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ABSTRACT

RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA 
processing, modifications, and regulations of RNA decay influence the tight and rapid 
regulation of gene expression during T cell phase transition. Thymic selection, quiescence 
maintenance, activation, differentiation, and effector functions of T cells are dependent 
on selective RNA modulations. Recent technical improvements have unveiled the complex 
crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of 
untranslated mRNAs, implying that the regulation of RNA metabolism might be a key 
step in controlling gene expression. Considering the immunological significance of T cells 
for disease treatment, an understanding of RNA metabolism in T cells could provide new 
directions in harnessing T cells for therapeutic implications.
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INTRODUCTION

RNA metabolism refers to the processes that encompass the life cycle of RNA, including 
RNA synthesis, RNA splicing, RNA modification, RNA decay, and overall quality control. 
mRNA is transcribed from DNA as a single-stranded RNA template, and is processed 
simultaneously for 5'-capping, 3'-polyadenylation and alternative splicing (1-3). In addition, 
various modifications, such as RNA methylation, transform RNA structure to increase the 
accessibility of RNA-binding proteins or to promote degradation by recruiting the CNOT 
complex (4,5). In the cell, quality control of gene expression largely relies on RNA, therefore, 
RNA metabolism is elaborately controlled, particularly when drastic, temporal, or poised 
gene expression changes are involved. For instance, RNA metabolism is extremely important 
in T cells. During their life cycle, T cells undergo multiple selection processes and dramatic 
changes of cellular state. In thymocytes, β-chain rearrangement of TCRs occurs through 
V(D)J recombination to pair with pre-TCRα at the double-negative (DN, CD4-CD8-) stage, 
which is called β-selection (6). Subsequent double-positive (DP, CD4+CD8+) thymocytes are 
positively selected depending on the binding ability of TCR to MHC-peptide complexes (6). 
Then, late DP and single-positive (SP, CD4+ or CD8+) thymocytes that show strong affinity to 
self-peptide:MHC complexes are removed by negative selection to prevent autoimmunity (6) 
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(Fig. 1). Matured naïve T cells maintain a quiescent state characterized by cell-cycle arrest and 
low metabolic activity, while they are poised for immediate response to antigen stimulation 
(7,8). Upon stimulation of both TCR and co-stimulatory molecules, naïve T cells become 
activated and increase in size with a duplication rate of 6-12 h, and reprogram their metabolic 
status (9). Together with TCR activation, various combinations of cytokines instruct activated 
T cells to differentiate into effector T cell subsets (Fig. 1). At the end of their effector function, 
the majority of T cells enter activation-induced programmed cell death, whereas some surviving 
effector T cells remain to comprise the memory pool of the adaptive immune system (10). Such 
a vast shift in the cellular status of T cells demands rapid and timely control of gene expression 
upon external cues. To this end, intrinsic regulation of gene expression by RNA metabolism 
is an effective strategy to achieve immediate ‘switch on’ or ‘switch off ’ of target genes. Thus, 
understanding RNA metabolism in T cells may provide new insight into T cell biology.

