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Development and Validation of a Model Using Radiomics 
Features from an Apparent Diffusion Coefficient Map  
to Diagnose Local Tumor Recurrence in Patients Treated 
for Head and Neck Squamous Cell Carcinoma
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Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to 
diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC).
Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 
male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, 
with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive 
treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had 
local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), 
contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute 
shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate 
the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal 
and external validation sets.
Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop 
the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence 
interval [CI], 0.62–0.89) and 0.77 (95% CI, 0.65–0.88) in the internal and external validation sets, respectively. These were 
significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40–0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40–
0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39–0.67], p = 0.021) in the external validation set.
Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics 
models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive 
treatment.
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INTRODUCTION

Despite recent advances in treatment modalities, local 
tumor recurrence is the main cause of treatment failure in 
head and neck squamous cell carcinoma (HNSCC) [1-4]. 
Accurate and early diagnosis of local tumor recurrence is 
crucial for the timely implementation of treatment and is 
heavily dependent on imaging. However, differentiating 
local tumor recurrence from post-treatment changes 
is especially challenging, particularly in the era of 
radiotherapy. Radiation-induced changes may mimic 
recurrent tumors owing to edema, granulation tissue 
formation, and fibrosis. Pathological confirmation may 
be necessary, but should be avoided in heavily irradiated 
tissue because biopsy procedures may increase the risk of 
superimposed infection, failure to heal, and edema [5].

The radiomics approach extracts high-dimensional 
features from routine, standard-of-care imaging data 
using an automated data-mining algorithm [6,7] and 
aims to incorporate subsequent analysis and selection of 
features in clinical decision-making. In HNSCC, studies 
have demonstrated the diagnostic or prognostic value of 
radiomics, but studies are limited to applying radiomics to 
CT and MRI sequences, such as T2-weighted imaging (T2WI) 
and contrast-enhanced T1-weighted imaging (CE-T1WI) 
[8,9]. Diffusion-weighted imaging (DWI) is well-established 
to reflect tumor cellularity, and previous studies have 
shown that tumor recurrence exhibits a significantly lower 
apparent diffusion coefficient (ADC) than post-treatment 
change [10-14]. Moreover, several multicenter studies have 
demonstrated that ADC maps may show robustness across 
different acquisition sites and protocols compared with MRI 
sequences such as T2WI and CE-T1WI, overcoming concerns 
regarding the generalizability of radiomics models with a 
potential for applicability in clinical practice [15-17].

We hypothesized that the radiomics approach could be 
applied to ADC maps to diagnose local tumor recurrence 
in HNSCC patients. Therefore, this study aimed to develop 
and validate a model using radiomics features from ADC 
maps for diagnosing local tumor recurrence in HNSCC and to 
compare it with radiomics models based on T2WI or T1WI. 

MATERIALS AND METHODS

Study Patients
The Institutional Review Boards of Asan Medical Center 

and Seoul National University Hospital approved this 

retrospective study, and the requirement for informed 
consent was waived (IRB No. 2019-1095). We searched the 
electronic database of the Department of Radiology at two 
tertiary centers and retrospectively reviewed patient records 
between January 2014 and October 2019. We identified 
366 consecutive patients who met the following inclusion 
criteria: 1) histopathological diagnosis of HNSCC according 
to the WHO criteria, 2) completion of a standard treatment 
regimen for definitive treatment based on the TNM 
classification according to the 8th edition of the American 
Joint Committee on Cancer (AJCC) [18], 3) newly developed 
contrast-enhancing lesions at the primary cancer site on 
surveillance MRI that included DWI, and 4) diagnosis of local 
tumor recurrence or post-treatment change on pathologic 
confirmation or clinico-radiological consensus. Post-
treatment imaging findings were used for risk stratification 
and recommended biopsy consideration with suspicion of 
tumor recurrence. Local tumor recurrence was diagnosed 
based on clinico-radiological consensus when definite 
radiologic or clinical progression was identified with at least 
20% increase in maximal diameter. If contrast-enhancing 
lesions were initially suspected to be post-treatment 
changes, follow-up imaging studies were performed at 2- to 
6-month intervals and subsequently at 1-year intervals. If 
the contrast-enhancing lesions remained stable or regressed 
without treatment during a follow-up period of at least 1 
year, a post-treatment change was diagnosed. Patients were 
excluded if 1) the quality of the MRI, including DWI, was 
inadequate for image analysis (n = 37), and 2) follow-up 
examinations were inadequate to confidently diagnose tumor 
recurrence or post-treatment change on clinico-radiological 
consensus (n = 44). The inclusion and exclusion processes 
are illustrated in Figure 1. Finally, 215 patients from the 
Asan Medical Center were included, and a temporal split (3:1) 
was applied to create an independent validation set. Seventy 
patients from the Seoul National University Hospital were 
included in the external validation set.

