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Abstract

Deep neural networks have shown great improvements in low-dose computed tomography

(CT) denoising. Early algorithms were primarily optimized to obtain an accurate image with

low distortion between the denoised image and reference full-dose image at the cost of

yielding an overly smoothed unrealistic CT image. Recent research has sought to preserve

the fine details of denoised images with high perceptual quality, which has been accompa-

nied by a decrease in objective quality due to a trade-off between perceptual quality and

distortion. We pursue a network that can generate accurate and realistic CT images with

high objective and perceptual quality within one network, achieving a better perception-

distortion trade-off. To achieve this goal, we propose a stationary wavelet transform-assis-

ted network employing the characteristics of high- and low-frequency domains of the wave-

let transform and frequency subband-specific losses defined in the wavelet domain. We first

introduce a stationary wavelet transform for the network training procedure. Then, we train

the network using objective loss functions defined for high- and low-frequency domains to

enhance the objective quality of the denoised CT image. With this network design, we train

the network again after replacing the objective loss functions with perceptual loss functions

in high- and low-frequency domains. As a result, we acquired denoised CT images with high

perceptual quality using this strategy while minimizing the objective quality loss. We evalu-

ated our algorithms on the phantom and clinical images, and the quantitative and qualitative

results indicate that ours outperform the existing state-of-the-art algorithms in terms of

objective and perceptual quality.

1 Introduction

X-ray computed tomography (CT) is widely used in many industries and is an essential clinical

diagnostic tool. Moreover, it provides a noninvasive method of obtaining clinical information

from patients. However, high radiation exposure is a concern in the use of CT. According to

US statistics, the increased use of CT scans contributes to the potential risk of lung cancer [1].

Thus, a CT scan must be performed under the principle of as low as reasonably achievable [2].
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Therefore, low-dose CT (LDCT) has been increasingly adopted. However, reducing CT radia-

tion produces more noise in the CT scans; thus, research on LDCT denoising has been widely

conducted in the medical imaging field.

In recent years, deep learning algorithms using a convolutional neural network (CNN)

have demonstrated excellent performance compared to traditional machine learning algo-

rithms in the computer vision community. This trend has also occurred in CT research, and

LDCT denoising has benefited considerably from CNN denoising. An encoder-decoder CNN

designed with a residual connection [3] was developed and proved that noise on the Mayo

Clinic’s data can be removed effectively. Yang et al. [4] used 2D and 3D CNNs with residual

networks. Kang et al. [5] provided an iterative framelet-based denoising algorithm.

Although these methods demonstrated successful results with high objective quality, the

pixel-level loss based on the mean squared error (MSE) or mean absolute error (MAE) gener-

ated overly smoothed images with a significant loss in detailed texture and edges, which is not

beneficial from the perspective of human visual perception [6]. Thus, after the early deep

learning development of LDCT denoising, the current LDCT denoising goal has moved

toward pursuing high perceptual quality to recover the details in denoised images.

VGG loss [7] and the generative adversarial network (GAN) [8] are commonly adopted

when pursuing high perceptual quality in LDCT denoising. Badretale et al. [9] defined the loss

function using the perceptual loss generated from the Visual Geometry Group (VGG) network

[10] to better catch the details of texture and preserve the edges. Wolterink et al. [11] used the

GAN for CT denoising, and Yi et al. [12] combined the conditional generative network and

sharpness detection network to prevent blurring while denoising. The Wasserstein distance

and perceptual loss were used through the GAN by Yang et al. [13]. You et al. [14] employed

3D volumetric information and perceptual loss with the GAN. Shan et al. [15] found that the

3D CNN has better results than the 2D CNN, and it can be trained by transfer-learning from

the 2D trained network with GAN loss. Choi et al. [16] used statistical information and Li

et al. [17] employed 3D self-attention to retrieve the denoised image with GAN loss.

To clarify the terminology in this paper, the low-distortion image referred to in the LDCT

image denoising task indicates an image with high objective quality or a high value of the peak

signal to noise ratio (PSNR). In addition, an image that preserves fine details or sharp edges

that may provide important information for clinical diagnosis is referred to as a high percep-

tual image. High objective quality can be obtained when a network is trained with pixel-wise

loss (MSE or MAE), which we call objective loss (Lo). High perceptual quality can be achieved

by optimizing the VGG loss (Lvgg) or adversarial loss (Ladv). If at least one of these losses is

used to train a network, the network optimizes the perceptual loss (Lp).
When an algorithm is trained based on perceptual loss, the resulting decrease in PSNR of

the image can be explained as the perception-distortion (PD) trade-off, and a PD bound exists

for image denoising algorithms [18]. Due to the PD trade-off phenomenon in the LDCT

image denoising task, if we seek an image with a high PSNR, we obtain a blurred image that is

inappropriate for clinical diagnostic use. In contrast, if we aim to achieve an image with high

perception, we must be aware that the image noise increases and PSNR decreases.

