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To investigate whether high serum triglycerides (TG) level is associated with

adverse renal outcomes in patients with non-dialysis chronic kidney disease

(CKD), a total of 2,158 subjects from a prospective cohort study (KoreanCohort

Study for Outcome in Patients With Chronic Kidney Disease) were divided

into the quartile by serum TG level. The primary outcomes were composite

renal events, which is defined as a composite of decline of kidney function

(the first occurrence of > 50% decline of estimated glomerular filtration

rate or doubling of serum creatinine from the baseline) or onset of end-

stage renal disease (initiation of dialysis or kidney transplantation). During

the median follow-up of 6.940 years, the cumulative incidence of composite

renal event was significantly di�ered by serum TG level in Kaplan–Meier curve

analysis (P < 0.001, by Log-rank test). Cox regression analysis demonstrated

that, compared to that of the 1st quartile, the risk of composite renal event

was significantly higher in the 4th quartile (adjusted hazard ratio 1.433, 95%

confidence interval 1.046 to 1.964). The association between high serum TG

level and adverse renal outcome remained consistent in the cause-specific

hazard model. Subgroup analyses revealed that the association is modified by

age, estimated glomerular filtration rate, and spot urine albumin-to-creatinine

ratio. In conclusion, high serum TG level is independently associated with

adverse renal outcomes in patients with non-dialysis CKD. Interventional

studies are warranted to determine whether lowering serum TG levels may

alter the natural course of CKD.
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Introduction

Dyslipidemia is commonly accompanied by chronic

kidney disease (CKD) (1–3), and is a potentially modifiable

cardiovascular (CV) risk factor (4). The clinical practice

guideline for lipid management in CKD recommends a

pharmacological approach with use of statins to mainly

lower low-density lipoprotein cholesterol (LDL-C) level (4).

Yet, dyslipidemia in CKD is characterized with high serum

triglycerides (TG) and low high-density lipoprotein cholesterol

(HDL-C) level (1–3). Moreover, high TG or low HDL-C level,

or high TG-to-HDL-C ratio has been associated with increased

risk of cardiovascular (CV) events and all-cause mortality in

patients with CKD (5, 6) as well as in general population (7–9).

Mounting evidence now suggest that dyslipidemia may also

contribute to the development and progression of CKD (10–

14). Atherosclerosis Risk in Communities study that assessed

12,728 participants reported that high TGs and low HDL-C,

but not LDL-C, levels increased the risk of renal dysfunction

(15). A prospective cohort study that analyzed 4,483 initially

healthy men from the Physicians’ Health Study demonstrated

that various indices in lipid metabolism, including elevated total

cholesterol, high non-HDL-C, high ratio of total cholesterol

to HDL-C, and low HDL-C, significantly increased the risk of

renal dysfunction (16). A community-based, longitudinal cohort

study of 2,585 participants from Framingham Offspring Study

showed that HDL-C level is inversely associated with the risk

of new-onset CKD among those free of CKD at the baseline

(17). Importantly, a recent study conducted in Japan proved

that higher TG-to-HDL-C ratio was associated with more

rapid decline of estimated glomerular filtration rate (eGFR) in

participants with CKD (1).

Indeed, it seems obvious that dyslipidemia is associated with

increased risk of incident CKD among the general population,

and that a certain abnormal lipid index, such as TG-to-HDL-

C ratio, is also associated with rapid progression of CKD.

Yet, few studies so far evaluated an independent association

of serum TG level with adverse renal outcomes in patients

with non-dialysis CKD (3, 18). Therefore, we here aimed to

investigate the association between serum TG level and renal

outcomes in patients with non-dialysis CKD. We performed a

series of sensitivity analyses to validate our findings. Finally, we

conducted a series of subgroup analyses to examine whether the

association between serum TG level and renal outcomes might

be modified clinical contexts.

