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Abstract

Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug

resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the

importance of vaccine development against this relapsing disease. P. vivax reticulocyte

binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell

tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial

evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and
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antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic

polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated

into six regions based on specific domain features, sequence conserved/polymorphic

regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence

analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152–625 aa.)

showed extensive polymorphism caused by random point mutations. The haplotype net-

work of these polymorphic regions was classified into three clusters that converged to inde-

pendent populations. Antigenicity screening was performed using recombinant proteins

PvRBP1a-N (157–560 aa.) and PvRBP1a-C (606–962 aa.), which contained head and tail

structure region and sequence conserved region, respectively. Sensitivity against

PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a

reticulocyte binding domain and this study identified a linear epitope with moderate antige-

nicity, thus an attractive domain for merozoite invasion-blocking vaccine development. How-

ever, our study highlights that a global PvRBP1a-based vaccine design needs to overcome

several difficulties due to three distinct genotypes and low antigenicity levels.

Author summary

Plasmodium vivax shows restricted host cell tropism to human reticulocytes for their asex-

ual blood-stage replication. Reticulocyte binding protein (PvRBPs) family are essential

molecules for reticulocyte recognition and host cell invasion. In this study, we focused on

PvRBP1a as a novel target for vaccine development of P. vivax. Here, we analysed pvrbp1a
genetic polymorphisms, natural selection, and evaluated the correlation of this genetic

information with antigenicity. This study emphasizes the characteristics of the pvrbp1a
genetic population in relation to efficient vaccine development.

Introduction

In 2020 the prevalence of Plasmodium vivax malaria was estimated to be between 4.1 and 5.1

million cases globally [1,2], accounting for a significant proportion of malaria cases in the Afri-

can (0.3%), South-East Asia (36.3%), and Western Pacific (30.1%) [1]. Despite its global

importance, P. vivax research has been neglected compared to malaria caused by P. falciparum
due in part to its low directly associated mortality and the absence of a continuous in vitro cul-

ture method (a consequence of P. vivax only invading nascent CD71+ve reticulocytes). As

most malaria elimination programs target P. falciparum, the proportion of P. vivax infections

outside of sub-Saharan Africa continues to increase [3,4]. Failure to control P. vivax is primar-

ily due to relapsing blood infections, emerging from activated dormant liver forms (hypno-

zoites) often weeks to months after the primary infection. This is compounded by a cryptic

endosplenic life-cycle resulting in a persistent hidden splenic reservoir of asexual-stage P.

vivax parasites in chronic infection [5,6]. Additionally, increasing reports of drug resistant

vivax malaria in South-East Asia [7], have spurred efforts to develop a vaccine against P. vivax.

Most vaccine efforts against P. vivax have focused on the assumption that its erythrocytic

life cycle is dependent on the presence of the Duffy Antigen Receptor for Chemokine (DARC,

CD234) on the host red cell. Therefore, targeting DARC’s corresponding ligand (P. vivax
Duffy Binding Protein, PvDBP) is the most investigated P. vivax vaccine target. Of particular

interest is the extracellular region II of the PvDBP (PvDBP-RII) which specifically interacts
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with the Fy6 region of DARC [8]. Although PvDBP is a promising vaccine candidate, there are

several challenges. Firstly, a general lack of understanding of effective PvDBP-RII vaccine con-

ditions such as the method of delivery, immune-reactivity, and persistence [9,10]. Secondly, a

failure of the PvDBP-RII vaccine in field trials resulting from high levels of natural genetic

polymorphisms [11–13]. Finally, the widespread discovery of Duffy-negative vivax malaria

cases in Madagascar and parts of Northern Africa, suggesting P. vivax can use alternate inva-

sion pathways besides DARC [14]. P. vivax reticulocyte binding-like protein family (PvRBL) is

another promising vaccine candidate [15], consisting of eleven members including three pseu-

dogenes [16]. Although their precise roles remain largely unknown, the RBL protein family

such as PvRBP2a, PvRBP2b, and P. falciparum reticulocyte binding-like protein homologs

(PfRh) show consistent functions of host erythrocyte binding activity (i.e. enabling P. vivax
merozoites to identify host reticulocytes) [17,18]. The most well-known member of RBL pro-

tein family in P. vivax is PvRBP2b. This RBL protein interacts with the transferrin receptor

(CD71), which is an important marker for selecting young reticulocyte [19]. Additionally,

monoclonal antibodies against PvRBP2b showed inhibition of P. vivax invasion in Brazilian

and Thai clinical isolates [19]. Another PvRBL family member, PvRBP1a is also shown to bind

preferentially to human reticulocytes [20–24] with affinity-purified patient IgG against

PvRBP1a fragment (30–778 aa. and 352–599 aa.) specifically blocking reticulocyte binding of

native and recombinant PvRBP1a antigens [21,22]. These studies support the use of PvRBL

proteins as attractive vaccine candidates for targeting the alternative P. vivax invasion

pathways.