To illustrate the PD trade-off with a visual example of LDCT, we optimized the representa-

tive image enhancement networks, U-Net [19] and EDSR [20], based only on either objective

or perceptual loss. We compared their resulting images as depicted in Fig 1. The PSNR values

corresponding to the denoised output images are summarized in Table 1. For EDSR, we added

a global skip connection for LDCT denoising. Fig 1 and Table 1 reveal that the two network

models based on perceptual loss obtained lower PSNR values than those based on objective

loss (U-Net: 37.717 vs. 39.677 and EDSR: 38.856 vs. 39.877) but secured relatively high percep-

tual quality, showing sharper edges without losing details.
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Although recent LDCT denoising studies by Yang et al. [13] and Shan et al. [15] have

focused more on perceptual quality than the loss of objective quality, in our algorithm, we pri-

oritize objective quality as highly as perceptual quality, which is expected to improve the PD

bound because the problem of the low objective quality image is that it inherently has higher

noise in the image. Fig 2 illustrates that IrCNN [21], which has a lower PSNR than EDSR [20],

has poor noise reduction, thus, it makes harder to see details of structures. EDSR exhibited bet-

ter noise reduction performance with a higher PSNR (i.e., higher objective quality) and better

visibility than IrCNN although it resulted in an blurred image. In this example, we can see that

high objective quality has also many advantages in denoising algorithms, thus, sacrificing high

objective quality when seeking perceptual quality does not always have better results.

Fig 1. Representative examples of (a) the original low-dose computed tomography (CT) image, (d) normal-dose reference image, and denoised CT

images from U-Net and EDSR optimized for objective loss (Lo) (b) and (c) and perceptual loss (Lp) (e) and (f).

https://doi.org/10.1371/journal.pone.0274308.g001

Table 1. Change in the peak signal to noise ratio (PSNR) value when U-Net and EDSR are optimized for perceptual loss (Lp) or objective loss (Lo). The networks had

a lower PSNR value when optimized for perceptual loss than when optimized for objective loss.

Algorithms U-Net (Lo) U-Net (Lp) EDSR (Lo) EDSR (Lp)

PSNR 39.677 37.717 39.877 38.856

https://doi.org/10.1371/journal.pone.0274308.t001
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When we compare two identical networks, one maximizing objective quality and the other

maximizing perceptual quality, the latter cannot exceed the objective quality of the former net-

work. In other words, the maximum objective quality is determined by the network capability

itself without considering any operation for perceptual quality. Thus, to obtain high objective

and perceptual quality, we must first design a network that exhibits the best performance in

objective quality when optimizing only objective loss. Then, with this network, we aim to secure

the perceptual quality as much as possible while minimizing the loss of the objective quality.

The supervised learning-based LDCT denoising techniques have difficulty in obtaining per-

fectly paired low- and normal-dose images. Recently, unsupervised and semi-supervised learn-

ing algorithms have been developed for LDCT denoising to eliminate the needs of high-

quality reference for training. Kim et al. [22] and Yuan et al. [23] provided a practical way to

train the networks and generate both the training input and realistic label from the existing

data with the help of physics-based CT noise model. Tang et al. [24] adopted CycleGAN [25]

to train unpaired dataset for LDCT denoising. Although these methods have shown promising

results, their performance is still inferior to that of supervised learning [26] and they have diffi-

culty in preserving fine anatomical details due to their simple noise model [27].

In this paper, we suggested a novel LDCT denoising strategy based on the wavelet trans-

form to enhance both objective and perceptual quality. The wavelet transform has been used

in several studies on deep learning-based image denoising [5, 28, 29]. However, none of these

studies have taken full advantage of the strength of the wavelet properties for better objective

and perceptual quality. All previous studies have used the wavelet transform only as input or

an operation of one layer but never used the frequency properties.

The wavelet transform can decompose a signal into high- and low-frequency subbands

with their own properties. The low-frequency subband is responsible for the overall objective

quality, whereas high-frequency subbands are very sensitive to small changes in fine details

and substantially influence the perceptual quality. We employed the characteristics of high-

and low-frequency subbands of the wavelet transform and defined the losses in the wavelet

domain. With this wavelet domain loss, we minimized the loss of the objective quality when

seeking perceptual quality in one network.