Methods

Study design

The Korean Cohort Study for Outcomes in Patients

With Chronic Kidney Disease (KNOW-CKD) is a nationwide

prospective cohort study involving nine tertiary-care general

hospitals in Korea (NCT01630486 at http://www.clinicaltrials.

gov) (19). Korean patients, aged between 20 and 75 years,

with CKD from stage 1 to pre-dialysis stage 5, who voluntarily

provided informed consent were enrolled from 2011 through

2016. The study was conducted in accordance with the

principles of the Declaration of Helsinki. The study protocol

was approved by the institutional review boards of participating

centers, including at Seoul National University Hospital, Yonsei

University Severance Hospital, Kangbuk Samsung Medical

Center, Seoul St.Mary’s Hospital, Gil Hospital, Eulji General

Hospital, Chonnam National University Hospital, and Busan

Paik Hospital. All participants had been under close observation,

and participants who experienced study out-comes were

reported by each participating center. Among 2,238 who were

longitudinally followed up, excluding those lacking the baseline

measurement of serum TG level, a total of 2,158 subjects

were finally included for the analyses (Figure 1). The study

observation period ended on March 31, 2021. The median

follow-up duration was 6.940 years.

Data collection from participants

Demographic information was collected from all eligible

participants, as previously described (20). The methods

for anthropometric measures, such as height, weight, waist

circumference (WC), body mass index (BMI), and systolic and

diastolic blood pressures (SBP and DBP), are also previously

described (21). Venous samples were collected following

overnight fasting, to determine hemoglobin, creatinine

(Cr), TG, HDL-C, LDL-C, total cholesterol, fasting glucose,

high-sensitivity C-reactive protein (hs-CRP), albumin, and

25-hydroxyvitamin D [25(OH) vitamin D] levels at the

baseline. Chronic Kidney Disease Epidemiology Collaboration

equation was adopted to calculate eGFR (22). CKD stages

were determined by the Kidney Disease Improving Global

Outcomes guidelines (23). Spot urine albumin-to-Cr ratio

(ACR) was measured in random, preferably second-voided,

urine samples. The coronary artery calcium score (CACS) score

was determined using Agatston unit (AU) on a digital radiologic

workstation at the baseline (24), following electrocardiography-

gated coronary multi-detector computed tomography scans,

based on the standard protocol of each center.

Exposure and study outcome

The exposure of primary interest was serum TG level,

which was used as a categorical variable. The subjects were

divided into the quartile (Q1 [20–92 mg/dL], Q2 [92–132

mg/dL], Q3 [133–193 mg/dL] and Q4 [194–909 mg/dL]) by

serum TG level (Figure 1). The primary outcomes of interest
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FIGURE 1

Flow diagram of the study participants. SD, standard deviation; TG, triglyceride; Q1, 1st quartile; Q2, 2nd quartile; Q3, 3rd quartile; Q4,

4th quartile.

were composite renal events. Composite renal events included

decline of kidney function (the first occurrence of > 50%

decline of eGFR or doubling of serum Cr from the baseline)

and onset of end-stage renal disease (ESRD, initiation of

dialysis or kidney transplantation) during follow-up periods.

The secondary outcomes were the components of composite

renal events (decline of kidney function and onset of ESRD),

analyzed separately. In cases that decline of kidney function

event and onset of ESRD event simultaneously occurred in a

visit, both events were counted.

Statistical analysis

Continuous variables were expressed as mean ± standard

deviation or median [interquartile range]. Categorical variables

were expressed as number of participants and percentage.

Kolmogorov-Smirnov test was conducted to validate normality

of distribution. To compare the baseline characteristics by serum

TG level, one-way analysis of variance and χ2 test were used

for continuous and categorical variates, respectively. eGFR was

calculated by measuring serum Cr level at 0, 6, and 12 months

and then yearly thereafter up to 9 years. eGFR decline rate per

year were calculated using a generalized linear mixed model,

where, excluding the subjects with serum Cr measurement

less than three times during the follow-up period, a total of

1,890 (87.5%) patients were included. Cumulative incidences of

outcome events were estimated using Kaplan–Meier analyses,

and were compared using log-rank test. The participants with

any missing data were excluded for further analyses. To address

the association between serum TG level and study outcomes, we

used Cox proportional hazard regression models. Patients with

follow-up loss were censored at the time of the last visit. Models

were constructed after adjusting for the following variables.