Over the decades, a body of research has revealed how the complex processes of RNA metabolism 
are involved in a variety of physiological contexts. This review summarizes recent advances in 
RNA metabolism, with a particular focus on T cell-mediated immunity. Herein, we describe the 
molecular details of RNA metabolism in the T cell life cycle. In addition, we also briefly mention 
the pathological aspects of RNA dysregulation attributed to T cell-related disorders. The role of 
microRNA in T cells is excluded, as it has been previously reviewed elsewhere (11,12).
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Figure 1. The life cycle of conventional T cells. T cells are produced in the bone marrow and mature into thymocytes in the thymus. In the early stage of T cell 
development, which is called the DN stage, they lack CD4 and CD8 coreceptors. This stage is divided into 4 sub-phases (DN1, DN2, DN3, and DN4) according 
to the surface expression of CD44 and CD25. During the DN3 phase, thymocytes undergo TCRβ rearrangement, known as ‘β-selection.’ As they express both 
CD4 and CD8, they become DP thymocytes. Positive selection occurs in the DP stage, which selectively removes thymocytes that are incapable of binding to 
MHC molecules. Thymocytes differentiate into CD4 or CD8 SP thymocytes depending on the recognition of peptides presented on MHC-I or MHC-II molecules. 
Subsequently, SP thymocytes undergo negative selection, leading to apoptosis upon strong interaction with self-antigens. Thymocytes that pass through these 
processes become naive T cells and circulate in the body. Upon cognate antigen stimulation and various cytokine signals, they are activated and differentiate 
into effector T cells. CD4 T cells differentiate into TFH, Th1, Th2, Th17, and Treg cells with expression of their master transcription factors, Bcl-6, T-bet, GATA-3, 
Rorγt, and Foxp3, respectively. Activated CD8 T cells have a cytotoxic effect and induce apoptosis in virus-infected or cancer cells. After playing an effector 
function, most effector T cells undergo apoptotic death, but a few survive and become memory T cells, responsible for the secondary immune response.
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IMBALANCE OF TRANSCRIPTION AND TRANSLATIO IN T 
CELLS
The transition from naive to activated T cells triggers global upregulation of gene expression 
via rapid recruitment of RNA polymerase II (RNA Pol II) and simultaneously accelerates 
transcription rates (13). Mapping of de novo transcriptome and ribosome profiling with 
time-course tracking techniques has shown gene-specific discrepancies in approximately 
95% of upregulated genes (13). The fastest response in transcription is for genes involved 
in basic cell physiology, such as ribosome biogenesis and translational machinery (13,14). 
Likewise, gene sets associated with production of cytokines and receptors exhibit a marked 
increase in transcriptional rates concomitant with translation (13). However, a large portion 
of genes show unmatched rates of transcription and translation, indicating high rates of 
protein synthesis relative to their de novo transcription rates (13). A study of the dynamics of 
mRNA translation using the pulsed SILAC technique has delineated an imbalance between 
transcription and translation rates in the early stage of T cell activation (15). Within the first 6 
h after activation, the total mRNA copies showed only a mild (approximately 1.4-fold) increase 
(15). Notably, with negligible changes in ribosomal proteins and rRNA, the translation rate 
showed a 5-fold increase from 0.8/sec to 4.0/sec (15). This discrepancy can be explained by 
the presence of idling ribosomes, which are poised, and mRNAs are translationally repressed 
before activation (Fig. 2). Furthermore, similar evidence of idling translational machinery 
has been reported in the context of metabolic reprogramming during the naive-to-activation 
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Figure 2. Imbalance between transcription and translation in quiescence and activation. During the transition between quiescence and activation, activated T 
cells become highly proliferative and increase in both size and internal mass. These processes require many proteins to support cell growth. During the early 
stage of T cell activation, the increase in transcription rates and corresponding RNA copy numbers are insufficient to explain such massive protein synthesis. The 
quantity of available ribosomal machinery is similar in quiescent and activated T cells, indicating translational preparedness in resting T cells in the presence of 
idling ribosomes. Imbalanced transcriptional and translational processes suggest that RNA level regulation might be a rate-limiting step for gene expression in 
the early stages of T cell activation, highlighting the significant role of RNA metabolism.
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transition. Naive T cells accumulate mRNAs associated with glycolysis and fatty acid synthesis 
but stall translation until they are engaged by TCR stimulation (16). T cell activation leads 
to translation of the glucose transporter GLUT1 and acetyl-coenzyme A carboxylase 1, 
consequently completing metabolic reprogramming (16). Collectively, these studies indicate 
that a large portion of mRNAs remain untranslated in resting T cells, despite adequate 
translational machinery. This highlights the significance of RNA regulation combined with 
transcriptional and protein signaling regulation to control T cell homeostasis.

ROLE OF RNA SPLICING IN T CELL HOMEOSTASIS

Following transcription, primary transcripts, termed pre-mRNAs, undergo processing steps 
including 5'-capping, 3'-polyadenylation, and alternative splicing (1-3). RNA processing 
occurs concurrently with transcription because RNA pol II engages RNA processing 
machinery, including cap-binding proteins, polyadenylation complexes, and spliceosomes 
(3). 5'-capping and polyadenylation at the 3'-end influence mRNA stability, which is reviewed 
in the next section. Most pre-mRNAs in eukaryotic cells are alternatively spliced (17). 5' 
or 3'-splicing or exon skipping contributes to proteomic diversity by generating multiple 
isoforms from a limited number of genes (18). In addition, exon inclusion and intron 
retention determine the subsequent fates of mRNAs (19). As seen in other cell types, splicing 
events broadly regulate T cell homeostasis throughout their life cycle.