In this study, we analysed clinical isolates from six countries for genetic diversity and three

countries for the antigenicity screening of PvRBP1a. Comparing vivax malaria patient antige-

nicity, genetic polymorphism, and natural selection we aimed to produce new information on

the suitability of PvRBP1a as a vaccine candidate.

Methods

Ethics statement

Whole blood samples were collected from symptomatic P. vivax patients after microscopic blood

film examination at regional health centres of the respective countries. All clinical samples were

collected under the following ethical guidelines and approved protocols: Kangwon National Uni-

versity Hospital Ethical Committee, Republic of Korea (Ref. No. 2014-08-008-002), Department

of Medical Research, Republic of the Union of Myanmar (Approval No-52/Ethics, 2012), Human

Research Ethics Committee of Northern Territory Department of Health and Families (HREC-

13-1942, HREC-2010-1431, HREC-2012-1815 and HREC-2010-1396), the Medical Research Eth-

ics Committee, Ministry of Health, Malaysia (NMMR-10-754-6684, NMRR-12-511-12579), Insti-

tutional Review Board of Jiangsu Institute of Parasitic Diseases, Wuxi, China (IRB00004221),

Mahidol University Faculty of Medical Technology, Thailand (MUTM 2011-043-03), Addis

Ababa University College of Natural Sciences, Ethiopia (RERC/002/05/2013), Armauer Hansen

Research Institute, Addis Ababa, Ethiopia (AHRI-ALERT P011/10) and National Research Ethics

Review Committee of Ethiopia (Ref. No. 3.10/580/06), the Scientific Research and Ethics Commit-

tee of the Institute of Endemic Diseases, University of Khartoum, Sudan (Ref. No. 9/2016). All

adult participants provided informed written consent, and a parent or guardian of any child par-

ticipant provided informed written consent on their behalf.

Genomic DNA extraction, sequencing, and sequence data collection

Genomic DNA was extracted from 200 μL whole patient blood samples using Genomic DNA

Extraction Kit (Bioneer, ROK) following the manufacturer’s protocol. In total, 26 isolates from
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ROK and Myanmar were amplified (Republic of Korea (ROK, n = 16) and Shwegyin in Myan-

mar (n = 10)). For the whole pvrbp1a gene sequencing, a total of 9 primer sets was designed

based on pvrbp1a (PVP01_0701200) derived from the PvP01 Papua Indonesian reference

sequence (S1 Table) [25]. The detailed whole gene sequences of pvrbp1a are available at Gen-

Bank (accession numbers: MW862435—MW862460).

pvrbp1a sequences from China (n = 4), Ethiopia (n = 22), Malaysia (Sabah, n = 54), and

Thailand (North-western, n = 96) were obtained from whole-genome sequencing data which

were described previously at [26–29]. Briefly, the genomic region for pvrbp1a was obtained

from PlasmoDB [30]. Reads that were aligned to this region were extracted from the whole-

genome sequencing data (in BAM format) as FASTQ files using samtools [31]. For each sam-

ple, a de novo assembly was performed to the available reads using SPAdes [32]. From the

SPAdes output, the longest contig from each sample was collected into a single FASTA file.

The reference sequence for pvrbp1a was added into this FASTA file for multiple sequence

alignment using MAFFT [33]. Samples that did not assemble correctly (i.e., structurally devi-

ated from the reference sequence) were removed. After removal, there were sequences that

had indels compared to the pvrbp1a reference. To validate the presence of these indels, the

Genome Analysis Toolkit (GATK) [34] was used to realign these indels to the reference

sequence. Samples whose indels were not consistent between the realignment and de novo

assembly results were excluded from the analysis. Finally, the remaining samples were

realigned with MAFFT to generate the pvrbp1a sequences used in downstream analyses. A

total of 202 sequences were aligned with pvrbp1a (PVP01_0701200) sequence.

Homology-based tertiary structure modelling

The tertiary structure model of PvRBP1a was generated by homology-based structure predic-

tion. Suitable structural templates were searched, and models were built using SWISS-MODEL

(https://swissmodel.expasy.org) (PDB ID: 6d03.1) [35]. The quality and potential errors were

evaluated by Ramachandran plots [36] and ERRAT [37]. The generated PvRBP1a initial model

was refined using Galaxy Refine to improve accuracy [38]. The Root-mean-square deviation

(RMSD) and Z-score were measured by DALI server (http://ekhidna2.biocenter.helsinki.fi/

dali). The RMSD measures the structural differences between the aligned alpha-carbon posi-

tions. The crystallographic model of proteins with about 50% sequence identity differs by

about 1 Å. The Z-score is the distance, in standard deviations, between the observed alignment

RMSD and the mean RMSD for random pairs of the same length, with the same or fewer gaps.

Similarities with a Z-score lower than 2 are spurious. The structure was visualized using UCSF

CHIMERA software [38].