Model 1 represents crude hazard ratios (HRs). Model 2 was

adjusted for age, sex, BMI, WC, medication [diuretics, statins

angiotensin-converting enzyme inhibitor/angiotensin receptor

blockers (ACEi/ARBs), number of antihypertensive drugs],

SBP and DBP, primary renal disease, smoking history, and

Charlson comorbidity index. Model 3 was further adjusted

for CACS, hemoglobin, 25(OH) vitamin D, albumin, fasting

glucose, LDL-C, HDL-C, total cholesterol, and hs-CRP. Model

4 was additionally adjusted for CKD stage and spot urine

ACR. The results of Cox proportional hazard models were

presented as HRs and 95% confidence intervals (CIs). Restricted

cubic splines were used to visualize the association between

serum TG level as a continuous variable and HRs for study

outcomes. To validate our findings, we performed sensitivity

analyses. For this purpose, first, we exclude the subjects with

eGFR ≥ 90 mL/min./1.73 m2 (CKD stage 1), because the

subjects with eGFR ≥ 90 mL/min./1.73 m2 are considered

close to normal kidney function, and may not represent CKD

population well. Second, for another sensitivity analysis, we

excluded the subjects with eGFR < 15 mL/min./1.73 m2 (CKD

stage 5), because the subjects with eGFR < 15 mL/min./1.73

m2 are relatively small in number, and may exaggerate the

association between serum TG level and study outcomes due

to far advanced CKD. Third, the association between TG-to-

HDL-C ratio and the primary study outcomes was evaluated, to

examine whether the association between a previously proven

lipid index and the study outcome is reproducible in the

participants of the current study. Fourth, we assessed cause-

specific HRs for the primary and secondary study outcomes by

serum TG levels, where death before reaching the composite
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renal event was considered a competing risk and treated as

censoring. We also estimated the cumulative outcome curves

by cumulative incidence function with Gray’s test. To examine

whether the association of serum TG level with study outcomes

is modified by certain clinical contexts, we conducted pre-

specified subgroup analyses. Subgroups were defined by age

[< 60 versus (vs.) ≥ 60 years], sex (male vs. female), BMI

(< 23 vs. ≥ 23 kg/m2), eGFR (< 45 vs. ≥ 45 mL/min/1.73

m2)), and spot urine ACR (< 300 vs. ≥ 300 mg/g). The cut-

off value for eGFR was determined because the number of

subjects with eGFR ≥ 45 ml/min/1.73 m2) (n= 1,113) and with

eGFR < 45 ml/min/1.73 m2) (n = 1,045) was almost equal.

The cut-off value for spot urine ACR was determined according

to the definition of macroalbuminuria. Two-sided P < 0.05

were considered statistically significant. Statistical analysis was

performed using SPSS for Windows version 22.0 (IBM Corp.,

Armonk, NY) and R (version 4.1.1; R project for Statis-tical

Computing, Vienna, Austria).

Results

Baseline characteristics

To describe the baseline characteristics, the study

participants were divided into the quartile by serum TG

level (Table 1). The mean age of the participants was lower in

the 1st quartile (Q1) than in the 2nd (Q2), 3rd (Q3) and 4th

(Q4) quartile. The proportion of male participants significantly

increased as serum TG level increased. The subjects in Q1

tend to have low Charlson comorbidity index, compared to

those in Q4. The history of diabetes mellitus was least and

most frequent in Q1 (19.6%) and Q4 (31.5%), respectively,

whereas the prevalence of polycystic kidney disease was lowest

and highest in Q4 (8.2%) and Q1 (23.6%), respectively. The

proportion of non-smoker was highest in Q1. The proportions

of the subjection on medication of ACEi/ARBs, diuretics, no

less than three antihypertensive drugs or statins were lowest in

Q1, and tended to increase as serum TG level increased. BMI,

WC, SBP, and DBP were also lowest in Q1, and increased as

serum TG level in-creased. The proportion of the subjection

without coronary artery calcification (CACS = 0) was highest

in Q1. Hemoglobin, total cholesterol, LDL-C, fasting glucose,

hs-CRP, and spot urine ACR were highest in Q4, whereas

HDL-C and 25(OH) vitamin D were highest in Q1. Most

importantly, eGFR at the baseline significantly differed by

serum TG level, as eGFR was best and worst preserved in

Q1 and Q4, respectively. Accordingly, the proportion of the

subjects with advanced CKD stages were relatively higher in

Q4. In the overall, the analysis of the baseline characteristics

unveiled that high serum TG level is associated with unfavorable

clinical features.

