Robotic and laparoscopic right anterior sectionectomy and central hepatectomy: multicentre propensity score-matched analysis

Hye Yeon Yang ${ }^{1}$, Gi Hong Choi ${ }^{1}$, Ken-Min Chin ${ }^{2}$, Sung Hoon Choi ${ }^{3}$, Nicholas L. Syn ${ }^{4}$, TanTo Cheung ${ }^{5}$, Adrian K. H. Chiow ${ }^{6}$, Iswanto Sucandy ${ }^{7}$, Marco V. Marino ${ }^{8,9}$, Mikel Prieto ${ }^{10}$, Charing C. Chong ${ }^{11}$, Jae Hoon Lee ${ }^{12}$, Mikhail Efanov ${ }^{13}$, T. Peter Kingham ${ }^{14}$, Robert P. Sutcliffe ${ }^{15}$, Roberto I. Troisi ${ }^{16}$, Johann Pratschke ${ }^{17}$, Xiaoying Wang ${ }^{18}$, Mathieu D'Hondt ${ }^{19}$, Chung Ngai Tang ${ }^{20}$, Rong Liu ${ }^{21}$, James O. Park ${ }^{22}$, Fernando Rotellar ${ }^{23,24}$, Olivier Scatton ${ }^{25}$, Atsushi Sugioka ${ }^{26}$, Tran Cong Duy Long ${ }^{27}$, Chung-Yip Chan ${ }^{28}$, David Fuks ${ }^{29}$, Ho-Seong Han ${ }^{30}$, Brian K. P. Goh ${ }^{28,{ }^{*}}$, International Robotic and Laparoscopic Liver Resection Study Group Investigators
${ }^{1}$ Division of Hepatopancreatobiliary Surgery, Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
${ }^{2}$ Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore
${ }^{3}$ Department of General Surgery, CHA Bundang Medical Centre, CHA University School of Medicine, Seongnam, Korea
${ }^{4}$ Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
${ }^{5}$ Department of Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
${ }^{6}$ Hepatopancreatobiliary Unit, Department of Surgery, Changi General Hospital, Singapore
${ }^{7}$ AdventHealth Tampa, Digestive Health Institute, Tampa, Florida, USA

[^0]${ }^{8}$ General Surgery Department, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
${ }^{9}$ Oncologic Surgery Department, P. Giaccone University Hospital, Palermo, Italy
${ }^{10}$ Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Bilbao, Spain
${ }^{11}$ Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, New Territories, Hong Kong, China
${ }^{12}$ Department of Surgery, Division of Hepato-Biliary and Pancreatic Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
${ }^{13}$ Department of Hepato-Pancreato-Biliary Surgery, Moscow Clinical Scientific Centre, Moscow, Russia
${ }^{14}$ Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
${ }^{15}$ Department of Hepatopancreatobiliary and Liver Transplant Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
${ }^{16}$ Department of Clinical Medicine and Surgery, Division of Hepato-Pancreato-Biliary, Minimally Invasive and Robotic Surgery, Federico II University Hospital Naples, Naples, Italy
${ }^{17}$ Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, CharitéUniversitätsmedizin, Corporate Member of Freie Universität Berlin, and Berlin Institute of Health, Berlin, Germany
${ }^{18}$ Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
${ }^{19}$ Department of Digestive and Hepatobiliary/Pancreatic Surgery, Groeninge Hospital, Kortrijk, Belgium
${ }^{20}$ Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
${ }^{21}$ Faculty of Hepatopancreatobiliary Surgery, First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
${ }^{22}$ Hepatobiliary Surgical Oncology, Department of Surgery, University of Washington Medical Center, Seattle, Washington, USA
${ }^{23}$ Hepatopancreatobiliary and Liver Transplant Unit, Department of General Surgery, Clinica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
${ }^{24}$ Institute of Health Research of Navarra (IdisNA), Pamplona, Spain
${ }^{25}$ Department of Digestive, Hepato-biliary-pancreatic and Liver Transplantation, Hôpital PitieSalpetriere, AP-HP, Sorbonne Université, Paris, France
${ }^{26}$ Department of Surgery, Fujita Health University School of Medicine, Aichi, Japan
${ }^{27}$ Department of Hepatopancreatobiliary Surgery, University Medical Center, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
${ }^{28}$ Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and
${ }^{29}$ Department of Digestive, Oncologic and Metabolic Surgery, Institute Mutualiste Montsouris, Université Paris Descartes, Paris, France
${ }^{30}$ Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea

Introduction

The role of minimally invasive major hepatectomy today is a hotly debated topic. It is viewed as an innovative procedure that should be performed only by experienced surgeons in specialist centres ${ }^{1-4}$. Right anterior sectionectomy and central hepatectomy for centrally located tumours are traditionally viewed as complex and technically demanding procedures with a higher perioperative morbidity rate, especially via a minimally invasive approach ${ }^{5,6}$. This post hoc analysis of databases (2010-2020) aimed to establish outcome data.