The main contributions of this paper are as follows:

• A stationary wavelet transform-assisted network is proposed to perform the LDCT image

denoising task using newly defined wavelet losses in low and high frequency wavelet sub-

bands. The network achieved the highest objective quality in LDCT denoising compared to

the current state-of-the-art denoising algorithms for natural RGB and LDCT images.

Fig 2. Close-up examples of (a) the original low-dose computed tomography (CT) image, (d) the normal-dose

reference image, and noise-reduced CT image results from two different networks, (b) IrCNN (PSNR: 37.408) and

(c) EDSR (PSNR: 39.875).

https://doi.org/10.1371/journal.pone.0274308.g002
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• We also proposed a novel wavelet subband-specific learning strategy that allows our method

to recover high perceptual quality with less compensation for high objective quality. Our

method achieved competitive perceptual quality with the highest objective quality compared

to the current state-of-the-art LDCT denoising methods.

• Our extensive experiments on real datasets (in vivo and phantom data) reveal that the pro-

posed methods convincingly improve the denoising performance with a better PD trade-off

over the existing state-of-the-art algorithms.

2 Method

2.1 Overall architecture

Fig 3 displays the overall architecture of the proposed method. The network is based on EDSR

[20], but we modified the network by adding a global skip connection for denoising. After

building the base network, we adopted a stationary wavelet transform (SWT) to enhance the

objective quality further. We applied a level 2 SWT to decompose the input noisy LDCT

images into seven different frequency subbands. Then, we normalized each subband and used

them as input to the network. We defined the wavelet loss to optimize the objective loss with

Fig 3. Overall architecture of the proposed methods, where G is a generator (denoiser). Dhigh andDlow are discriminators in high- and low-frequency

domains, VGG loss used VGG19 [10] and L1 loss is the mean absolute error (MAE), each of which calculates the loss between entered two inputs of

denoised and ground truth clean images. The variables x, ~y, and y denote the noisy input CT image, denoised CT output image, and clean CT image.

Further, wx, w~y and wy are denoted as x, ~y and y in the SWT domain with normalization in each subband. From w~y and wy, w~ylow and wylow is the low-

frequency subband, and w~yhigh and wyhigh includes the high frequency subbands.

https://doi.org/10.1371/journal.pone.0274308.g003
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the network output in the wavelet domain and secured the maximum objective quality first

with our proposed network.

Finally, to obtain denoised images with high perceptual quality, we redefined the loss func-

tion in the wavelet domain by introducing perceptual loss, the VGG and adversarial losses. The

purpose of the redefined loss function in the wavelet domain was to increase the perceptual

quality while maintaining the objective quality maximized in the previous step. To achieve this

goal, we assigned different weights for each loss in high- and low-frequency subbands to use the

characteristics of high- and low-frequency image components. In low-frequency domain loss,

we assigned more weight to the objective loss term to increase the objective quality, whereas we

assigned more weight to perceptual loss terms for high-frequency domain loss, enhancing the

perceptual quality. The relevant details are described in the following subsections.

2.2 Generator and discriminator

Generator and discriminator networks are depicted in Fig 4. The generator, used as a denoiser,

consists of one convolution for feature extraction, 32 residual blocks, and a final block

Fig 4. Architecture of the generator and discriminator. In convolution operator, k, s, p, and c stand for kernel, stride, padding, and the number of output

channels.

https://doi.org/10.1371/journal.pone.0274308.g004
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convolution for image reconstruction. Each residual block has convolution, ReLU, and convo-

lution sequentially. Moreover, each convolution is defined with 3 × 3 kernel size, 1 stride, 1

padding, and 96 channels. The global skip connection is used to learn the residuals, such as a

DnCNN [30]. We have two discriminators for high- and low-frequency domains. The network

architecture of the discriminator is based on PatchGAN [31].

2.3 Stationary wavelet transform and subband analysis

A wavelet transform decomposes a signal into a set of basis functions consisting of contrac-

tions, expansions, and translations of a mother function, called the wavelet, enabling multire-

solution image analysis [32]. The classical discrete wavelet transform (DWT) usually

decomposes the original image into a sequence of new images with decreased size, and the

SWT decomposes a signal into new images with the same size as the original image. Both the

DWT and SWT have the advantage of expanding their receptive fields because of downsam-

pling in the DWT or upsampling the convolutional filter in the SWT.