Imaging Data Acquisition and Processing
All MRI studies at both institutions were performed with a 

3T MR imaging scanner (Skyra, Siemens Healthcare; Ingenia, 
Philips Medical Systems) using a 64- or 20-channel head 
and neck coil. A detailed description and comparison of the 
imaging parameters are shown in Supplementary Table 1. 

Segmentation of newly appearing contrast-enhancing 
lesions at the primary cancer site was performed by two 
neuroradiologists independently (with 7 years of experience 
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in oncologic imaging for both). The most representative 
slice of the newly appeared contrast-enhancing lesion was 
chosen upon reviewing CE-T1WI, T2WI, and DWI, and the 
region of interest was defined on either CE-T1WI or T2WI, 
depending on whether the image enabled superior anatomic 
representation of the lesion. The region of interest was 
semi-automatically defined using a segmentation threshold 
and region-growing segmentation algorithm using the 
MITK software (www.mitk.org, German Cancer Research 
Center) [19]. All segmented images were validated by an 
experienced neuroradiologist (with 19 years of experience 
in oncologic imaging). Finally, we resampled all images 
into a uniform voxel size of 1 x 1 x 1 mm. T2WI and ADC 
were then co-registered to the CE-T1WI using the SPM 
software (www.fil.ion.ucl.ac.uk/spm/). The co-registration 
process included the generation of a mask from CE-T1WI 
and transformation of the ADC and T2WI to CE-T1WI using 
affine transformations with normalized mutual information 
as a cost function, with 12 degrees of freedom and trilinear 
interpolation [20].

Radiomics Feature Extraction
Radiomics features were extracted using MATLAB 

R2014b (MathWorks). For T2WI and CE-T1WI, signal 
intensity normalization was performed using the ANTsR 
and Whitestripe packages in R software (R version 3.6.1, 
https://www.r-project.org) [21,22]. All lesions were 
included without applying a size cutoff, and the bin 
number was fixed at 32, which allowed all features to be 
included without generating spurious results. There were 
17 first-order features and 87 texture features. Wavelet 
transformation was applied to the original images with A, 
H, V, and D filters to obtain four wavelet-decomposition 
images, and the first-order and texture features were then 
applied to the wavelet-transformed images, yielding 416 
wavelet-transformed features. This resulted in 520 features 
from T2WI, CE-T1WI, and ADC per patient. A gray-level co-
occurrence matrix (GLCM) was constructed from 2D analysis 
of the region of interest with 4-connectivity, which was 
calculated by pixels in each direction and at distances of 
1, 2, and 3. The radiomics features used adhered to the 
standards set by the Imaging Biomarker Standardization 
Initiative [23]. The code for the feature extraction and 
analysis pipeline is available in the open repository (https://
github.com/jieunp/radiogenomics).

Inclusion criteria
Histopathologic diagnosis of HNSCC
Completion of standard treatment regimen for definitive treatment
Newly developed contrast-enhancing lesions at the primary site on surveillance MRI
Diagnosis of local tumor recurrence or posttreatment change by pathologic confirmation or clinico-radiologic consensus

AMC cohort
January 2014–October 2019

n = 275

Exclusion criteria
Inadequate image quality for analysis (n = 23)
Inadequate follow up examinations for diagnosis (n = 37)

Exclusion criteria
Inadequate image quality for analysis (n = 14)
Inadequate follow up examinations for diagnosis (n = 7)

AMC cohort
n = 215

Temporal split (3:1)

Training set
n = 161

Internal validation set
n = 54

External validation set
n = 70

SNUH cohort
January 2014–October 2019

n = 91

Fig. 1. Flow diagram showing the patient selection protocol and the inclusion and exclusion criteria. AMC = Asan Medical center, 
HNSCC = head and neck squamous cell carcinoma, SNUH = Seoul National University Hospital

https://github.com/jieunp/radiogenomics
https://github.com/jieunp/radiogenomics
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Statistical Analysis

Patient Demographics and Clinical Characteristics
The Student’s t test for continuous variables and the chi-

square test or Fisher’s exact test for categorical variables 
were used to assess differences between the training 
and validation sets regarding the demographic data and 
the prevalence of each classification category. Statistical 
significance was set at p < 0.05. Statistical analyses were 
performed using a statistical software (R version 3.6.1). 