Results

Of a total of 9293 patients, 233 (2.5 per cent) underwent minimally invasive right anterior sectionectomy or central hepatectomy (48 robotic and 185). See Supplementary methods, Tables S1-S3 and Figs S1-S5 for methods, definitions, surgical technique, inclusion criteria, definitions, and statistical methods ${ }^{7-9}$. Baseline clinicopathological characteristics and perioperative outcomes for both cohorts are summarized in Tables 1 and 2. Although hepatocellular carcinoma was the most common indication overall, patients undergoing robotic surgery were more likely to have other pathology (perhaps indicating selection). The distribution of minimally invasive resections was stable over time (Figs S6-S8).

Patients suitable for robotic surgery had less blood loss and morbidity than those having other approaches, but a similar duration of hospital stay, and rates of conversion and reoperation. Blood loss was lower with robotic surgery, even with propensity score matching, but it was not a clinically significant difference. No differences in transfusion requirements were observed as a result.

Discussion

A steep learning curve has proven to be a major stumbling block in widespread application of minimally invasive liver resection ${ }^{10-12}$. There is some evidence that robotic platforms may be beneficial at the expense of higher costs ${ }^{13-18}$. Right anterior and central resections are two of the most technically demanding owing to wide parenchymal planes with close proximity to critical structures and major vessels ${ }^{5,6,19}$. Those suitable for minimal access approaches have less blood loss, a shorter postoperative hospital stay, and lower morbidity, but longer operating times ${ }^{5,6,19}$. Both procedures were associated with a relatively low volume of blood loss in the present study, and it was better in the robotic group. It is likely that experienced surgeons with a special interest would have performed the robotic resections in selected patients ${ }^{20}$.

There is an inherent risk of confounding bias with a relatively small sample size in this study. The relatively long time period inevitably confounds results, given the rapid and significant improvements in surgical technology and perioperative care over time. Nonetheless, there was no significant difference in the proportion of robotic versus laparoscopic approaches performed over time. There was no patient selection or operative standardization, but the multicentre study provides validity to the results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Disclosure.

B.K.P.G. has received travel grants and honoraria from Johnson and Johnson and Transmedic, the local distributor for the Da Vinci ${ }^{\circledR}$ robot. M.V.M. is a consultant for CAVA Robotics. J.P. reports a research grant from Intuitive Surgical Deutschland, and personal fees or non-financial support from Johnson \& Johnson, Medtronic, AFS Medical, Astellas, CHG Meridian, Chiesi, Falk Foundation, La Fource Group, Merck, Neovii, NOGGO, pharma-consult Peterson, and Promedicis. M.S. (collaborator) reports personal fees or other support outside of the submitted work from Merck, Bayer, ERBE, Amgen, Johnson \& Johnson, Takeda, Olympus, Medtronic, and Intuitive. F.R. reports speaker fees and support outside the submitted work from Integra, Medtronic, Olympus, Corza, Sirtex and Johnson \& Johnson.

