit unless otherwise specified.

4. Discussion

In the present study, an ML (BRF) model to predict the prognosis of stage 4 cancer
patients with septic shock was developed and validated. Several models showed a similar
AUC to that of the BRF; however, BRF had the best F1 score. The AUC for the ML model to
predict the 28-day mortality was superior to the traditional SOFA score, APACHE II score,
and initial lactate level. The ML model showed a better calibration compared with the
SOFA and APACHE II scores in both the training and test sets. The variables that had the
greatest effect on the 28-day mortality were the initial body temperature, serum albumin
level, and serum CK MB level. However, it is important to limit the application of the
model because a score of F1 > 0.8 is necessary to consider a model as good. Moreover, the
model is an insufficient basis for decisions on the orientation of the patients; it is important
that a collegial discussion and exchanges with the families are also necessary to reach a
shared decision.

To the best of our knowledge, this is the first study in which an ML model to predict
the outcomes of stage 4 cancer patients with septic shock visiting the ED was developed
and validated. Our study population was extracted from a multicenter study with a large
sample size. The discrimination and calibration of ML were examined and compared with
the pre-existing severity scores. We also used as many potential variables as possible in
developing the ML model to influence the outcomes in patients with advanced cancer with
septic shock.

Oncologic patients with sepsis and septic shock are admitted more frequently to the
ICU than subjects from the general population. In addition, the 28-day mortality rate is
higher in these patients [4,31]. However, the demand for the ICUs care usually exceeds
the supply; therefore, the triage and allocation decisions for the ICUs care for critically ill
patients are important [32]. Moreover, considering the high mortality rates associated with
stage 4 solid cancer patients with septic shock visiting the ED, it is necessary to establish
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a risk score for providing professionals and families with more precise information for
making the decision of whether to go ahead with an invasive procedure. It is also important
to work on the early expression of patients’ wishes to be resuscitated or not. Scoring systems
that predict the prognosis in cancer patients with septic shock have been investigated in
several studies. The predictive values of the SOFA and APACHE II scores for the outcomes
of patients with sepsis and septic shock were not satisfactory [33–35]. One ICU-based
study reported that the AUC of the SOFA score for the in-hospital mortality was 0.69 in
critically ill cancer patients with a suspected infection [33]. Another study reported that
the AUC of the APACHE II score predicting in-hospital mortality in patients with sepsis or
septic shock was 0.71 [36]. Compared to these studies using a similar study design, our ML
model had an AUC greater than 0.8, although the primary outcome was different. In several
studies, hypothermia was associated with increased mortality and organ failure in patients
with severe sepsis [37,38]. Jonas et al. demonstrated that an elevated body temperature in
patients admitted to the ED was associated with reduced mortality in patients with sepsis or
septic shock admitted to the ICU [39]. However, a fever above 39.5 ◦C was associated with an
increased mortality rate [40]. In several sepsis studies, the serum albumin level was associated
with increased mortality [41–43]. An elevated troponin level was correlated with a greater
degree of left ventricular dysfunction, illness severity, and mortality [44,45]. In a meta-analysis,
61% of subjects with elevated troponin had a twofold increased risk of death compared with
patients with undetectable troponin [46]. In our machine learning model, troponin had a lower
prognostic contribution than CK MB, but similarly to previous studies, elevated myocardial
enzyme levels in sepsis and septic shock were highly associated with a poor prognosis. To
recognize the occurrence of sepsis or predict the prognosis in the early stages while the patient
is in the ward or ICU, research using ML is being actively conducted [11,47].

The present study had several limitations. First, it only included single-country data
and a relatively small sample size, although multi-center prospectively collected registry
data were used. Therefore, the results might not be representative of the general population.
Unlike other studies using ML models, in the present study, the diagnostic performance in
the test set is slightly higher than the diagnostic performance of the training set. Although
we randomly divided the data into the training set and the test set, since we used patients
with similar characteristics, we think that the similarity between the training set and the
test set still exists and the diagnostic performance of the test set may have been higher as a
result of chance. In future work, the performance of our ML model must be tested using
independent cohort data for an accurate evaluation. The data used is from a registry, which
inherently limits the applicability of such an algorithm with real-world data. Therefore, ML
models should be prospectively validated using larger samples and a variety of real-world
data from many countries and ethnicities. Second, cancer-related characteristics such as the
treatment modality (e.g., surgery, radiotherapy, and chemotherapy), performance status,
and response to therapy were not examined. These factors are known to be associated with
the outcomes. However, in recent studies, cancer-related characteristics were not associated
with mortality [48,49]. The accurate evaluation of the performance status is challenging in
the ED due to subjectivity and irreproducibility [50,51]. Third, there may be unmeasured
confounders that can affect the results. Our registry was for the general population with
septic shock and was not cancer-specific. Therefore, the possibility of unmeasured variables,
especially cancer-specific prognostic factors, cannot be excluded. Nevertheless, many variables
associated with the outcome of patients with septic shock were included. Lastly, although
10 hospitals participated in the surviving sepsis campaign for the septic shock treatment, there
might be differences in the treatment strategies between hospitals.

5. Conclusions

The predictive performance of the ML model was satisfactory to predict 28-day mortality
in stage 4 cancer patients with septic shock. The ML model outperformed the pre-existing
prediction scores, such as the SOFA, APACHE II, and initial lactate level. We revealed 20
important variables that significantly affected the prediction model. This model might support
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clinicians in real-time to adopt an appropriate level of care in terms of the chance of survival.
However, the level of treatment should not be determined by the ML model alone without
a co-operative discussion or exchange with the families. Additionally, further studies are
needed to improve the prediction algorithm and to validate it in various countries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11237231/s1, Table S1. Comparison of the training and test sets.
Table S2. Comparison of machine learning models for predicting 28-day mortality in training sets.
Table S3. Comparison of ML models for predicting 28-day mortality in test sets. Figure S1. The AUC
of BRF with 10-fold validation in the training set. Abbreviations: AUC—area under the curve; BRF—
balanced random forest. Figure S2. The AUC of ML models for predicting 28-day mortality in the test
set. Abbreviations: AUC—area under the curve; BBC—balanced bagging classifier; BRF—balanced
random forest classifier; CI—confidence interval; LR-bw—logistic regression with balanced weight;
ML—machine learning; RF-bw—random forest classifier with balanced weight; XGB-bw—XGB
classifier with balanced weight. Figure S3. Calibration curve of the ML model, SOFA, APACHE II and
initial lactate level for 28-day mortality in the test set. Abbreviations: BRF—balanced random forest;
ML—machine learning; SOFA—Sequential Organ Failure Assessment; APACHE—Acute Physiology
and Chronic Health Evaluation.
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