Nucleotide diversity and natural selection

Pvrbp1a nucleotide diversity (π) is defined as the average number of nucleotide differences per

site between two sequences. The number of polymorphic sites, haplotypes, and haplotype

diversity (Hd) were calculated using DnaSP software [27,39]. Intra-species tests for evidence of

selection (non-random evolution) were evaluated using Tajima’s D, Fu and Li’s D�, and Fu

and Li’s F�. Under neutrality (random evolution), Tajima’s D is expected to be 0. Significant

positive values of Tajima’s D indicate a departure from random mutation that may reflect pop-

ulation contraction or balancing selection, whereas significant negative values may reflect pop-

ulation expansion after a recent bottleneck or a recent selective sweep [40]. Significant positive

values of Fu and Li’s D� and Fu and Li’s F� tend to reflect population contraction due to selec-

tion, while negative values reflect population expansion and excess of singletons [41]. Addi-

tionally, Nei and Gojobori’s method was used to calculate the intra-species (within P. vivax)
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proportion of synonymous substitutions per synonymous site (dS) and non-synonymous sub-

stitutions per non-synonymous site (dN) with 1,000 pseudo replication bootstraps using

MEGA 7 software. A dN-dS greater than zero reflect positive selection, while a dN-dS value

less than zero reflects purifying selection. Lastly, the inter-species (between P. cynomolgi)
McDonald-Kreitman (MK) test, which compares the amount of variation within a species to

the divergence between species. The MK test was computed using the P. cynomolgi rbp1a
Breok strain (JQ422037) as an out-group species using DnaSP software.

Pvrpb1a haplotype diversity was evaluated using DnaSP software, and clustering patterns

were assessed and illustrated using a median-joining method in Network 5.0 software. To

check the robustness of the network, the haplotype tree was drawn by the maximum likelihood

method and robustness was estimated by the bootstrap method with 1,000 pseudo replicates as

implemented in the MEGA7.

Recombinant protein expression

The recombinant PvRBP1a (PVP01_0701200) was expressed with two fragments for antigenic-

ity screening. The PvRBP1a-N (157–650 aa.) was selected based on the tertiary structure

homolog regions of the PvRBP2b binding domain. PvRBP1a-C (606–962 aa.) was chosen

because of the sequence conserved domain within pvrbp1a. The recombinant PvRBP1a-N and

PvRBP1a-C fragments were produced by HEK293E (HEK293 EBNA1-6E) cell-based protein

expression systems. Briefly, synthesized pvrbp1a genes which were codon-optimized and

mutated in predicted N-glycosylation sites were amplified using a specific primer set (S1

Table) and cloned into expression vector pTT5-MCS-His using In-Fusion Cloning kit (Clon-

tech, Mountain View, CA, USA). For protein expressions, we used HEK293 EBNA1-6E cell-

based transiently transfection systems. After five days of transfection, secreted proteins were

collected from the culture supernatant. The expressed proteins were purified by Ni-NTA aga-

rose (QIAGEN) with 250 mM imidazole, respectively. Each recombinant protein (3 μg/lane)

was prepared with 5x reducing buffer and separated by 13% SDS-PAGE. After electrophoresis,

SDS-PAGE gels were stained with Coomassie brilliant blue (Sigma-Aldrich).

Antigenicity evaluation

Protein microarray was performed for evaluating total antigenicity using recombinant

PvRBP1a-N and PvRBP1a-C. Three aminopropyl-coated slides were prepared as described

previously [42]. The slides printed with optimised concentration of recombinant protein

(PvRBP1a-N, 100 ng/μl and PvRBP1a-C, 50 ng/μl) to each spot were incubated for 2 hours at

37˚C, and these slides were blocked with blocking buffer (5% BSA in PBS-T, 0.1% Tween 20)

for 1 hour at 37˚C. Healthy and vivax malaria patient sera were diluted in PBS-T to 1:25 ratio

and treated on the chip for 1 hour at 37˚C. The arrays were visualized with 10 ng/μl of Alexa

Fluor 546 goat anti-human IgG (Invitrogen, Carlsbad, CA, USA) in PBS-T for 1 hour at 37˚C

and scanned using InnoScan 300 (INNOPSYS, France). The positive cut-off values calculated

by negative control mean fluorescence intensity (MFI) plus two standard deviations.

Additionally, antigens were heat-treated at 80˚C for 5 minutes to characterise the epitope.

The linearized antigen also used for the microarray as described above.

Statistical analysis

The antigenicity data were analysed using GraphPad Prism (GraphPad Software, San Diego,

CA, USA) and SigmaPlot (Systat Software Inc., San Jose, CA, USA). For the protein array, the

Student’s t-test was used to compare the experimentally measured values of each group. The

correlation of clinical information with antigenicity was calculated by Pearson correlation test
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(ρ). Differences of p< 0.05 were considered significant. The total IgG reactivity index was cal-

culated by each MFI divided by average negative MFI of PvRBP1a-N (157–650 aa.) and

PvRBP1a-C (606–962 aa.), respectively, for normalization and reactivity comparison.