Association of serum TG level with renal
outcomes in patients with non-dialysis
CKD

The rates of renal function decline per year by serum

TG levels significantly differed by serum TG levels

(Supplementary Figure S1), as eGFR decline rate of Q4

was significantly more rapid than that of Q1 (P < 0.05, by

one-way ANOVA with Scheffe’s post-hoc analyses). To compare

the cumulative incidences of composite renal event (Figure 2),

decline of kidney function (Supplementary Figure S2) and

onset of ESRD (Supplementary Figure S3), Kaplan–Meier

curve analyses were conducted. The risks of composite

renal event, decline of kidney function and onset of

ESRD were significantly differed by serum TG level (all

P < 0.001, by Log-rank test). To define the independent

association of serum TG level with study outcomes, Cox

regression models were analyzed. The risk of composite

renal event was significantly higher in Q4 (adjusted HR

1.433, 95% CI 1.046 to 1.964), compared to that of Q1

(Table 2). The risk of decline of kidney function (adjusted

HR 1.699, 95% CI 1.167 to 2.474), but not that of onset

of ESRD (adjusted HR 1.272, 95% CI 0.891 to 1.815),

was significantly higher in Q4, compared to that of Q1

(Supplementary Table S1). Restricted cubic splines visualized

stringent linear correlations of serum TG level with the

risks of composite renal event (Figure 3), decline of kidney

function (Supplementary Figure S4) and onset of ESRD

(Supplementary Figure S5).

Sensitivity analyses

To validate the findings, we conducted a series of sensitivity

analyses. After excluding the subjects with eGFR ≥ 90

mL/min./1.73 m2 (adjusted HR 1.443, 95% CI 1.048 to 1.986),

or after excluding the subjects with eGFR < 15 mL/min./1.73

m2 (adjusted HR 1.517, 95% CI 1.075 to 2.141), the risk of

composite renal event remained significantly higher in Q4,

compared to that of Q1 (Supplementary Tables S2, S3). The

HR for composite renal outcome by se-rum TG-to-HDL-C

ratio, which has been previously proven to be associated with

renal outcomes, was also significantly higher in Q4 (adjusted

HR 1.623, 95% CI 1.106 to 2.383), compared to that of Q1

(Supplementary Table S4). Finally, we analyzed cause-specific

hazard model for the primary study outcome by serum TG

levels, where the risk of composite renal event was still robustly

higher in Q4 (adjusted HR 1.434, 95% CI 1.030 to 1.996),

compared to that of Q1 (Table 3). The analyses of cause-

specific hazard models for the secondary study outcomes also

demonstrated the similar results to that of primary analysis

(Supplementary Table S5). The rate of composite renal event by
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TABLE 1 Baseline characteristics of study participants by serum TG levels.

Serum TG level

Q1 Q2 Q3 Q4 P value

Follow-up duration (year) 6.484± 2.537 6.243± 2.525 6.189± 2.607 6.245± 2.431 0.232

Age (year) 52.021± 13.317 54.458± 12.048 54.619± 11.978 53.826± 11.600 0.004

Male 294 (55.1) 309 (57.8) 349 (65.1) 368 (68.3) < 0.001

Charlson comorbidity index 0.001

0 – 3 412 (77.2) 400 (74.8) 359 (67.0) 356 (66.0)

4 – 5 113 (21.2) 127 (23.7) 168 (31.3) 174 (32.3)

6 – 7 9 (1.7) 8 (1.5) 8 (1.5) 9 (1.7)

≥ 8 0 (0.0) 0 (0.0) 1 (0.2) 0 (0.0)

Primary renal disease < 0.001

DM 106 (19.6) 117 (21.9) 153 (28.6) 170 (31.5)

HTN 82 (15.4) 106 (19.8) 117 (21.9) 118 (21.9)

GN 177 (33.1) 177 (33.1) 158 (29.5) 169 (31.4)

TID 4 (0.7) 5 (0.9) 2 (0.4) 3 (0.6)

PKD 126 (23.6) 96 (17.9) 72 (13.5) 44 (8.2)