Global regulation of RNA splicing in T cells
A study using RNA-seq profiling of both human T cell lines and primary T cells found 
a comprehensive pattern of RNA splicing that characterized the isoform changes of 178 
exons in 168 genes in response to stimulation (20). Transcription factors Foxa1 and Foxa2 
(Foxa1/2) have recently been identified as global regulators of RNA splicing during the 
transition from DP to SP thymocytes (21). Double conditional knockout of Foxa1/2 (Foxa1fl/
flfl/flcreFoxa2) disrupted the development of SP population and caused aberrant RNA splicing 
(21). Combined analysis of human CD4+ T cells using RNA-immunoprecipitation and mass 
spectrometry has also identified U2 small nuclear RNA auxiliary factor 2 (U2AF2) as a 
central regulator of RNA splicing by recruiting spliceosome to target mRNA, suggesting 
that U2AF plays an indispensable role in the optimal expression of many effector molecules, 
such as CD25 and CD62L, and subset-specific cytokines in T cells (22). Similarly, another 
study suggested that serine/arginine-rich splicing factor 1 (SRSF1) has an impact in T cell 
development (23). Additionally, this study also identified many binding partners of SRSF1 
related to T cell differentiation factors, implying that SRSF1 has multiple effects on T 
cell biology (23). Furthermore, an abnormal decrease in SRSF1 was observed in patients 
with systemic lupus erythematosus (SLE) with a hyperresponsive T cell population (24). 
Consistent with these findings, mice lacking SRSF1 exhibit aberrantly elevated mTOR 
activity and reduced expression of its repressor, phosphatase and tensin homolog (24). A 
recent study demonstrated that different RNA splicing patterns affect the maintenance of T 
cell quiescence and it highlighted the negative effects of transcript variants containing long 
interspersed nuclear element 1 (LINE1). Owing to the unique splicing pattern in naive CD4+ T 
cells, intronic LINE1 is inserted into the transcripts upregulated during T cell activation, and 
these variants act with nucleolin to repress gene expression in the chromatin in a cis-acting 
manner (25). The activation cue alters the splicing pattern, which reduces LINE1-containing 
transcripts via the splicing suppressor polypyrimidine-tract binding protein 1 (PTBP1), 
leading to the expression of the corresponding genes (25). Although PTBP1 regulates T cell 
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activation and IL-2 production (26), its role in T cell biology remains unknown. Collectively, 
complicated patterns of RNA splicing for diverse gene sets globally orchestrate T cell 
homeostasis throughout the T cell life cycle.