Results

Pvrbp1a gene sequence characteristics and tertiary structure prediction

The pvrbp1a (PVP01_0701200) genomic DNA contains 8,704 bp in length on chromosome 7

with one intron and two exons. The open reading frame contain 8,502 bp (2,833 aa.) in length

with 326 kDa predicted molecular weights (Fig 1A). The pvrbp1a coding sequence was divided

into six segments for detailed characterisation in this study using the following criteria: (1) spe-

cific feature domains such as signal peptide and transmembrane domain, (2) homology-based

prediction domain which showed binding activity with host cell in other RBLs, (3) polymor-

phic and conserved sequence. Region I (1–151 aa.) contained signal peptide (1–22 aa.) and

unidentified domain with other RBLs. Region II (152–458 aa., head structure) and region III

(459–625 aa., tail structure) were divided by protein tertiary structure prediction with

PvRBP2b model (PDB ID: 6d03.1) (Fig 1B). Region IV (626–1441 aa.) contained a conserved

sequence region and Region V (1442–2771 aa.) was a moderate polymorphic region within

pvrbp1a sequence from 202 clinical isolates in this study. Region VI (2772–2833 aa.) contained

transmembrane (2772–2809 aa.) and intracellular domains (2810–2833 aa.) (Fig 1A).

The protein tertiary structure was predicted by pvrbp1a (PVP01_0701200) sequence and

the model was best-matched to PvRBP2b binding domain (PDB ID: 6d03.1, 168–633 aa.) (Fig

1A and 1B). The PvRBP1a model Ramachandran plot revealed 91.9% of the favourable regions

and 0.4% of disallowed regions in the initial model. The overall quality factor verified by

ERRAT showed 91.3%. After refinement, overall structure accuracy was improved to 96.3% of

the favourable region and 0.4% of the disallowed region in the Ramachandran plot and to

98.06% of ERRAT. This refined final tertiary structure was allowed as a PvRBP1a prediction

model and performed structural alignment with PvRBP2b. The structure was superimposed to

0.6 Å of RMSD and 38.8 of Z-score which reflect that PvRBP1a and PvRBP2b closely resem-

bled (Fig 1B). The PvRBP1a predicted structure model has a clearly divided head (PvRBP1a-

RII) and tail (PvRBP1a -RIII) domains based on the PvRBP2b structure which is the reticulo-

cyte binding domain (Fig 1B).

Additionally, PvRBP1a was commonly aligned with conserved hydrophobic regions to

other PvRBPs and may have a role in maintaining the proper architecture and specific func-

tions of these proteins [18]. Overall, PvRBP1a-RII and PvRBP1a-RIII were presumed to be the

most important domain in eliciting polymorphisms with a conserved conformation.

Genetic diversity and natural selection of pvrbp1a
Across 202 isolates from 6 countries, a total of 139 polymorphic sites, including 31 synony-

mous and 108 non-synonymous sites, were observed in pvrbp1a. A high number of non-syn-

onymous mutation may affect antibody recognition according to changes in the protein

tertiary structure. The highest nucleotide diversity was observed in Thailand (π ± S.D.,

0.00204 ± 0.00007), followed by Ethiopia (0.00171 ± 0.00012), ROK (0.00166 ± 0.00022),

Myanmar (0.00159 ± 0.00012), Malaysia (0.00148 ± 0.00011), and China (0.00120 ± 0.00012).

However, this result was considered a tendency of high nucleotide diversity according to the

sample size which is reflected the gene can be more varied in each country based on sample

size. The population-wide nucleotide diversity was 0.00196 ± 0.00004 (π ± S.D.) (Table 1). To

investigate whether the allele frequencies at the polymorphisms in pvrbp1a reflected evidence

of selection (departures from random mutation), several tests were performed at both intra-
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Fig 1. Schematic diagram of PvRBP1a and protein tertiary structure prediction. The region of PvRBP1a was divided based on specific features domain,

polymorphism patterns, and structure homology between PvRBP2b and PvRBP1a. (A) PvRBP1a fragments were divided into six regions, and each fragment nucleotide

diversity (π) is shown on the upper panel. The schematic diagram shows a black box indicating signal peptide, and the green box is the transmembrane domain. The

structural homology domain (head and tail) with PvRBP2b is indicated by amino acid position (aa.). PvRBP1a-N and PvRBP1a-C positions indicate recombinant

antigen position. (B) The predicted structure of PvRBP1a (152–625 aa.) showed highly similar structures with PvRBP2b (168–633 aa., PDB ID: 6d03.1) when

considering the superimposition between them based on Z-score (38.8) and RMSD (0.6 Å).

https://doi.org/10.1371/journal.pntd.0010492.g001
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and inter-species levels. Amongst the intra-species tests, Tajima’s D (-1.05156), Fu and Li’s D�

(-2.13654, p< 0.05), and Fu and Li’s F� (-1.93569, p< 0.05) revealed negative values, but only

Fu and Li’s D� and F� reached statistical significance (Table 1).