Others 39 (7.3) 34 (6.4) 33 (6.2) 35 (6.5)

Smoking status < 0.001

Non-smoker 310 (58.1) 310 (57.9) 268 (50.2) 258 (47.9)

Ex-smoker 53 (9.9) 76 (14.2) 96 (18.0) 113 (21.0)

Current smoker 171 (32.0) 149 (27.9) 170 (31.8) 168 (31.2)

Medication

ACEi/ARBs 432 (80.9) 458 (85.6) 473 (88.2) 476 (88.3) 0.001

Diuretics 117 (21.9) 151 (28.2) 183 (34.1) 230 (42.7) < 0.001

Number of anti-HTN drugs ≥ 3 116 (21.7) 132 (24.7) 180 (33.6) 199 (36.9) < 0.001

Statins 226 (42.3) 279 (52.1) 303 (56.5) 303 (56.2) < 0.001

BMI (kg/m2) 23.347± 3.156 24.101± 3.084 25.121± 3.400 25.891± 3.430 < 0.001

WC (cm) 83.523± 9.454 85.782± 8.797 89.470± 9.420 91.505± 9.099 < 0.001

SBP (mmHg) 124.798± 15.655 127.419± 16.382 128.781± 14.628 130.578± 17.724 < 0.001

DBP (mmHg) 75.552± 11.387 76.809± 11.030 76.817± 10.346 78.539± 11.534 < 0.001

CACS (AU) < 0.001

0 289 (56.9) 263 (52.2) 217 (43.5) 200 (40.0)

> 0, ≤ 400 168 (33.1) 192 (38.1) 220 (44.1) 234 (46.8)

> 400, ≤ 1,000 30 (5.9) 32 (6.3) 35 (7.0) 36 (7.2)

> 1,000 21 (4.1) 17 (3.4) 27 (5.4) 30 (6.0)

Laboratory findings

Hemoglobin (g/dL) 12.562± 1.847 12.771± 2.028 12.835± 2.052 13.205± 2.114 < 0.001

Albumin (g/dL) 4.198± 0.358 4.203± 0.382 4.153± 0.445 4.150± 0.509 0.066

Total cholesterol (mg/dL) 163.101± 34.909 171.131± 36.428 173.426± 37.202 189.618± 43.611 < 0.001

LDL-C (mg/dL) 90.228± 27.097 98.237± 30.449 99.627± 32.967 99.818± 35.608 < 0.001

HDL-C (mg/dL) 57.680± 16.291 51.295± 14.383 46.019± 12.885 42.237± 13.497 < 0.001

Fasting glucose (mg/dL) 100.066± 23.889 106.409± 34.417 111.017± 33.990 127.366± 55.756 < 0.001

25(OH) Vitamin D (ng/mL) 19.521± 9.159 17.731± 7.151 17.918± 7.789 15.964± 7.026 < 0.001

hs-CRP (mg/dL) 0.500 [0.200, 1.350] 0.500 [0.200, 1.500] 0.600 [0.250, 1.700] 0.980 [0.400, 2.00] 0.913

Spot urine ACR (mg/g) 203.959 [38.478, 643.516] 300.545 [54.264, 818.582] 405.691 [59.429, 1,207.620] 526.679 [150.419, 1,647.123] < 0.001

eGFR (mL/min./1.73 m2) 55.682± 32.118 50.401± 30.247 48.238± 28.704 48.895± 28.032 < 0.001

CKD stages < 0.001

Stage 1 119 (22.3) 86 (16.1) 70 (13.1) 67 (12.4)

Stage 2 113 (21.2) 92 (17.2) 114 (21.3) 88 (16.3)

Stage 3a 86 (16.1) 101 (18.9) 72 (13.4) 98 (18.2)

Stage 3b 90 (16.9) 114 (21.3) 121 (22.6) 128 (23.7)

Stage 4 94 (17.6) 106 (19.8) 118 (22.0) 132 (24.5)

Stage 5 32 (6.0) 36 (6.7) 41 (7.6) 26 (4.8)

Values for categorical variables are given as number (percentage); values for continuous variables, as mean± standard deviation or median [in-terquartile range].