Exon inclusion and skipping
The RNA splicing factor CUGBP Elav-like family member 2 (CELF2) has been described for 
its multiple roles in the regulation of metabolism, alternative splicing, and translation (27). 
T cell activation increases the mRNA stability of CELF2, which is responsible for widespread 
alternative splicing in T cells (28). It controls alternative splicing of one-third of the genes 
associated with TCR signaling and T cell development via either exon skipping or inclusion 
(28). The best-known targets of CELF2-dependent RNA regulation in T cells are MAPK kinase 
7 (MKK 7) and lymphoid enhancer-binding factor 1 (LEF1). Optimal production of effector 
cytokines by activated T cells requires JNK activity (29). MKK7 activates JNK, leading to 
activation of the transcription factor c-Jun (30). The complete form of MKK 7 is incapable of 
interacting with JNK, as exon 2 in the MKK 7 transcript is inserted within the JNK docking site 
and prevents binding (31). Enhanced CELF2 activity upon T cell activation causes exon skipping 
of introns flanking exon 2 in MKK 7, forming an intact docking site for JNK (31). Conversely, 
CELF2 directs exon inclusion, generating the full length of LEF-1, which contains exon 6 
(32). LEF-1 coordinates the expression of TCRα in developing thymocytes; thus, it is critical 
for DN-to-DP transition during T cell development (32). Exon 6 in LEF-1 encodes a context-
dependent regulatory domain that enables LEF-1 to interact with the co-activators Aly and Ets 
for TCRα expression (32,33). The splicing factor SRSF1 also plays a key role in exon inclusion. 
Phenotypically, the loss of SRSF1 in developing T cells (Srsf1fl/fl Lckcre) resulted in impaired 
maturation in late stage T cell development (23). Genome-wide analysis of SRSF1 binding 
targets has shown that it binds to the pre-mRNA of Il-27ra and IFN regulatory factor 7 (Irf-7) in 
response to type I IFN signaling (23), which is critical for late T cell development and survival 
(34). In the absence of SRSF1, defective splicing of these genes, such as skipping of exon 3 in Il-
27ra mRNA, or retention of intron 5 in Irf-7 mRNA, introduced a premature termination codon 
that lead to mRNA decay, resulting in increased levels of pro-apoptotic factors, Bax and Bcl2l11 
(23) and compromised IL-27 signaling. Likewise, SRSF1 promoted the inclusion of exon 5 in the 
mRNA encoding the T cell surface glycoprotein CD6 (35). Downregulation of SRSF1 by T cell 
activation increases exon 5 skipping in CD6 mRNA (35). Although it has not been determined 
whether CD6 has a stimulatory or an inhibitory effect, skipping exon 5 in CD6 might limit 
its function because it encodes a ligand-binding domain (35). Splicing patterns of TCR-
related molecules controlled by heterogeneous nuclear ribonucleoprotein (HNRNP) L and A1 
determine the fate of CD4+ T cells (36). Strong TCR signaling combined with cytokine signals 
induces the development of effector T cell subsets, whereas tonic TCR stimulation induces Treg 
differentiation (37). Weak TCR stimulation alters several substrates of Akt, including splicing 
factors that favor the activation of HNRNP L and HNRNP A1 (36). In conditions favoring 
the development of Tregs, distinct patterns in alternative splicing induce the expression 
of other variants of CD3ζ, CD3η and CD3, which lack the immunoreceptor tyrosine-based 
activation motif, and favor CD45RO instead of CD45RB by skipping exon 5, contributing to 
Treg generation (36). Similarly, the splicing pattern of mucosa-associated lymphoid tissue 
lymphoma translocation protein 1 (MALT1) differs depending on whether T cells are resting 
or activated. In resting T cells, the splicing activity of HNRNP U generates the exon-excluded 
MALT1B isoform, whereas TCR stimulation relieves the suppressive effect of HNRNP U and 
allows the isoform, MALT1A, which contains exon 7, with enhanced binding ability to TRAF6 
(38). From a disease perspective, distinct splicing events may drive pathological outcomes. For 
example, although the membrane-bound IL-7 receptor (IL-7R) plays an essential role in T cell 
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survival and maintenance of homeostasis (39), aberrant skipping of exon 6 generates a secreted 
form of IL-7R, which is associated with an increased risk of multiple sclerosis (MS), as MS 
patients often possess a single nucleotide polymorphism in Il-7r exon 6 (40,41). On the contrary, 
RNA helicase DEAD box polypeptide 39 B is responsible for the formation of the complete form 
of IL-7R by preventing skipping of exon 6 (41).

Intron retention
The intron, a non-coding region of pre-mRNA, has a substantial impact on RNA regulation 
in T cells, as intron retention is one of the mechanisms regulating the number of transcripts 
linked to cell fate decisions (42). For example, selective induction of intron retention occurs 
in exons 4 to 6 of Ptprc mRNA (encoding CD45) by the RNA-binding protein HNRNPLL in 
T cells (43). Like exon splicing, global changes in intron retention are observed upon T cell 
activation, although the precise mechanism of intronic control of gene expression is still 
poorly understood. A study using strand-specific RNA-seq showed intronic sequences were 
favorably inserted in polyadenylated transcripts in resting CD4+ T cells, displaying distinctive 
patterns of intron retention in T cells (44). Furthermore, intron retention was observed in 185 
genes that were most frequently upregulated during T cell activation, and retained introns 
were dramatically decreased upon T cell stimulation (44). Collectively, this emphasizes that 
gene expression is dominantly controlled by splicing rather than transcriptional regulation.

EPIGENETIC MODIFICATION OF RNA IN T CELLS

In addition to RNA processing steps, internal modification of RNA is another important 
step to determine mRNA fate and gene expression. Chemical modification or addition of 
certain molecules to RNAs represents most of the internal modifications encompassing 
methylation (m6A and m5C), ribose modification (2'-O-methylation; 2'-OMe), adenosine (A)-
to-inosine (I) modification, 5-hydroxymethylcytosine, and uridylation and isomerization of 
uridine (45). These modifications alter the characteristics of RNAs depending on the marked 
molecules, subsequently affecting pre-mRNA processing, stability, and mRNA translation. 
Advances in analytical chemistry and high-throughput sequencing methods have given rise to 
a new concept of “epitranscriptome,” which has enabled the consideration of the molecular 
dynamics of chemically modified RNA. Correspondingly, many studies have actively been 
deciphering the role of RNA modification in T cell biology.