References

1. Wakabayashi G, Cherqui D, Geller DA, Buell JF, Kaneko H, Han HS et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 2015;261:619-629 [PubMed: 25742461]
2. Nguyen KT, Geller DA. Laparoscopic liver resection-current update. Surg Clin North Am 2010;90:749-760 [PubMed: 20637945]
3. Tsung A, Geller DA, Sukato DC, Sabbaghian S, Tohme S, Steel J et al. Robotic versus laparoscopic hepatectomy: a matched comparison. Ann Surg 2014;259:549-555 [PubMed: 24045442]
4. Spampinato MG, Coratti A, Bianco L, Caniglia F, Laurenzi A, Puleo F et al. Perioperative outcomes of laparoscopic and robot-assisted major hepatectomies: an Italian multi-institutional comparative study. Surg Endosc 2014;28:2973-2979 [PubMed: 24853851]
5. Chin KM, Linn YL, Cheong CK, Koh Y-X, Teo J-Y, Chung AYF et al. Minimally invasive versus open right anterior sectionectomy and central hepatectomy for central liver malignancies: a propensity-score-matched analysis. ANZ J Surg 2021;91:E174-E178 [PubMed: 33719128]
6. Cho CW, Rhu J, Kwon CHD, Choi G-S, Kim JM, Joh J-W et al. Short-term outcomes of totally laparoscopic central hepatectomy and right anterior sectionectomy for centrally located tumors: a case-matched study with propensity score matching. World J Surg 2017;41:2838-2846 [PubMed: 28752429]
7. Belghiti J, Clavien PA, Gadzijev E, Garden JO, Lau W-Y, Makuuchi M et al. The Brisbane 2000 terminology of liver anatomy and resections. HPB 2000;2:333-339
8. Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD et al. The ClavienDindo classification of surgical complications: five-year experience. Ann Surg 2009;250: 187-196 [PubMed: 19638912]
9. Wakabayashi G What has changed after the Morioka consensus conference 2014 in laparoscopic liver resection? Hepatobiliary Surg Nutr 2016;5:281-289 [PubMed: 27500140]
10. van der Poel MJ, Besselink MG, Cipriani F, Armstrong T, Takhar AS, van Dieren S et al. Outcome and learning curve in 159 consecutive patients undergoing total laparoscopic hemihepatectomy. JAMA Surg 2016;151:923-928 [PubMed: 27383568]
11. Goh BK, Lee SY, Koh YX, Kam J-H, Chan C-Y. Minimally invasive major hepatectomies: a Southeast Asian single institution contemporary experience with its first 120 consecutive cases. ANZ J Surg 2020;90:553-557 [PubMed: 31721400]
12. Chua D, Syn N, Koh YX, Goh BK. Learning curves in minimally invasive hepatectomy: systematic review and meta-regression analysis. Br J Surg 2021;108:351-358 [PubMed: 33779690]
13. Choi GH, Choi SH, Kim SH, Hwang HK, Kang CM, Choi JS et al. Robotic liver resection: technique and results of 30 consecutive procedures. Surg Endosc 2012;26:2247-2258 [PubMed: 22311301]
14. Cipriani F, Fiorentini G, Magistri P, Fontani A, Menonna F, Annecchiarico M et al. Pure laparoscopic versus robotic liver resections: multicentric propensity score-based analysis with stratification according to difficulty scores. J Hepatobiliary Pancreat Sci 2021
15. Yang HY, Rho SY, Han DH, Choi JS, Choi GH. Robotic major liver resections: surgical outcomes compared with open major liver resections. Ann Hepatobiliary Pancreat Surg 2021;25: 8-17 [PubMed: 33649249]
16. Fagenson AM, Gleeson EM, Pitt HA, Lau KN. Minimally invasive hepatectomy in North America: laparoscopic versus robotic. J Gastrointest Surg 2021;25:85-93 [PubMed: 32583323]
17. Ciria R, Berardi G, Alconchel F, Briceño J, Choi GH, Wu Y-M et al. The impact of robotics in liver surgery: a worldwide systematic review and short-term outcomes meta-analysis on 2728 cases. J Hepatobiliary Pancreat Sci 2020
18. Goh BK, Low TY, Teo JY, Lee SY, Chan CY, Chow PK et al. Adoption of robotic liver, pancreatic and biliary surgery in Singapore: a single institution experience with its first 100 consecutive cases. Ann Acad Med Singa 2020;49:742-748
19. Jeung IH, Choi SH, Kim S, Kwon SW. Laparoscopic central bisectionectomy and right anterior sectionectomy using two retraction methods: technical aspects with video. World J Surg 2019; 43:3120-3127 [PubMed: 31493192]
20. Chiow AK, Fuks D, Choi GH, Syn N, Sucandy I, Marino MV et al. International multicentre propensity score-matched analysis comparing robotic versus laparoscopic right posterior sectionectomy. Br J Surg 2021;108:1513-1520 [PubMed: 34750608]
Table 1