ACEi, angiotensin converting enzyme inhibitor; ACR, albumin-to-creatinine ratio; ARB, angiotensin receptor blocker; AU, Agatston unit; BMI, body mass index; CKD, chronic kidney

disease; CACS, coronary artery calcium score; Cr, creatinine; DBP, diastolic blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis;

HDL-C, high density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; HTN, hypertension; LDC-C, low density lipoprotein cholesterol; PKD, polycystic kidney disease;

SBP, systolic blood pressure; TG, triglycerides; TID, tubulointerstitial disease; WC, waist circumference.
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FIGURE 2

Kaplan-Meier analysis for cumulative incidence of composite

renal event by serum TG levels. P value by Log-rank test. TG,

triglycerides; Q1, 1st quintile; Q2, 2nd quintile; Q3, 3rd quintile;

Q4, 4th quintile.

Gray’s test for competing risk (P < 0.001) was still significantly

differed by serum TG levels (Supplementary Figure S6).

Subgroup analyses

To address whether the association of serum TG level

with study outcomes is modified by certain clinical contexts,

we performed pre-specified subgroup analyses. The association

between TG level and composite renal event was significantly

more prominent in the subjects with age < 60 years (P for

interaction = 0.004), eGFR ≥ 45 mL/min./1.73 m2 (P for

interaction = 0.040), and spot urine ACR ≥ 300 mg/g (P for

interaction = 0.043) (Table 4). The association between TG

level and decline of kidney function was also significantly more

prominent in the subjects with age < 60 years (P for interaction

= 0.046), eGFR ≥ 45 mL/min./1.73 m2 (P for interaction =

0.022), and spot urine ACR ≥ 300 mg/g (P for interaction

= 0.043) (Supplementary Table S6). The association between

TG level and onset of ESRD was not significantly altered by

clinical contexts, such as age, sex, BMI, eGFR, or albuminuria

(Supplementary Table S7).

Discussion

In the present study, we found that high serum TG level

is independently associated with adverse renal outcomes in

patients with non-dialysis CKD. Our finding is robust, because T
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FIGURE 3

Restricted cubic spline of serum TG level on composite renal

event. Adjusted HR of serum TG level as a continuous variable

for composite renal events is depicted. The model was adjusted

for age, sex, BMI, WC, medication (diuretics, statins, ACEi/ARBs,

number of antihypertensive drugs), SBP and DBP, primary renal

disease, smoking history, Charlson comorbidity index, CACS,

hemoglobin, 25(OH) vitamin D, albumin, fasting glucose, LDL-C,

HDL-C, total cholesterol, hs-CRP, CKD stage and spot urine

ACR. HR, hazard ratio; TG, triglycerides.

we demonstrated consistent results in a series of sensitivity

analyses, including the analysis of cause-specific hazard models,

in which the death occurring before reaching the primary

outcome was treated as a competing risk and censored. We

also observed that the association of serum TG level with

renal outcomes is modified by several clinical contexts, as the

association was more prominent in the subjects with age < 60

years, eGFR ≥ 45 mL/min./1.73 m2, and spot urine ACR ≥

300 mg/g.

Although the precise mechanism for the association

between high serum TG level and adverse renal outcomes

in patients with CKD is not clearly presented in the current

study, some possible explanations might be suggested. TG-

rich lipoproteins and accumulation of their oxidation-prone,

atherogenic remnants are known to accelerate atherosclerosis

(25), triggering atherogenic and pro-inflammatory process

in the renal vasculature. In addition, hypertriglyceridemia

may promote cellular uptake and accumulation of free fatty

acid by the cells in the kidney, such as mesangial cells

and macrophages, exerting direct lipotoxicity (26), which

is further linked to increased oxidative stress (27, 28),

and activation of intrarenal renin-angiotensin system (29,

30). Inversely, it is also possible that serum TG level is

elevated in patients with CKD, due to down-regulation of

lipoprotein lipase and very low-density lipoprotein receptor

in the adipose tissue, skeletal muscle and cardiac muscle T
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TABLE 4 Cox regression analysis of serum TG levels for composite renal events in various subgroups.