RNA methylation in T cells
Methylation of RNA includes modifications such as N6-methyladenosin (m6A), N1-
mthyladenosine, and N5-methylcytosine (m5C), which are modulated by several proteins 
referred to as “writers”, “erasers”, and “readers” (46,47). “Writers” transfer methyl residues 
on the RNA molecule, whereas “erasers” remove them by demethylase activity, and “readers” 
recognize methylated marks on RNAs. m6A is one of the most abundant modifications and 
is enriched in 3'-untranslated region (UTR), long internal exons, and near the stop codons 
of RNAs (48). Methyltransferases such as METTL3 and METTL14 act as writers of m6A 
modifications (49). An m6A mark on RNAs has a multifunctional role by recruiting reader 
proteins that bind to the m6A structure. Given that various RNA-binding proteins, such as 
RNA stabilizers or splicing factors, can recognize m6A, changing its accessibility ultimately 
determines mRNA half-life and gene expression (50). For example, the binding of YTH N6-
methyladenosine RNA-binding protein (YTHDF) 1, a reader protein, accelerates the translation 
of target mRNA by recruiting translation initiation factors (51). In addition, YTHDF2, another 
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reader protein, recognizes m6A-marked mRNA and induces decay by recruiting the CCR4-
NOT complex (52). The ablation of YTHDF1 enhances anti-tumor immunity by facilitating 
cross-presentation of CD8+ T cells from dendritic cells, suggesting that YTHDF1 has an indirect 
effect on T cells (4). The role of m6A modification in T cell homeostasis has also been well 
described. Deletion of METTL3, which acts as an m6A writer, disrupts IL-7-JAK/STAT5 signaling 
in T cell homeostasis and differentiation (53). Mettl3-deficient T cells (Mettl3fl/flCd4cre) adoptively 
transferred into RAG knockout mice failed to induce colitis due to their retained resting status 
(53). Upon IL-7 stimulation, METTL3-mediated m6A marking selectively targeted suppressor 
of cytokine signaling-1 (Socs1), Socs3, and cytokine-inducible SH2-containing protein which are 
inhibitory proteins for STAT signaling, and induced their degradation, consequently activating 
IL-7-JAK/STAT5 signaling (53). In line with this, the same group has reported that Tregs lose 
their suppressive ability in the absence of METTL3 (Mettl3fl/flFoxp3cre) due to the lack of m6A 
modification of the inhibitory Socs gene family (5), as reported previously (53). However, the 
studies that describe the role of METTL3 in follicular helper T cells (TFH) are controversial. 
Knockdown of METTL3 or METTL14 with shRNA promotes TFH differentiation upon 
lymphocytic choriomeningitis virus (LCMV) infection (54). In contrast, another study showed 
that METTL3 deficiency disrupted TFH differentiation due to the lack of stabilized transcription 
factor 7 via METTL3-mediated m6A (55). Another contributing factor to the complexity of m6A 
modifications in T cells is the demethylation of m6A by the eraser protein such as AlkB homolog 
5 RNA demethylase (ALKBH5) known to involve to CD4+ T cell activation (56). TCR stimulation 
upregulated ALKBH5 expression, and the loss of ALKBH5 in T cells (Alkbh5fl/flCd4cre) resulted 
in enhanced m6A modification of IFN-γ and CXCL2 mRNAs, increasing their vulnerability 
to decay and reducing their protein expression (56). Consistently, the adoptive transfer of 
ALKBH5-deficient T cells into RAG knockout mice failed to induce autoimmune colitis, and 
Alkbh5fl/flCd4cre mice exhibited resistance to experimental autoimmune encephalomyelitis 
(EAE) induction (56). Compared to m6A modifications, the effects of m5C and m1A on T cells 
are unknown. The only known enzyme that catalyzes m5C modification is NOP2/Sun RNA 
methyltransferase 2 (NSUN2). The CD4+ T cells of patients with SLE exhibit a decreased pattern 
of m5C and significantly reduced NSUN2 expression (57). Meanwhile, m1A modification is 
mainly found in tRNAs (58). A recent study that screened for dynamic changes in the tRNA 
pool in T cells showed that the m1A level in tRNA did not change during T cell proliferation 
and differentiation (59). However, the same study has identified 2 unique modifications, 
namely, wybutosine and ms2t6A, which occur in tRNAs bearing slippery codons, and prevents 
ribosomal frameshifting (59). These modifications were markedly reduced in activated T cells, 
and such modifications are likely to increase proteome-wide frameshifting (59).