Selection of Significant Radiomics Features
All radiomics features were normalized by transforming 

the data into new values with a mean of 0 and standard 
deviation of 1 (z-score transformation). The concordance 
correlation coefficient defined by Lin [24] was calculated to 
account for segmentation variability between two readers, 
and the features with concordance correlation coefficient 
> 0.75 (1321/1460, 90.5%) were considered reproducible. 
The logistic regression analysis to predict local tumor 
recurrence was performed to calculate area under the 
receiver operating characteristic (ROC) curve (AUC), and 
radiomics features with AUC > 0.55 (1042/1321, 78.9%) 
were pre-selected. Subsequently, to eliminate redundant 
features, Spearman’s correlation coefficient was calculated 
for all possible feature pairs among 359 features from T2WI, 
341 features from CE-T1WI, and 342 features from ADC. 
For feature pairs demonstrating a Spearman’s correlation 
coefficient > 0.9, the feature with a higher AUC was 
selected, and the other feature was removed. This resulted 
in 43 features from T2WI, 34 from CE-T1WI, and 43 from 
ADC. Then, we applied the least absolute shrinkage and 
selection operator (LASSO) logistic model to select the 
significant features with non-zero coefficients [25-28]. To 
find an optimal λ (the degree of shrinkage), 10-fold cross-
validation with minimum criteria was applied, where the 
final value of λ yielded the minimum cross-validation error.

Individualized Radiomics Score
An individualized radiomics score was developed using 

the non-zero coefficients of the radiomics features. This 
score is calculated as the sum of each radiomics feature 
multiplied by a non-zero coefficient from LASSO, according 
to the following equation: 

Radiomics score = intercept 
+ coefficient of the 1st feature x value of the 1st feature
+ coefficient of the 2nd feature x value of the 2nd feature Ta
bl
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+ coefficient of the 3rd feature x value of the 3rd feature 
+…+ coefficient of the nth feature x value of the nth 

feature

The radiomics score was calculated separately for T2WI, 
CE-T1WI, ADC, and their combination. 

Clinical Parameters
Age, sex, and clinical stage (I–II and III–IV) were 

considered, and univariable and multivariable logistic 
regression analyses were performed to diagnose local tumor 
recurrence in HNSCC. 

Model Performance Evaluation
ROC curve analysis was performed to determine the 

diagnostic performance of the radiomics scores and clinical 
parameters. The optimal cutoff point of the ROC curve 
was selected using the highest Youden index [29]. The 
diagnostic performance of the ADC radiomics score was 
compared with that of the radiomics scores using T2WI 
and CE-T1WI and clinical parameters. The diagnostic 
performance of the combined model incorporating the ADC 
radiomics score and clinical parameters was also calculated. 
The AUCs were compared using the Delong test. Statistical 
significance was set at p < 0.05.

RESULTS

Patient Demographics
The baseline demographic and clinical characteristics of 

the patients are summarized in Table 1. There were 161 
patients in the training set (91 with local tumor recurrence 
and 70 with post-treatment change), 54 in the internal 
validation set (36 with local tumor recurrence and 18 with 
post-treatment change), and 70 in the external validation 
set (34 with local tumor recurrence and 36 with post-

treatment change). There were no differences between 
patients in the development set (training and internal 
validation sets) and external validation set in age, sex, 
and clinical stage. Patients were treated according to 
the standard treatment regimen for definite treatment, 
including surgery alone (development set vs. external 
validation set, 25.1% [54/215] vs. 25.7% [18/70], p = 
0.920), surgery followed by radiotherapy, chemotherapy, or 
chemoradiotherapy (45.6% [98/215] vs. 47.1% [33/70], 
p = 0.827), chemoradiotherapy (19.5% [42/215] vs. 15.7% 
[11/70], p = 0.478), or radiotherapy alone (9.8% [21/215] 
vs. 11.4% [8/70], p = 0.701). The mean time interval 
from the initial diagnosis to the development of contrast-
enhancing lesion was 751.9 days (range, 91–3749 days) for 
the development set and 571.3 days (range, 77–3206 days) 
for the external validation set (p = 0.131). The diagnosis 
of local tumor recurrence or post-treatment change was 
confirmed pathologically in 59.1% (127/215) of the 
training and internal validation sets and 20.0% (14/70) 
of the external validation set (p < 0.001). There was no 
difference in the ratio between local tumor recurrence and 
post-treatment change across all subsites in the training, 
internal validation, and external validation sets.