	Unm	atched cohort		1:2 propen	sity-matched cohort		1:1 propen	sity-matched cohort	
	R-RAS/CH ($\mathrm{n}=48$)	L-RAS/CH ($\mathrm{n}=185$)	\mathbf{P}^{\dagger}	R-RAS/CH ($\mathrm{n}=34$)	L-RAS/CH ($\mathrm{n}=68$)	$\mathbf{P}^{\text {t }}$	R-RAS/CH ($\mathrm{n}=40$)	L-RAS/CH ($\mathrm{n}=40$)	P§
Age (years)*	60 (51-67)	63 (56-70)	0.034	61 (54-70)	62 (55-68)	0.712	62 (55-68)	62 (54-72)	0.630
Men	37 of 48 (77.1)	142 of 185 (76.8)	0.962	28 of 34 (82.4)	57 of 68 (83.8)	0.855	32 of 40 (80.0)	33 of 40 (82.5)	0.901
ASA grade			0.587			0.888			0.881
I	8 of 48 (16.7)	19 of 185 (10.3)		4 of 34 (11.8)	9 of 68 (13.2)		5 of 40 (12.5)	5 of 40 (12.5)	
II	29 of 48 (60.4)	125 of 185 (67.6)		20 of 34 (58.8)	42 of 68 (61.8)		24 of 40 (60.0)	22 of 40 (55.0)	
III	11 of 48 (22.9)	40 of 185 (21.6)		10 of 34 (29.4)	17 of 68 (25.0)		11 of 40 (27.5)	13 of 40 (32.5)	
IV	0 of 48 (0)	1 of 185 (0.5)		0 of 34 (0)	0 of 68 (0)		0 of 40 (0)	0 of 40 (0)	
Right anterior sectionectomy	36 of 48 (75.0)	118 of 185 (63.8)	0.144	26 of 34 (76.5)	52 of 68 (76.5)	1.000	30 of 40 (75.0)	32 of 40 (80.0)	0.800
Central hepatectomy	12 of 48 (25.0)	67 of 185 (36.2)		8 of 34 (23.5)	16 of 68 (23.5)		10 of 40 (25.0)	8 of 40 (20.0)	
Previous abdominal surgery	12 of 48 (25.0)	60 of 185 (32.4)	0.321	10 of 24 (29.4)	20 of 68 (29.4)	1.000	11 of 40 (27.5)	13 of 40 (32.5)	0.683
Previous liver surgery	3 of 48 (6.3)	13 of 185 (7.0)	0.850	3 of 34 (8.8)	3 of 68 (4.4)	0.396	3 of 40 (7.5)	2 of 40 (5.0)	0.655
Malignant pathology	41 of 48 (85.4)	181 of 185 (97.8)	0.001	33 of 34 (97.1)	66 of 68 (97.1)	1.000	38 of 40 (95.0)	38 of 40 (95.0)	1.000
Pathological type			0.003			0.786			0.896
HCC	26 of 48 (54.2)	125 of 185 (67.6)		23 of 34 (67.7)	47 of 68 (69.1)		25 of 40 (62.5)	27 of 40 (67.5)	
CRM	7 of 48 (14.6)	39 of 185 (21.1)		6 of 34 (17.7)	14 of 68 (20.6)		7 of 40 (17.5)	6 of 40 (15.0)	
Others	15 of 48 (31.3)	21 of 185 (11.4)		5 of 34 (14.7)	7 of 68 (10.3)		8 of 40 (20.0)	7 of 40 (17.5)	
Cirrhosis	19 of 48 (39.6)	81 of 185 (43.8)	0.600	15 of 34 (44.1)	31 of 68 (45.6)	0.892	18 of 40 (45.0)	19 of 40 (47.5)	0.869
Child-Pugh grade			0.058			0.892			0.974
No cirrhosis	29 of 48 (60.4)	104 of 185 (56.2)		19 of 34 (55.9)	37 of 68 (54.4)		22 of 40 (55.0)	21 of 40 (52.5)	
A	16 of 48 (33.3)	79 of 185 (42.7)		15 of 34 (44.1)	31 of 68 (45.6)		16 of 40 (40.0)	17 of 40 (42.5)	
B	3 of 48 (6.3)	2 of 185 (1.1)		0 of 34 (0)	0 of 68 (0)		2 of 40 (5.0)	2 of 40 (5.0)	
Portal hypertension	4 of 48 (8.3)	14 of 185 (7.6)	0.859	1 of 34 (2.9)	5 of 68 (7.4)	0.403	3 of 40 (7.5)	3 of 40 (7.5)	1.000
Tumour size (mm)*	40 (30-50)	34 (26-50)	0.221	38 (29-47)	35 (30-51)	0.649	38 (30-49)	35 (30-50)	0.524
Multiple tumours	9 of 48 (18.8)	45 of 185 (24.3)	0.415	6 of 34 (17.6)	16 of 68 (23.5)	0.507	7 of 40 (17.5)	10 of 40 (25.0)	0.467
Multiple resections	0 of 48 (0)	14 of 185 (7.6)	0.049	0 of 34 (0)	0 of 68 (0)	1.000	0 of 40 (0)	0 of 40 (0)	1.000

Yang et al.