Adenosine-to-inosine (A-to-I) modification during T cell development
Apart from mRNA modification, A-to-I modification of RNA is uniquely exploited during T 
cell development. Developing thymocytes migrate from the cortex into the thymic medulla, 
which contains abundant type I IFN, and IRF-7 is constitutively expressed in thymocytes (60). 
Dependency on IFN signaling in the absence of infection may cause unnecessary activation 
through increased expression of genes responsible for antiviral immunity, such as melanoma 
differentiation-associated protein 5, a sensor of ds RNA (61). The RNA-editing molecule 
adenosine deaminase acting on RNA1 (ADAR1) plays a compensatory role. ADAR1 catalyzes 
A-to-I modification upon recognition of endogenous dsRNA, preventing unwanted sensing 
of dsRNA by relieving the dsRNA structure (62). ADAR1 appears to have a similar role in 
developing thymocytes, as the expression of ADAR1 is upregulated during the late stage of 
thymic T cell maturation (63). Indeed, ADAR1-deficient thymocytes fail to fully mature and 
remain in the semi-mature stage, defined by a CD69-MHC I+ phenotype (63).
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Effects of RNA uridylation on T cell homeostasis
Although terminal uridylation of microRNA has been reported to be involved in its stability 
in CD4+ T cells (64), little is known about the direct impact of RNA uridylation in T cells. In 
the RAW 264.7 murine macrophage cell line, terminal uridyltransferase 7 (TUT7) positively 
regulates the expression of IL-6 by controlling the mRNA stability of Regnase-1 (also known as 
Zc3h12a). TUT7 expression requires p38 MAPK signaling and uridylated Regnase-1 mRNA by 
binding to the stem-loop in its 3’-UTR, ultimately facilitating its decay. Given the underlying 
mechanism of TUT7 shown in RAW264.7, it gives rise to the potential role of TUT7-mediated 
RNA uridylation in T cells indirectly because it shares similar signaling pathways upon TCR 
stimulation, and REGNASE-1 has a broad effect on T cell homeostasis by controlling mRNA 
decay. Thus, it may be an interesting area of research to explore in future studies.

Collectively, the crosstalk between chemically modified RNAs and T cell biology is an 
important mechanism of RNA-mediated T cell regulation. Given the importance of RNA 
modification in T cell regulation, it is worthwhile to explore the potential role of these 
mechanisms in controlling T cell function.

REGULATION OF RNA DECAY IN T CELLS

Many processes of RNA metabolism described above often closely correlate to RNA decay. 
Because of their unstable nature, typical mRNAs are protected by a 5'-7-methylguanosine cap 
(5'-cap) and 3' poly-A (poly(A)) tail (65,66). Degradation of mRNA occurs through multiple 
pathways. Most mRNAs undergo exonuclease-dependent mRNA decay that relies on poly(A) 
tail degradation in the 3' region of mRNA by de-adenylation complexes such as CCR4-NOT, 
exposing mRNA to an unfavorable environment (67). Subsequent decapping by the decapping 
complex Dcp1/Dcp2 removes the 5’-cap, increasing the vulnerability of mRNA (68,69). Lastly, 
exonucleases catalyze mRNA degradation. Endonuclease-dependent mRNA decay is achieved 
by endonucleases such as REGNASE-1 (70). Without chemical removal on each side of the 
mRNA, endonucleases cause exposed 5’- and 3’- ends to be susceptible to exonucleases (71). 
For rapid and tight regulation of gene expression in response to extracellular stimuli, T cells 
often harness the mechanisms that enhance or abrogate mRNA stability.