On investigation of the six separate pvrbp1a coding sequence regions, the highest nucleo-

tide diversity was observed in PvRBP1a-RIII (tail structure, 0.01290 ± 0.00029), followed by

PvRBP1a-RII (head structure, 0.00453 ± 0.00012) (Fig 2 and Table 2). Intra-species tests for

departures from neutrality for the PvRBP1a-RIII fragment revealed positive values for Tajima’s

D (1.13859), Fu and Li’s D� (1.09826), Fu and Li’s F� (1.34179), and dN-dS (1.369) but none

reached statistical significance (Tables 2 and 3). Additionally, no significant values were calcu-

lated in the inter-species (between P. cynomolgi) McDonald-Kreitman (MK) test (NI = 1.069)

(Table 3). Even all the calculations had weak evidence, all values indicated selection pressure.

Overall, the PvRBP1a-RIII domain (tail structure) departure from neutrality was balancing

selection that divides the population and contracted within the population.

There was also no significant evidence of selection at the PvRBP1a-RII fragment with Taji-

ma’s D (0.18145), Fu and Li’s D� (-0.96778), and Fu and Li’s F� (-0.60847) (Table 2). However,

the intra-species (within P. vivax) dN-dS calculation (2.225, p< 0.05) indicated significant

positive selection (Table 3). The inter-species (between P. cynomolgi) MK test was greater than

1 in PvRBP1a-RII, indicative of purifying selection (Table 3). Taken together, both PvRBP1a-

RII and PvRBP1a-RIII showed high levels of nucleotide diversity that mainly occurred by non-

synonymous mutation with weak evidence of balancing selection pressure within species.

However, PvRBP1a-RI and PvRBP1a-RIV, which surround the head and tail structure

Table 1. Estimates of nucleotide diversity, haplotype diversity and neutrality indices of pvrbp1a-ecto based on the geographical location.

Location No. of SNPs No. of Diversity ± S.D. Tajima’s D Fu and Li’s

samples haplotype Haplotype (Hd) Nucleotide (π) X 10−3 D� F�

Thailand 96 82 60 0.987±0.004 2.04±0.07 -0.42848 -0.27082 -0.40383

Malaysia 54 58 11 0.686±0.049 1.48±0.11 -0.22207 -0.85181 -0.73751

Myanmar 10 36 10 1.000±0.045 1.59±0.12 0.19725 -0.21176 -0.12378

China 4 17 4 1.000±0.177 1.20±0.12 0.80053 0.80053 0.82392

ROK 16 47 8 0.892±0.048 1.66±0.22 -0.10865 -0.54111 -0.48353

Ethiopia 22 50 14 0.948±0.029 1.71±0.12 0.14271 0.28773 0.28454

Overall 202 139 105 0.974±0.006 1.96±0.04 -1.05156 -2.13654� -1.93569�

https://doi.org/10.1371/journal.pntd.0010492.t001

Fig 2. Pvrbp1a-ecto and each domain nucleotide diversity (π) based on the geographical location. PvRBP1a domain divided into six regions and the structural

homolog domain (rii and riii) is highly polymorphic within countries.

https://doi.org/10.1371/journal.pntd.0010492.g002

PLOS NEGLECTED TROPICAL DISEASES Geographical distribution of Plasmodium vivax reticulocyte binding protein 1a

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010492 June 23, 2022 8 / 18

https://doi.org/10.1371/journal.pntd.0010492.t001
https://doi.org/10.1371/journal.pntd.0010492.g002
https://doi.org/10.1371/journal.pntd.0010492


domain, showed significant negative values for Tajima’s D, Fu and Li’s D�, and Fu and Li’s F�

indicating that directional selection pressure with population expansion, existing even in low

levels of polymorphisms (Table 2). Additionally, the conserved sequence identification was

performed by DNAsp software using 202 isolates. The result showed that total of 14 conserved

regions were revealed (S2 Table).

The haplotype networks using sequence combined across the most polymorphic regions,

PvRBP1a-RII+RIII (152–625 aa.), were performed using the Median-joining method. The RII

+RIII domains consisted of a total of 82 haplotypes which segregated into three distinct clus-

ters (Fig 3 and S1 Fig). A cluster 1, comprised isolates from across South-East Asia (Malaysia,

n = 29; Thailand, n = 58; Myanmar, n = 4) and Africa (Ethiopia, n = 8). Cluster 2 appeared to

connect with cluster 1 and predominantly comprised isolates from North-East Asia (ROK,

n = 15; China, n = 4) and Africa (Ethiopia, n = 14), with little representation from South-East

Asia (Malaysia, n = 1; Thailand, n = 12; Myanmar, n = 1). Cluster 3, which also appeared to

connect with cluster 1, mainly comprised South-East Asian Asia (Malaysia, n = 24; Thailand,

n = 26; Myanmar, n = 5) isolates and one isolate from ROK. The Papua Indonesian PvP01 ref-

erence pvrbp1a sequence (PVP01_0701200) comprised haplotype 1, located in cluster 3.