 
Diagnostic Model Using Individualized Radiomics Score

Among 520 radiomics features extracted from T2WI, 
five were selected to build the individualized T2WI 
radiomics score. The diagnostic performance of the T2WI 
radiomics score in the internal validation set was 0.64 
(95% confidence interval [CI], 0.47–0.81), with sensitivity 
of 69.4% (95% CI, 53.1–82.0) and specificity of 55.6% 
(95% CI, 33.7–75.4). Among the 520 radiomics features 
extracted from CE-T1WI, six were selected to build the CE-
T1WI radiomics score. The diagnostic performance of the CE-
T1WI radiomics score in the internal validation set was 0.67 
(95% CI, 0.52–0.83), with sensitivity of 83.3% (95% CI, 

Table 2. Diagnostic Performance of Radiomics Scores for Diagnosing Local Tumor Recurrence in HNSCC
Training Set (n = 161) Internal Validation Set (n = 54)

AUC Sensitivity (%) Specificity (%) AUC Sensitivity (%) Specificity (%)
ADC score 0.78 (0.71, 0.85) 83.5 (74.6, 89.8) 60.0 (48.3, 70.7) 0.76 (0.63, 0.89) 75.0 (58.9, 86.3) 50.0 (29.0, 71.0)
T2WI score 0.75 (0.67, 0.83) 79.1 (69.7, 86.2) 70.0 (58.5, 79.5) 0.64 (0.47, 0.81) 69.4 (53.1, 82.0) 55.6 (33.7, 75.4)
CE-T1WI score 0.69 (0.61, 0.77) 87.9 (79.6, 93.1) 44.3 (33.2, 55.9) 0.67 (0.52, 0.83) 83.3 (68.1, 92.1) 38.9 (20.3, 61.4)
ADC + T2WI + 
  CE-T1WI score

0.79 (0.72, 0.86) 78.0 (68.5, 85.3) 71.4 (60.0, 80.7) 0.74 (0.60, 0.88) 75.0 (58.9, 86.3) 72.2 (49.1, 87.5)

Numbers in parenthesis are 95% confidence intervals. ADC = apparent diffusion coefficient, AUC = area under the receiver operating 
characteristic curve, CE-T1WI = contrast-enhanced T1-weighted imaging, HNSCC = head and neck squamous cell carcinoma, T2WI = T2-
weighted imaging
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68.1–92.1) and specificity of 38.9% (95% CI, 20.3–61.4). 
Among the 520 radiomics features extracted from ADC, 9 
features were selected to build the ADC radiomics score. The 
diagnostic performance of the ADC radiomics score in the 
internal validation set was 0.76 (95% CI, 0.63–0.89) with 
sensitivity of 75.0% (95% CI, 58.9–86.3) and specificity 
of 50.0% (95% CI, 29.0–71.0). Significant features from 
T2WI, CE-T1WI, and ADC, with correlation coefficients from 
LASSO, are listed in Supplementary Table 2. The diagnostic 
performance incorporating the selected features from T2WI, 
CE-T1WI, and ADC showed an AUC of 0.74 (95% CI, 0.60–
0.88) with sensitivity of 75.0% (95% CI, 58.9–86.3) and 
specificity of 72.2% (95% CI, 49.1–87.5) in the internal 
validation set. The diagnostic performances of the radiomics 
scores in the training and internal validation sets are shown 
in Table 2.

 
Clinical Parameters

The results of the univariable and multivariable analyses 
for determining the factors for diagnosing local tumor 
recurrence using the training set are summarized in 
Supplementary Table 3. On univariable analysis, age showed 
an odds ratio (OR) of 1.01 (95% CI, 0.98–1.04; p = 0.400), 
sex showed an OR of 1.1 (95% CI, 0.5–2.6; p = 0.818), and 
clinical stage showed an OR of 1.6 (95% CI, 0.8–3.4; p = 
0.217). On multivariable analysis, age showed an OR of 1.01 
(95% CI, 0.97–1.04; p = 0.694), sex showed an OR of 1.7 
(95% CI, 0.7–4.6; p = 0.248), and clinical stage showed OR 
of 1.1 (95% CI, 0.5–2.6; p = 0.837).