Exonuclease-dependent mRNA decay
The role of the CCR4-NOT de-adenylase complex in silencing gene expression has been 
extensively reported in previous descriptions of T cell biology. For example, the expression 
of CNOT3, a regulatory component required for the integrity of the CCR4-NOT complex, is 
upregulated in DP thymocytes (72), implying the involvement of mRNA de-adenylation during 
T cell development. T cell-specific deletion of Cnot3 (Cnot3fl/fl-CD4cre) has been shown to result 
in the failure of mature CD4+ and CD8+ T cell production with upregulated pro-apoptotic genes, 
including Dap2ip and Bbc3 mRNA, in the early and late stages of positive selection, respectively 
(72). The RNA-binding proteins ZFP36L1 and ZFP36L2 (ZFP36L1/2) also utilize the CCR4-
NOT complex to guide target mRNA degradation across the T cell life cycle. Mechanistically, 
ZFP36L1/2 belong to the ZFP36 family, which contain a CCCH zinc finger domain that can 
bind to conserved sequences in the AU-rich element (ARE) of the 3'-UTR (73). The ZFP36L 
family, including ZFP36L1/2, can interact with CCR4, leading to the recruitment of NOT4 
and the final assembly of the CCR4-NOT de-adenylase complex, which limits target gene 
expression by promoting mRNA degradation (74). In the early developmental stages, ZFP36L1/2 
downregulates the expression of Notch-1, which is crucial for thymocyte proliferation. Despite 
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its role in cell growth (75), uncontrolled signaling from Notch-1 induces thymocyte proliferation 
without proper maturation steps; therefore, it should be tightly regulated depending on the 
developmental stage. One study showed that mice with selective deficiency of ZFP36L1/2 in early 
thymocytes (Zfp36l1fl/flZfp36l2fl/fl-Cd2cre) showed T cell acute lymphoblastic leukemia with aberrant 
accumulation of T cells bypassing β-selection (76). ZFP36L1/2 interacted with the highly 
conserved ARE region of Notch-1 mRNA, although the mechanism of Notch-1 mRNA decay is 
not clear (76). In subsequent works, it was determined that ZFP36L1/2 was also associated with 
the genome-wide suppression of cell cycle genes activating the E2F pathway and DNA-damage 
responses (77,78). Overall, ZFP36L1/2 mediated mRNA decay via CCR4-NOT seems to secure 
β-selection of early thymocytes by delaying cell proliferation and inhibiting DNA repair genes 
for uninterrupted V(D)J recombination. RNA regulation by ZFP36 family proteins influences the 
effector functions of mature T cells. ZFP36L2 limits the translation of IFN-γ by binding to AREs 
in the 3'-UTR of Ifng mRNA (79). Consistently, ZFP36 deficient mice were more resistant to 
antiviral response against LCMV infection with not only a dramatic increase of IFN-γ-expressing 
T cells, but also enhanced expression of activation and proliferation markers (80). RNA-binding 
proteins belonging to the ROQUIN family, including ROQUIN-1 and ROQUIN-2 (ROQUIN1/2), 
share a CCR4-NOT-mediated mechanism to regulate target mRNA availability. Although 
ROQUIN1/2 have a CCCH-type zinc finger domain, the ROQ domain is majorly responsible for 
their binding specificity, and these domains act synergistically (81,82). Through this domain, 
ROQUIN1/2 bind to the 3'-UTR (100-200 bp downstream of the stop codon) of the inducible T 
cell co-stimulator (ICOS) and limit the abundance of Icos mRNA by recruiting the CCR4-NOT 
complex (81,83). Since ICOS is essential for the regulation of T cell immunity, particularly in 
TFH and germinal center (GC) responses (84), disrupted activity of ROQUIN1/2 spontaneously 
causes severe autoimmunity resembling SLE characterized by splenomegaly and abnormally 
increased GC formation, as seen in Sanroque strain mice which contain the M199R mutation in 
Rc3h1 (encoding ROQUIN1) (85,86). Consistently, similar phenotypes have been observed in the 
T cell-specific deletion of ROQUIN1/2 (Rc3h1/2fl/flCD4cre) (82). Recent work has also determined 
a role for CCR4-NOT-mediated mRNA decay in the quiescence maintenance of naive T cells. A 
study has identified B-cell translocation gene 1 (BTG1) and BTG2 (BTG1/2) as novel regulators 
of T cell quiescence by inducing global mRNA deadenylation and degradation (87). Remarkably, 
BTG1/2 were mainly expressed in quiescent T cells and swiftly turned off upon activation cues. 
BTG1/2-deficient T cells (BTG1/2fl/fl-CD4Cre) exhibited a global increase in mRNA abundance, 
leading to a compromised naive status, accompanied by the aberrant accumulation of effector 
memory population in steady-state conditions (87). In quiescent T cells, BTG1/2 can physically 
bind with poly(A) tail binding protein and the CCR4-NOT complex, even though they do not 
bear the direct RNA cognition domain, thereby facilitating constant deadenylation by inducing 
global mRNA decay machinery (87). Such a seemingly inefficient process is advantageous for a 
rapid response upon stimulation from the retained availability of pre-made mRNAs. Although 
the regulation of RNA metabolism in T cell quiescence has received less attention thus far, there 
is extensive evidence to elucidate how RNA metabolism is involved in T cell quiescence.