Antigenicity screening

Two PvRBP1a specific domains, PvRBP1a-N (157–650 aa.) (64.8 kDa) and PvRBP1a-C (606–

962 aa.) (48.3 kDa), were chosen for antigenicity screening. PvRBP1a-N contains host cell

Table 2. Estimates of nucleotide diversity, haplotype diversity and neutrality indices of Pvrbp1a fragments (�p< 0.05, �� p< 0.02, ��� p< 0.01).

PvRBP1a region SNPs No. of Diversity ± S.D. Tajima’s D Fu and Li’s

haplotype Haplotype (Hd) Nucleotide (π) X 10−3 D� F�

RI 12 12 0.1700±0.0360 0.41±0.09 -2.20689��� -4.16133�� -4.11749��

RII 23 66 0.9540±0.0080 4.53±0.12 0.18145 -0.96778 -0.60847

RIII 27 39 0.9240±0.0090 12.90±0.29 1.13859 1.09829 1.34179

RIV 30 29 0.6180±0.0410 0.45±0.04 -2.21930��� -1.90906 -2.45312�

RV 52 69 0.9580±0.0060 1.09±0.04 -1.51279 -2.14712 -2.24564

RVI 6 7 0.4990±0.0380 4.17±0.43 -0.46163 0.02591 -0.16884

N 53 84 0.9680±0.0060 7.23±0.16 0.56325 0.01404 0.30861

C 15 15 0.4630±0.0420 0.56±2.38 -1.94434� -1.49092 -1.99727

https://doi.org/10.1371/journal.pntd.0010492.t002

Table 3. McDonald-Kreitman (MK) test on PvRBP1a with PcyRBP1a as out-group species and dN-dS ratio.

PvRBP1a Region (bp) Polymorphic changes within P.

vivax
Fixed differences between P.

vivax and P. cynomolgi
Neutrality index (p value)a dN-dS (p value)

Syn Non-syn Syn Non-syn

Overall (1–8499) 31 108 272 743 1.334 (0.170) 1.780 (0.078)

RI (1–453) 4 8 14 34 0.824 (1.000) -0.660 (0.511)

RII (454–1374) 2 21 45 121 3.905 (0.071) 2.225 (0.028)�

RIII (1375–1875) 2 19 9 80 1.069 (1.000) 1.369 (0.174)

RIV (1876–4323) 8 21 73 191 1.003 (1.000) -0.240 (0.810)

RV (4324–8313) 15 36 133 316 1.010 (1.000) -0.545 (0.587)

RVI (8314–8499) 0 6 3 28 - 1.925 (0.057)

N (469–1950) 5 42 55 215 2.149 (0.157) 2.344 (0.021)�

C (1816–2886) 2 13 25 106 1.533 (0.738) 0.803 (0.424)

a Fisher’s exact test p-value

https://doi.org/10.1371/journal.pntd.0010492.t003
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binding domain RII+RIII (head and tail structure), and PvRBP1a-C is a partial sequence of a

conserved region in RIV (Fig 1A and 1B). The recombinant proteins were used for the evalua-

tion of antigenicity with three geographically different countries from South-East Asia (Myan-

mar, n = 48), North-East Asia (ROK, n = 50), and East Africa (Sudan, n = 37) (Fig 4A).

Fig 3. Median-joining networks of structural homolog domain (pvrbp1a-rii+riii) haplotype. The geographical haplotype network analysis of pvrbp1a-rii+riii region

was constructed using the NETWORK 10.2 software with the Median Joining algorithm. The network showed 82 haplotypes found in 202 clinical isolates and was largely

divided into three groups.

https://doi.org/10.1371/journal.pntd.0010492.g003
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Fig 4. Humoral immune response against PvRBP1a-N and PvRBP1a-C. (A) Purity confirmation by SDS-PAGE of recombinant PvRBP1a-N (157–650 aa.) (64.8

kDa) and PvRBP1a-C (606–962 aa.) (48.3 kDa) expression. (B) Total IgG prevalence of each domain with the vivax patient: Myanmar (grey dot), ROK (blue dot), and

Sudan (pink dot) and healthy individual (yellow dot) sera. The bar indicates the mean fluorescence intensity (MFI) ± 95% CI. The p values were calculated by

Student’s t-test. Significant differences are shown as triple asterisks p<0.001 and quadruple asterisk p<0.0001. (C) IgG prevalence visualized for comparison between

N and C with each patient sera by normalized reactivity index. Significant differences are shown as single asterisks p<0.05 and quadruple asterisks p<0.0001. (D)