The SWT overcomes the drawback of the DWT, which is not shift-invariant. Moreover,

using the SWT enables us to build better networks that achieve higher objective quality perfor-

mance than the U-Net or encoder-decoder architecture with the DWT adopted [28]. Thus,

although previous wavelet-based image denoising studies used the DWT [28, 29], we used the

SWT, considering the relative advantages of the SWT.

The SWT is implemented using the filter-bank algorithm, which is depicted in Fig 5. We

used the Haar function as our wavelet function. Let h and g be the scaling and wavelet filter,

respectively. Then, the SWT of the scaling filter and wavelet filter at scale j + 1 is defined

Fig 5. Two-level stationary wavelet transform of image X, with L0 and H0 as the specified lowpass and highpass wavelet decomposition filters.

https://doi.org/10.1371/journal.pone.0274308.g005
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recursively as follows:

hjþ1½k� ¼ hj½k�⇑2 ¼
hj
k
2

� �

; k is even

0 ; k is odd

8
><

>:
ð1Þ

gjþ1½k� ¼ gj½k�⇑2 ¼
gj
k
2

� �

; k is even

0 ; k is odd

8
><

>:
ð2Þ

where h0[k] = h[k] and g0[k] = g[k]. The Jth level SWT of an image x is then calculated recur-

sively with the filter-bank operations.

cjþ1 ¼ hj½� k� � cj½k� ð3Þ

djþ1 ¼ gj½� k� � cj½k� ð4Þ

where c0 = x, j = 0, . . ., J − 1, , and � is the convolution operation.

In Fig 5, the SWT at level 2 decomposes a one-channel image into seven subbands, thus,

one subband (LL2) includes low-frequency information, and the other six subbands (LH2,HL2,

HH2, LH1,HL1, andHH1) contain high-frequency information.

Since the low-frequency subband LL2 contains most of the energy (i.e., the overall shape) of

the original image as depicted in Fig 6, it plays a more dominant role than other high-fre-

quency subbands in determining the objective image quality. However, high-frequency sub-

bands are as important as low-frequency subbands because the high-frequency subbands

present textural details and differences in the objective quality of the state-of-the-art algo-

rithms are very small. Thus, we managed high-frequency subbands carefully by determining

the best combination of the weights for each frequency subband to maximize the objective

quality.

Comparing the histograms of low-dose and normal-dose images in Fig 6 reveals that their

distributions are similar in low-frequency subbands but different in high-frequency subbands,

which implies that we should manage high-frequency subbands more precisely. When we

minimize objective loss functions, we can increase our objective quality. However, this

Fig 6. Example of a stationary wavelet transform (above) and comparison of the histogram distribution (below)

of low-dose and normal-dose (reference) CT images in stationary wavelet transform domain. For better visuality,

we included only LL2, LH2,HL2, andHH2 subbands. Four different images correspond to histograms for the low-

frequency (LL2) and high-frequency subbands (LH2,HL2, andHH2).

https://doi.org/10.1371/journal.pone.0274308.g006
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optimization process tends to make distributions of high-frequency subbands centered on 0.

As a result, the network that optimizes the objective loss function yields an overly smoothed

denoised image with lost detailed information. With this observation, we must alleviate this

zero-centered distribution with new defined perceptual losses. In our approach, we divided

loss functions into high- and low-frequency domains and defined each of them according to

the frequency characteristics. We focused more on objective quality in the low-frequency

domain and tried to enhance perceptual quality in the high-frequency domain.

2.4 Frequency subband-specific loss on the wavelet transform domain

In order to maximize the objective and perceptual quality, we took a strategy to secure high

objective quality first and minimize the loss of objective quality while pursuing perceptual

quality, and we defined the necessary loss in the wavelet transform domain as follows.

The variables x, ~y, and y denote the noisy input CT image, denoised CT output image, and

clean CT image. Further, wx, w~y and wy are denoted as x, ~y and y in the SWT domain with

normalization in each subband. Moreover, G is a generator and can be a denoiser as well.

Thus, we can formulate the following:

wx ¼ normðswtðxÞÞ ð5Þ

wy ¼ normðswtðyÞÞ ð6Þ

w~y ¼ GðwxÞ ð7Þ

To accomplish high objective quality, we first define the objective loss in the low- and high-

frequency domains in the wavelet transform domain as follows:

Lho ¼
1

wh
jw~yhigh � wyhighj ð8Þ

Llo ¼
1

wh
jw~ylow � wylowj ð9Þ

where w and h are the width and height of the image, low is the one channel subband of LL2,

and high includes the LH2,HL2,HH2, LH1,HL1, andHH1 subbands. Then, we define the total

objective loss by combining Llo and Lho.