Diagnostic Performance of the Radiomics Scores and 
Clinical Parameters in the External Validation Set

The diagnostic performance of the radiomics scores and 
clinical parameters in the external validation sets are shown 
in Table 3. The AUC of the ADC radiomics score was 0.77 
(95% CI, 0.65–0.88), with sensitivity of 97.1% (95% CI, 
85.1–99.5) and specificity of 25.0% (95% CI, 13.8–41.1) in 
the external validation set. This was higher than the T2WI 
radiomics score with AUC of 0.53 (95% CI, 0.40–0.67; p = 
0.006), CE-T1WI radiomics score with AUC of 0.53 (95% 
CI, 0.40–0.67; p = 0.012) and clinical parameters with AUC 
of 0.53 (95% CI, 0.39–0.67; p = 0.021). The diagnostic 
performance of the combined model incorporating the ADC 
radiomics score and clinical parameters was comparable 
to the ADC radiomics score with AUC of 0.77 (95% CI, 
0.66–0.88; p = 0.856). Figures 2 and 3 show representative 
cases of local tumor recurrence and post-treatment changes, Ta
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respectively. 

DISCUSSION

To our knowledge, this was the first study to develop 
and validate a model using radiomics features from ADC 
maps to diagnose local tumor recurrence in HNSCC patients 
after definitive treatment. We constructed individualized 
radiomics scores from the significant radiomics features 
extracted from T2WI, CE-T1WI, and ADC images using 

non-zero coefficients from LASSO. The ADC radiomics 
score showed a higher diagnostic performance than 
T2WI or CE-T1WI and clinical parameters. Moreover, the 
diagnostic performance of the ADC radiomics score in 
the external validation set was comparable to that in the 
internal validation set. This underscores the potential and 
generalizability of the ADC radiomics score for the diagnosis 
of local tumor recurrence in HNSCC in clinical practice.

Previous studies have shown that recurrent tumors can 
be differentiated from post-treatment changes based on 

Fig. 2. A 55-year-old male treated by concurrent chemoradiotherapy for right hypopharyngeal squamous cell carcinoma (T4aN2bM0, 
clinical stage IVA). 
A. Contrast-enhanced T1-weighted image after the completion of concurrent chemoradiotherapy shows complete remission. B. During 
surveillance, contrast-enhanced T1-weighted image shows newly developed, ill-defined contrast-enhancing mass at the right pyriform sinus 
(arrows). C. Mean ADC value of the enhancing lesion (arrows) was 0.92 mm2/s (standard deviation = 0.12 mm2/s) on the ADC map. D. A voxel-
based color-scaled map of a representative significant ADC radiomics feature overlayed on the ADC map demonstrates high entropy. The mass was 
confirmed to be recurrent squamous cell carcinoma on excision. ADC = apparent diffusion coefficient

A

C

B

D
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ADC values, with sensitivity of 69%–100% and specificity 
of 77%–95% [10-14]. Significantly lower ADC values have 
been observed in recurrent tumors, which reflects their 
hypercellularity [30,31], whereas post-treatment changes 
exhibited relatively low cellularity associated with variable 
degrees of edema and inflammatory reaction. Previous 
studies regarding radiomics analysis of MR images utilized 
T2WI and CE-T1WI and reported diagnostic performance 

with an AUC of up to 0.85 for preoperative discrimination of 
clinical stage or for determination of human papillomavirus 
(HPV) infection status [32,33]. A limited number of studies 
have explored radiomics approaches using ADC maps, none 
of which have evaluated ADC radiomics to diagnose local 
tumor recurrence in HNSCC [34,35]. In our study, we were 
able to tease out the higher performance of the diagnostic 
model using ADC maps compared to the models using T2WI 