Correlation between N and C total IgG reactive indices using Pearson correlation test (ρ). Blue dot and dash line represent patient sera reactive index from ROK and

its regression line. Grey and pink dot and dash line represent reactivity indices and its regression lines from Myanmar and Sudan patient sera, respectively. Red line

indicates total regression.

https://doi.org/10.1371/journal.pntd.0010492.g004
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Total IgG reactivity in healthy sera was detected in PvRBP1a-N (MFI ± S.D., 4,714 ± 1,251)

significantly lower than PvRBP1a-C (7,487 ± 3,881). However, vivax patient sera showed simi-

lar in PvRBP1a-N (10,699 ± 10,238) and PvRBP1a-C (10,493 ± 5,269) (Fig 4B). Overall,

PvRBP1a specific IgG inducing level after exposure of P. vivax in PvRBP1a-N (46.7%) was

higher than PvRBP1a-C (17.8%) (Table 4). This result indicates that PvRBP1a-N more actively

induces antigen-specific IgG by adaptive immune systems than PvRBP1a-C (Fig 4B and

Table 4). The epitope characterization was performed by normal and heat-treated proteins

antigenicity screening. The comparison between normal and heat-treated antigens showed

that PvRBP1a-N was not significantly different, indicating a linear epitope. However,

PvRBP1a-C showed a significant difference when structural conformation was destroyed,

reflecting a conformational epitope (Fig 4B). The antigenicity correlation analysis between

PvRBP1a-N and PvRBP1a-C in individual vivax patient showed positive correlation in Myan-

mar (ρ = 0.573, p< 0.001), ROK (ρ = 0.428, p<0.05), and Sudan (ρ = 0.251, p = 0.135) (Fig

4C). In the same manner, the overall correlation between PvRBP1a-N and PvRBP1a-C showed

a significant positive correlation (ρ = 0.465, p< 0.001) (Fig 4D). The correlation analysis of

PvRBP1a-N and PvRBP1a-C with age and parasitaemia showed that there was no significant

correlation except PvRBP1a-C with patient age (ρ = -0.233, p = 0.0229) (Fig 5A–5D).

Discussion

The RBL protein family including PvRBP1a, are essential ligands used by P. vivax merozoites

for the identification and invasion of human reticulocytes, as such they are important potential

vaccine candidates [15]. To date studies of PvRBP1a have focused mainly on its reticulocyte

Table 4. Humoral immune responses against PvRBP1a-N and PvRBP1a-C proteins.

Antigen No. of patient sample 95% CIb MFIc No. of healthy sample 95% CI MFI p valuee

Pos. Neg. Total (%)a Pos. Neg. Total (%)d

PvRBP1a-N (Normal) 63 72 135 (46.7) 38.5–55.1 10699 1 49 50 (98.0) 89.5–99.65 4714 <0.0001

Myanmar 26 22 48 (54.2) 40.3–67.4 13343.9

ROK 19 31 50 (38.0) 25.9–51.9 7695.5

Sudan 18 19 37 (48.7) 33.5–64.1 11326.3

PvRBP1a-N (Heat-treated) 61 74 135 (45.2) 37.04–53.6 10803 2 48 50 (96.0) 86.54–98.9 5956 <0.0001

Myanmar 24 24 48 (50.0) 36.39–63.61 12698.85

ROK 19 31 50 (38.0) 25.86–51.85 9634.331

Sudan 18 19 37 (48.7) 33.45–64.11 11077.54

PvRBP1a-C (Normal) 24 111 135 (17.8) 12.3–25.1 10493 2 48 50 (96.0) 86.54–98.9 7487 0.0003

Myanmar 11 37 48 (23.0) 13.3–36.5 12081.9

ROK 5 45 50 (10.0) 4.4–21.4 8951.6

Sudan 8 29 37 (21.6) 11.4–37.2 10515.8

PvRBP1a-C (Heat-treated) 51 84 135 (37. 8) 30.04–46.19 8421 2 48 50 (96.0) 86.54–98.9 4848 <0.0001

Myanmar 22 26 48 (45.8) 32.58–59.71 10333.14

ROK 12 38 50 (24.0) 14.3–37.41 6070.264

Sudan 17 20 37 (46.0) 31.04–61.62 9148.775

a Sensitivity: percentage of positive in patient samples.
b CI: confidence interval.
c MFI: mean fluorescence intensity.
d Specificity: percentage of negative in healthy samples.
e Differences in the total IgG prevalence for each antigen between vivax patients and healthy individuals were calculated with Student t-test. A p value of < 0.05 is

considered statistically significant.

https://doi.org/10.1371/journal.pntd.0010492.t004
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binding activity using a limited set of recombinant PvRBP1a fragments (S3 Table) [22,23]. Of

particular note, the PvRBP1a recombinant fragment (352–599 aa.) induced antibody, abro-

gated 40% of P. vivax merozoite invasion activity [21]. While the results indicate that PvRBP1a

is a promising novel vaccine candidate, prior to this study there was limited knowledge about

the PvRBP1a genetic diversity and antigen characteristics.