Serum

TG

levels

Events,

n (%)

Unadjusted

HR (95%CIs)

P for

interaction

Adjusted HR

(95%CIs)

P for

interaction

Age < 60 years Q1 108 (30.3) Reference 0.067 Reference 0.004

Q2 120 (34.7) 1.224 (0.944, 1.588) 1.205 (0.880, 1.649)

Q3 127 (38.7) 1.492 (1.154, 1.928) 0.988 (0.700, 1.396)

Q4 158 (45.9) 1.843 (1.442, 2.355) 1.582 (1.058, 2.366)

Age ≥ 60 years Q1 59 (33.3) Reference Reference

Q2 73 (38.6) 1.195 (0.848, 1.685) 1.597 (1.025, 2.488)

Q3 91 (43.8) 1.396 (1.006, 1.938) 1.651 (1.066, 2.556)

Q4 147 (75.4) 1.150 (0.814, 1.623) 1.414 (0.789, 2.537)

Male Q1 97 (33.0) Reference 0.142 Reference 0.929

Q2 108 (35.0) 1.096 (0.833, 1.442) 1.040 (0.743, 1.457)

Q3 132 (37.8) 1.298 (0.999, 1.687) 1.011 (0.710, 1.441)

Q4 146 (39.7) 1.321 (1.022, 1.709) 1.166 (0.768, 1.769)

Female Q1 70 (29.2) Reference Reference

Q2 85 (37.6) 1.390 (1.013, 1.907) 1.455 (0.997, 2.124)

Q3 86 (46.0) 1.758 (1.282, 2.411) 1.343 (0.894, 2.016)

Q4 84 (49.1) 2.105 (1.532, 2.893) 1.667 (0.996, 2.790)

BMI < 23 kg/m2 Q1 86 (34.5) Reference 0.884 Reference 0.257

Q2 77 (39.1) 1.323 (0.972, 1.800) 1.248 (0.836, 1.862)

Q3 57 (44.5) 1.700 (1.215, 2.379) 1.169 (0.712, 1.919)

Q4 38 (41.3) 1.661 (1.132, 2.437) 1.182 (0.616, 2.268)

BMI ≥ 23 kg/m2 Q1 80 (28.5) Reference Reference

Q2 116 (34.8) 1.195 (0.899, 1.589) 1.286 (0.917, 1.802)

Q3 159 (39.4) 1.449 (1.107, 1.895) 1.334 (0.962, 1.851)

Q4 192 (43.2) 1.623 (1.250, 2.107) 1.609 (1.088, 2.379)

eGFR ≥ 45 mL/min./1.73m2 Q1 46 (14.5) Reference 0.035 Reference 0.040

Q2 42 (15.1) 1.253 (0.835, 1.882) 1.301 (0.794, 2.130)

Q3 33 (12.9) 1.042 (0.668, 1.623) 0.952 (0.537, 1.689)

Q4 56 (22.1) 1.876 (1.275, 2.760) 2.170 (1.087, 4.333)

eGFR < 45 mL/min./1.73m2 Q1 121 (56.0) Reference Reference

Q2 146 (57.0) 0.964 (0.757, 1.228) 1.247 (0.931, 1.670)

Q3 184 (65.7) 1.200 (0.954, 1.509) 1.205 (0.896, 1.620)

Q4 171 (59.8 1.107 (0.877, 1.398) 1.251 (0.871, 1.798)

Spot urine ACR < 300 mg/g Q1 62 (20.5) Reference 0.171 Reference 0.043

Q2 63 (24.9) 1.202 (0.846, 1.706) 1.080 (0.697, 1.672)

Q3 50 (22.5) 1.174 (0.808, 1.704) 1.237 (0.741, 2.064)

Q4 29 (15.7) 0.857 (0.551, 1.334) 1.157 (0.555, 2.414)

Spot urine ACR ≥ 300 mg/g Q1 103 (47.9) Reference Reference

Q2 126 (48.3) 1.099 (0.847, 1.426) 1.263 (0.925, 1.726)

Q3 163 (55.6) 1.292 (1.010, 1.655) 1.003 (0.734, 1.371)

Q4 194 (57.7) 1.278 (1.006, 1.623) 1.424 (0.986, 2.056)

The model was adjusted for age, sex, BMI, WC, medication (diuretics, statins, ACEi/ARBs, number of antihypertensive drugs), SBP and DBP, primary renal disease, smoking history,

Charlson comorbidity index, CACS, hemoglobin, 25(OH) vitamin D, albumin, fasting glucose, LDL-C, HDL-C, total cholesterol, hs-CRP, CKD stage and spot urine ACR.