	Unmatched cohort			1:2 propensity-matched cohort			1:1 propensity-matched cohort		
	R-RAS/CH ($\mathrm{n}=48$)	L-RAS/CH ($\mathrm{n}=185$)	\mathbf{P}^{\dagger}	R-RAS/CH ($\mathrm{n}=34$)	L-RAS/CH ($\mathrm{n}=68$)	P ${ }^{*}$	R-RAS/CH ($\mathrm{n}=40$)	L-RAS/CH ($\mathrm{n}=40$)	P ${ }^{\text {§ }}$
Concomitant operation, not cholecystectomy	7 of 48 (14.6)	10 of 185 (5.4)	0.029	2 of 34 (5.9)	6 of 68 (8.8)	0.489	5 of 40 (12.5)	6 of 40 (15.0)	0.763
Iwate score			0.291			0.865			0.628
Low	0 of 48 (0)	0 of 185 (0)		0 of 34 (0)	0 of 68 (0)		0 of 40 (0)	0 of 40 (0)	
Intermediate	0 of 48 (0)	0 of 185 (0)		0 of 34 (0)	0 of 68 (0)		0 of 40 (0)	0 of 40 (0)	
High	8 of 48 (16.7)	44 of 185 (23.8)		7 of 34 (20.6)	15 of 68 (22.1)		8 of 32 (20.0)	4 of 40 (10.0)	
Expert	40 of 48 (83.3)	141 of 185 (76.2)		27 of 34 (79.4)	53 of 68 (77.9)		32 of 40 (80.0)	36 of 40 (90.0)	

Values in parentheses are percentages unless indicated otherwise;

* values are median (i.q.r.). R-RAS/CH, robotic right anterior sectionectomy/central hepatectomy; L-RAS/CH, laparoscopic right anterior sectionectomy/central hepatectomy; HCC, hepatocellular carcinoma; CRM, colorectal cancer metastases.
${ }^{\dagger}$ From unpaired analyses i.e. Mann-Whitney U test and Pearson's chi-square test;
From Wilcoxon signed rank test and McNemar's chi-square test;
${ }^{\mathcal{S}}$ From mixed-effects quantile regression (in which a random-effects parameter was used to denote the 1:2 matched data structure), conditional logistic, or mixed-effects ordinal logistic regression.
Values in parentheses are percentages unless indicated otherwise;
Table 2
Comparison of perioperative outcomes after robotic versus laparoscopic right anterior sectionectomy and central hepatectomy