In our study, PvRBP1a-RII and PvRBP1a-RIII (152–625 aa.), located in the N-terminal,

were revealed as the most polymorphic regions in the pvrbp1a gene. This genetic polymor-

phism pattern is similar to other RBL protein family members such as PvRBP2a, PvRBP2b,

and PfRh5 [18,19,43]. Interestingly, the highly polymorphic PvRBP1a-RII+RIII region over-

laps with the RBL domain, showing host cell-binding activity within the RBL family. This

domain of PvRBP1a has also been shown to have reticulocyte binding activity (S3 Table)

[20,21,23].

Fig 5. The correlation of parasitaemia and age with PvRBP1a-N and PvRBP1a-C proteins. (A and B) PvRBP1a-N and (C and D) PvRBP1a-C total IgG indices

obtained from mean fluorescence intensity (MFI) were evaluated correlation with patient age (years) and parasitaemia (parasite count/uL) by Pearson correlation test

(ρ), respectively.

https://doi.org/10.1371/journal.pntd.0010492.g005
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Genetic polymorphisms are a major hurdle for vaccine development as variation can alter

the epitope expression, resulting in loss of vaccine efficacy [44]. The most advanced P. vivax
vaccine candidate to date is PvDBP-RII (268–513 aa.). The pvdbp gene has been show to

exhibit high genetic diversity in Malaysia (π = 0.01000), Brazil (π = 0.01200) [45], and Myan-

mar (π = 0.00400–0.00600), as well as evidence of positive selection pressure [12,46–49]. The

PvDBP-RII fragment is a functional domain containing 12 conserved-cysteine residues, with a

conserved protein structure and binding functions to DARC [50]. Our study revealed that the

PvRBP1a-RII+RIII domains (PvRBP1a-N) have comparable nucleotide diversity (π = 0.00748

in worldwide isolates) to PvDBP-RII. Although these domains showed weak evidence for natu-

ral selection using intra-species tests, evidence of balancing selection was observed with high

level of non-synonymous mutation. However, the inter-species MK test (NI = 2.149) was indi-

cated purifying selection. Taken together with the haplotype distribution result, PvRBP1a-RII

+RIII is divided into three different genetic clusters. Thus, these three clusters should be con-

sidered for PvRBP1a based vaccine development in the future.

Interestingly, the PvRBP1a-RI and PvRBP1a-RIV domains showed strong evidence for

directional selection pressure in our study. Both regions exhibited an excess of rare haplotypes

(observed once), reflective of a possible population expansion or selection sweep. However,

these gene regions (PvRBP1a-C) have low antigenicity, limiting their utility as vaccine candi-

date targets.

The antigenicity screening results reflect the correlation of PvRBP1a genetic diversity and

natural selection properties. PvRBP1a-N (RII+RIII, 157–650 aa.) is a highly polymorphic

region mainly caused by random point mutations and could be divided into three genetic clus-

ters. Because the PvRBP1a-N has a linear epitope, conserved epitope sequence residue possibly

elicits humoral immune response with up to 46.7% sensitivity. On the other hand, the confor-

mational epitope in PvRBP1a-C (RIV partial, 606–969 aa.) showed lower antigenicity (17.8%)

than PvRBP1a-N caused by strong directional selection with population expansion even con-

sist with relatively conserved sequence. In comparison with PvDBP-RII and PvEBP-RII, the

same methods for antigenicity screening with this study showed 56.9% and 16.1% sensitivity

[23,51]. These data show that PvRBP1a-N elicits moderate level of antigenicity compared with

other essential microneme ligands, even it is containing three different genotypes. An effective

vaccine should include sequence residues that sufficiently induce the host immune responses

and broadly covers the existing antigenic diversity.

To facilitate PvRBP1a based vaccine development, the relationship between sequence con-

served regions (S2 Table) and functional studies of PvRBP1a fragment (S3 Table) were com-

pared. Among the PvRBP1a fragments which showed the ability to bind to reticulocytes, the

C2 (409–444 aa.) and C3 (473–507 aa.) regions were commonly overlapped, especially the C3

region, which might have important roles to bind reticulocyte when compared to previous

report (S3 Table). Furthermore, the antibody against PvRBP1a fragment containing C3 regions

showed binding [22] and invasion inhibition activity [20]. Therefore, C3 regions in the

PvRBP1a-N (RII+RIII) can be considered attractive target regions for vaccine development.

Although PvRBP1a is a novel candidate for an alternative invasion pathway blocking vac-

cine, correlation analysis of genetic diversity and antigenicity screening revealed several obsta-

cles. The low antigenicity due to high genetic polymorphism in a particular interest domain,

PvRBP1a-RII+RIII will need to be considered for PvRBP1a based vaccine development.
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