ACR, albumin-to-creatinine ratio; BMI, body mass index; CI, confidence interval; Cr, creatinine; eGFR, estimated glomerular filtration rate; HR, hazard ratio; TG, triglycerides.

(2, 25). Thus, it seems prudent that elevation of serum

TG level may be both the cause and consequence of

CKD progression.

The current clinical practice guideline for lipid management

in CKD does not recommend pharmacologic intervention

targeting the reduction of serum TG level, whereas the use of
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statins is strongly recommended, which effectively alter serum

LDL-C level (4). This is primarily attributed to the lack of

the firm evidence supporting the efficacy of pharmacological

treatment for high serum TG level to reduce CV events,

especially in patients with CKD (4). In contrast, the therapeutic

efficacy targeting serum TG level to reduce the risk of CKD

progression has not been thoroughly reviewed yet. Therefore,

interventional studies are warranted to determine whether

lowering serum TG levels may alter the natural course of CKD.

A previous paper from the Chronic Renal Insufficiency

Cohort (CRIC) Study reported, which analyzed 3,939 adult

patients with non-dialysis CKD of mean age 58.2 years and

mean eGFR 44.9 mL/min/1.73 m2, that serum TG level is

not independently associated with progression of CKD (31).

A possible reason for the conflicting result from the current

study might be the ethnicity, as the CRIC Study was enrolled

the participants via the sites in the United States (32), whereas

the current study enrolled Koreans resident in South Korea

only (19). Moreover, the result was marginal, as adjusted HR

was 1.05 with 95% CIs 0.97 to 1.12, which indicates that the

trend association would likely have become significant if the

number of participants was further increased. Accordingly, a

more recent study, which analyzed the association between

serum TG level and renal outcomes among 1.6 million veterans

in the United States, reported that high serum TG level is

associated with rapid decline of eGFR (18). The study, however,

included only a small portion of the participants with CKD

(∼25%), among which more than a half were at CKD stage 3a

(18). An observational study from Japan, which included 20,729

individuals with CKD who participated in health checkup, also

reported a significant association between elevated serum TG

level and CKD progression (3), where the follow-up duration

was limited to 2 years, and the magnitude of eGFR decline for

the study outcome was modest (> 30% drop in the eGFR from

baseline). Collectively, we believe that, compared to the previous

studies, the cohort in the present study includes a sufficient

number of CKD patients with relatively long follow-up duration,

presenting compelling evidence for the association between high

serum TG level and the risk of CKD progression.

Our study has several limitations to be acknowledged. First,

we cannot determine the casual relation between high serum

TG level and CKD progression, because of the observational

nature of the current study. However, evidence so far suggests

that elevation of serum TG level may be both the cause and

consequence of CKD progression (2, 25–30). It should be,

therefore, emphasized that further interventional studies are

re-quired to determine whether lowering serum TG levels

may prevent CKD progression. Second, all the variables

were measured once at the baseline. However, the previous

observational studies (3, 18), which have the same limitation,

reported the findings that are largely in line with ours. We

believe that, therefore, the single measurement of the variables

does not interfere with the overall results in the present study.

Third, as this cohort study enrolled only ethnic Koreans,

a precaution is required to extrapolate the data to other

populations. Nevertheless, it should be noted that a similar

trend has been also reproduced by a study conducted in the

United States (18). Fourth, the specific cause of CKD was

mainly defined by clinical diagnosis, because the kidney biopsy

result was available in only 588 out of 2,158 participants

(27.2%). More-over, medication-related kidney disease was not

prespecified as a primary renal disease. Fifth, the participants

with any missing data were excluded for regression analyses,

which may result in the potential bias.

In conclusion, we report that high serum TG level is

independently associated with adverse renal outcomes in

patients with non-dialysis CKD, and that the association

is modified by clinical contexts, such as age, eGFR, and

albuminuria. Interventional studies are warranted to determine

whether lowering serum TG levels may alter the natural course

of CKD.
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