Fig. 3. A 38-year-old male treated by concurrent chemoradiotherapy for non-keratinizing carcinoma of the nasopharynx (T3N1M0, 
clinical stage III).
A. Contrast-enhanced T1-weighted image after the completion of concurrent chemoradiotherapy shows complete remission. B. During 
surveillance, contrast-enhanced T1-weighted image demonstrates newly developed contrast-enhancing mass at the right side of the nasopharynx 
(arrows). C. The mass shows low ADC value (arrows) with mean ADC of 0.86 mm2/s (standard deviation = 0.22 mm2/s) on the ADC map raising 
suspicion of local tumor recurrence. D. A voxel-based color-scaled map of a representative significant ADC radiomics feature overlayed on the ADC 
map demonstrates low entropy. Excisional biopsy was performed and revealed inflamed granulation tissue. ADC = apparent diffusion coefficient

A

C

B

D
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and CE-T1WI, which were externally validated. 
Combining the selected radiomics features from ADC, 

T2WI, and CE-T1WI did not improve the diagnostic 
performance of the ADC radiomics score alone. Additionally, 
combining clinical parameters with the ADC radiomics 
score did not improve the diagnostic performance of the 
ADC radiomics score. These results suggest that the ADC 
radiomics score may provide a unique value that is not 
achievable by radiomics scores using T2WI and CE-T1WI. 
Significant ADC radiomics features included minimum 
ADC and variance, which may indicate that not only high 
cellularity but also the degree of heterogeneity plays an 
important role. Furthermore, the most relevant feature 
among the selected descriptors was derived from the GLCM. 
GLCM is a texture-analysis method that calculates how 
often pairs of pixels with specific values and in a specified 
spatial relationship occur in an image, and reflects the 
heterogeneity of tumors [36]. The radiomic approach may 
offer improved discriminatory power by demonstrating 
voxel-based heterogeneity using various methods. 

In terms of diagnostic performance, the ADC radiomics 
score demonstrated very high sensitivity (97.1%) but low 
specificity (25%). This indicates that this tool should be 
used in conjunction with other parameters to improve 
the specificity. In this study, HPV status was considered 
when establishing clinical stages in cases of oropharyngeal 
cancer when available, although HPV status was largely 
unavailable, especially before to the 8th edition of the 
AJCC. Clinical parameters, including extranodal extension 
and perineural invasion, which are established risk factors 
for local tumor recurrence, should be considered. Given its 
high sensitivity, the ADC radiomics score may be utilized 
as a supplementary tool to improve radiologists’ diagnostic 
performance or workflow, which needs further validation for 
incorporation in clinical practice. 

The lack of standardization of acquisition protocols has 
often been an obstacle that prevents the use of radiomics 
models as biomarkers in multicenter practices. However, 
the strength of our study is that diagnostic models using 
radiomics features were validated using an external cohort 
obtained under heterogeneous acquisition protocols. The 
ADC radiomics score maintained comparable diagnostic 
performance among the training, internal validation, and 
external validation sets, whereas the diagnostic performance 
decreased with the radiomics scores using T2WI and CE-
T1WI in the external validation set. The parametric nature of 
ADC maps obviates the need for signal normalization, unlike 

T2WI or CE-T1WI, which may contribute to their robustness 
across different acquisition schemes with a potential for 
generalizability and applicability in clinical practice.

Our study had some limitations owing to its retrospective 
nature. All patients were staged according to the 8th 
edition of the AJCC, and patients diagnosed prior to its 
availability were restaged accordingly. However, patients 
staged and treated according to the prior edition of the 
AJCC were likely to have undergone different treatment 
regimens, particularly in cases of oropharyngeal cancer 
with recognition and reflection of HPV or p16 positivity in 
clinical staging. This accounted for 11.6% of patients in 
the development set and 21.4% in the external validation 
set. Additionally, HNSCC patients with heterogeneous 
primary cancer sites who underwent different treatment 
modalities and regimens according to the primary cancer 
site were included, which might have partly accounted 
for the clinical stage not being identified as a significant 
factor in diagnosing local tumor recurrence on logistic 
regression analyses. Moreover, radiomics features were 
extracted from a single representative image of newly 
appearing contrast-enhancing lesions, and volume-based 
radiomics analysis is warranted to validate the findings of 
our study further. 

In conclusion, the diagnostic model using radiomics 
features from ADC maps showed a higher performance 
than radiomics models using T2WI or CE-T1WI and clinical 
parameters in the diagnosis of local tumor recurrence in 
HNSCC following definitive treatment. These results suggest 
the potential of the model using radiomics features from 
the ADC map as a biomarker for diagnosing local tumor 
recurrence in HNSCC.

Supplement
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