Endonuclease-dependent mRNA decay
REGNASE-1 acts as an endonuclease that harbors a PIN-like RNase domain and specifically 
cleaves mRNA upon recognition of the stem-loop structure cooperatively with helicase 
upstream frameshift 1 (88). In the immune system, it is known to destabilize mRNAs 
encoding the inflammatory cytokines IL-6 and IL-12 (89). Mice with homozygous knockout of 
REGNASE-1 (Zc3h12a-/-) succumbed within 12 weeks after birth due to severe anemia and showed 
significantly high effector/memory splenic T cells (89). Similarly, another study has shown that 
the loss of REGNASE-1 induced spontaneous autoimmune phenotype marked by the increased 
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expression of T cell activation markers and inflammatory cytokines (90). In contrast, mice 
with a mutant form of REGNASE-1 with enhanced stability exhibited lymphopenia and were 
unresponsive to skin allografts due to disrupted thymic T cell development (91), indicating 
that REGNASE-1 controls T cell homeostasis in diverse aspects. In addition to its role in 
exonuclease-dependent mRNA decay, ROQUIN also cooperates with REGNASE-1 and induces 
target mRNA degradation as they share target mRNAs associated with inflammatory responses 
and Th17 differentiation (92). In contrast, upon TCR stimulation, REGNASE-1 is degraded in a 
MALT-1-dependent manner, relieving T cells from suppressive conditions (90).

Mechanisms protecting of mRNA from decay
As mentioned previously, ELAVL1 is a stabilizer of mRNA. Similar to other molecules 
contributing to mRNA decay, ELAVL1 interacts with introns and ARE regions in the 3'-UTR 
of mRNA, but it increases the mRNA lifespan by interfering with exonuclease access and 
destabilizing degrading complexes (93).

A study using Jurkat human T cell line has shown that long 3'-UTR is favorably targeted by 
ELAVL1 and is important for target protein localization (94). During T cell development, 
thymocytes deficient in ELAVL1 (Elavl1fl/flLckcre) exhibited defective β-selection and a failure of 
thymus egression concomitant with hyperproliferation of thymocytes (95). While the study 
did not clearly address the molecular mechanism of ELAVL1, it suggested that ELAVL1 is a 
stabilizer of p53, ultimately inducing cell cycle arrest of DN thymocytes (95). Recently, it was 
shown that ELAVL1 regulates the translation of Ccnd3 mRNA (encoding cyclin D3) via direct 
interaction (96). However, further studies are required to understand the multifunctional role 
of ELAVL1 in cell-cycle genes during T cell development.

RNA stabilizing activity of ELAVL1 regulates broad aspects of T cell function. The mRNA 
encoding IL-2 receptor α chain (CD25) requires ELAVL1 interaction for optimal translation, 
as the loss of ELAVL1 in CD4+ T cells (HuRfl/flLckcre) has shown defective IL-2 homeostasis (97). 
In effector T cell subsets, ELAVL1 stabilizes mRNA encoding IL-4, IL-13, and IL-17A. Deletion 
of ELAVL1 in activated T cells (HuRfl/flOX40cre) abrogated Th17 responses as they failed to 
induce EAE, while Th2 responses were unchanged (98,99). Moreover, transcriptome-wide 
analysis revealed potential targets of ELAVL1 associated with T cell activation pathways, 
further suggesting a comprehensive role of ELAVL1 in T cell function.

CONCLUSION

To date, T cell studies have mainly focused on their functions and cellular interactions from a 
macroscopic view, while the intrinsic activities of T cells have been poorly understood. Although 
clinical techniques involving T cells currently has improved medical therapeutics, there are still 
many limitations with utilizing T cells as an effective drug target. Therefore, more research is 
needed to gain a fundamental understanding of T cell biology. Recent breakthroughs in technical 
and analytical tools have enabled us to scrutinize the RNA world across T cell life cycles. A 
large portion of mRNAs remain untranslated in resting T cells and diverse RNA metabolism 
is intrinsically involved in T cell functions (summarized in Fig. 3). Several studies have also 
implicated that dysregulation of RNA metabolism in T cells is associated with pathological 
outcomes in both human and animal models (Table 1). Given the central role of RNA and the 
underlying mechanisms of T cell regulation, reconsidering the significance of RNA metabolism 
in T cells may open new paradigms for future therapeutic strategies.
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