	Entire unmatched cohort			1:2 propensity-matched cohort			1:1 propensity-matched cohort		
	R-RAS/CH ($\mathrm{n}=48$)	L-RAS/CH ($\mathrm{n}=185$)	\mathbf{P}^{\dagger}	R-RAS/CH ($\mathrm{n}=34$)	L-RAS/CH ($\mathrm{n}=68$)	$\mathbf{P}^{\text {t }}$	R-RAS/CH ($\mathrm{n}=40$)	L-RAS/CH ($\mathrm{n}=40$)	P ${ }^{\text {§ }}$
Duration of operation (min)*	307 (209-496)	315 (231-435)	0.776	355 (248-530)	285 (210-365)	0.047	339 (228-505)	298 (210-358)	0.133
Blood loss (ml) ${ }^{\text {* }}$	200 (100-500)	371 (200-650)	0.001	200 (100-500)	300 (192-700)	0.020	200 (100-500)	350 (200-725)	0.019
Intraoperative blood transfusion	5 of 48 (10.4)	31 of 185 (16.8)	0.279	4 of 34 (11.8)	12 of 68 (17.6)	0.418	4 of 40 (10.0)	9 of 40 (22.5)	0.166
Pringle manoeuvre applied	29 of 48 (60.4)	123 of 185 (66.5)	0.431	18 of 34 (52.9)	47 of 68 (69.1)	0.082	21 of 40 (52.5)	32 of 40 (80.0)	0.131
Median duration of Pringle manoeuvre when applied (\min) *	60 (38-82)	60 (30-98)	0.902	75 (50-89)	60 (30-100)	0.582	61 (50-84)	63 (53-98)	0.853
Conversion to open surgery	2 of 48 (4.2)	11 of 185 (5.9)	0.632	2 of 34 (5.9)	3 of 68 (4.4)	0.753	2 of 40 (5.0)	2 of 40 (5.0)	1.000
Duration of postoperative hospital stay (days) ${ }^{*}$	7 (5-10)	8 (6-12)	0.217	8 (6-11)	7 (6-10)	0.580	7 (6-11)	8 (5-10)	0.853
30-day readmission	2 of 48 (4.2)	7 of 184 (3.8)	0.908	1 of 34 (2.9)	3 of 68 (4.4)	0.726	1 of 40 (2.5)	4 of 40 (10.0)	0.180
Postoperative morbidity	9 of 48 (18.8)	62 of 185 (33.5)	0.048	8 of 34 (23.5)	20 of 68 (29.4)	0.548	8 of 40 (20.0)	14 of 40 (35.0)	0.201
Major morbidity (ClavienDindo grade. II)	3 of 48 (6.3)	13 of 185 (7.0)	0.850	2 of 34 (5.9)	2 of 68 (2.9)	0.488	2 of 40 (5.0)	2 of 40 (5.0)	1.000
Reoperation	1 of 48 (2.1)	2 of 185 (1.1)	0.583	1 of 34 (2.9)	0 of 68 (0)	0.155	1 of 40 (2.5)	0 of 40 (0)	0.317
30-day mortality	1 of 48 (2.1)	1 of 185 (0.5)	0.302	1 of 34 (2.9)	0 of 68 (0)	0.155	1 of 40 (2.5)	0 of 40 (0)	0.317
In-hospital mortality	1 of 48 (2.1)	1 of 185 (0.5)	0.302	1 of 34 (2.9)	0 of 68 (0)	0.155	1 of 40 (2.5)	0 of 40 (0)	0.317
90 -day mortality	2 of 48 (4.2)	2 of 185 (1.1)	0.143	2 of 34 (5.9)	0 of 68 (0)	0.109	2 of 40 (5.0)	1 of 40 (0)	0.157
Close/involved margins (≤ 1 mm) for malignancies	6 of 48 (12.5)	31 of 185 (16.8)	0.472	6 of 33 (18.2)	13 of 66 (19.7)	0.850	6 of 38 (15.8)	8 of 38 (21.1)	0.791

From unpaired analyses i.e. Mann-Whitney U test and Pearson's chi-square test;
From Wilcoxon signed rank test and McNemar's chi-square test;
${ }^{S}$ From mixed-effects quantile regression (in which a random-effects parameter was used to denote the 1:2 matched data structure), conditional logistic, or mixed-effects ordinal logistic regression.

[^0]: *Correspondence to: Brian K. P. Goh, Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Level 5, 20 College Road, Academia, Singapore 169856 (bsgkp@hotmail.com).
 The International Robotic and Laparoscopic Liver Resection Study Group Investigators are co-authors of this study and are listed under the heading Collaborators.
 Collaborators
 M. D’Silva (Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea); H. Schotte (Groeninge Hospital, Kortrijk, Belgium); C. De Meyere (Groeninge Hospital, Kortrijk, Belgium); E.C. Lai (Pamela Youde Nethersole Eastern Hospital, Hong Kong, China); F. Krenzien (Campus Charité Mitte and Campus Virchow-Klinikum, CharitéUniversitätsmedizin, Corporate Member of Freie Universität Berlin, and Berlin Institute of Health, Berlin, Germany); M. Schmelzle (Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, and Berlin Institute of Health, Berlin, Germany); P. Kadam (University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK); R. Montalti (Federico II University Hospital Naples, Naples, Italy); M. Giglio (Federico II University Hospital Naples, Naples, Italy); Q. Liu (the First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China); K.F. Lee (Prince of Wales Hospital, Chinese University of Hong Kong, New Territories, Hong Kong, China); D. Salimgereeva (Moscow Clinical Scientific Centre, Moscow, Russia); R. Alikhanov (Moscow Clinical Scientific Centre, Moscow, Russia); L.S. Lee (Changi General Hospital, Singapore); M. Gastaca (Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Bilbao, Spain); J.Y. Jang (CHA Bundang Medical Centre, CHA University School of Medicine, Seongnam, Korea); C. Lim (Hopital Pitte-Salpetriere, Sourbonne Université, Paris, France); K.P. Labadie (University of Washington Medical Center, Seattle, Washington, USA); P.P. Nghia (University Medical Centre, Ho Chi Minh City, Vietnam); M. Kojima (Fujita Health University School of Medicine, Aichi, Japan); Y. Kato (Fujita Health University School of Medicine, Aichi, Japan).