Lwo ¼ alowLlo þ ð1 � alowÞLho ð10Þ

where αlow is a hyper-parameter and controls the weight of the low-frequency subband. With

the proper parameter, optimizing Lwo with our proposed network achieves the best perfor-

mance in objective quality compared to the existing algorithms.

We defined the VGG loss to pursue perceptual quality as follows:

Lhvgg ¼
1

wf hf
jVGGðGMðw~yhighÞÞ � VGGðGMðwyhighÞÞj ð11Þ

Llvgg ¼
1

wf hf
jVGGðGMðw~ylowÞÞ � VGGðGMðwylowÞÞj ð12Þ

The VGG operation used VGG-19 [10] to extract the feature maps at the second convolutional

layer after the second maxpool operation, called ReLU2_2. We applied the Gram matrix to the
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feature map from VGG-19, which is denoted as GM. In addition, wf and hf are the width and

height of feature map after the Gram matrix output.

Adversarial loss is defined in both the low- and high-frequency domains:

Lhadv ¼ Ewxhigh� pdataðwxhighÞ½logð1 � Dhighðw~yhighÞÞ� ð13Þ

Lladv ¼ Ewxlow� pdataðwxlowÞ½logð1 � Dlowðw~ylowÞÞ� ð14Þ

where Dhigh and Dlow are the discriminators for the high- and low-frequency domains respec-

tively. By introducing adversarial loss, we can defined the GAN network [8] to optimize the

following:

minGmaxDhighLhGAN ¼ Eyhigh� pdataðyhighÞ½logDhighðwyhighÞ�þ

Exhigh� pdataðxhighÞ½logð1 � Dhighðw~yhighÞÞ�
ð15Þ

minGmaxDlowLlGAN ¼ Eylow� pdataðylowÞ½logDlowðwylowÞ�þ

Exlow� pdataðxlowÞ½logð1 � Dlowðw~ylowÞÞ�
ð16Þ

We combined all losses in the high- and low-frequency domains with the objective loss in

the wavelet domain for perceptual quality:

Lhp ¼ ahoLho þ ahvggLhvgg þ ahganLhGAN ð17Þ

Llp ¼ aloLlo þ alvggLlvgg þ alganLlGAN ð18Þ

Then, the total loss is redefined in the same way as in Lwo:

Lwp ¼ alowLlp þ ð1 � alowÞLhp ð19Þ

where αlow is the same value from (10).

αho, αhvgg, and αhGAN are the high-frequency objective weight, VGG loss weight, and GAN

loss weight, and αlo, αlvgg, and αlGAN are the low-frequency objective weight, VGG loss weight,

and GAN loss weight respectively in the wavelet loss domain. These hyperparameters control

the importance of each loss. In the low-frequency domain, we set αlo, αlvgg, and αlGAN as 1.0,

0.1 and 0.0001. We assigned a high weight to the objective loss and less weight to the percep-

tual loss terms in the low-frequency domain. Moreover, αlvgg is set as 0.1 because it also con-

tains textures and edges, even in the low-frequency domain.

In the high-frequency domain, we set αho, αhvgg, and αhGAN as 0, 1.0, and 0.01, respectively.

We did not add objective loss in the high-frequency domain and assigned higher weights for

the VGG and GAN loss than in the low-frequency domain. Thus, we maintained the detailed

information of the denoised image while minimizing the loss of the objective quality. We eval-

uated the performance of our proposed model optimized for both Lwo and Lwp loss functions.

Loss functions for objective and perceptual losses, which are commonly adopted for other

algorithms, are defined similarly to Lwo and Lwp, but without the SWT operation:

Lo ¼
1

wh
j~y � yj ð20Þ

Lp ¼ avggLvgg þ aganLGAN ð21Þ
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We used these loss functions for the network based on the U-Net and EDSR and αvgg and

αgan as 1.0 and 0.001, respectively, to compare results.

2.5 Normalization of wavelet subbands

We normalized each wavelet subband using the mean and standard deviation and updated

them in the same way by updating the mean and standard deviation in the batch normalization

[33]. First we calculated the batch mean (μB) and standard deviation (σB) as follows:

mB ¼
1

m

Xm

i¼1

xi ð22Þ

s2
B ¼

1

m

Xm

i¼1

ðxi � mBÞ
2

ð23Þ

wherem is the number of training samples for a mini-batch. Then, we updated the mean and

variance for normalization:

E½xðkÞ� ¼ EB½m
ðkÞ
B � ð24Þ

Var½xðkÞ� ¼
m

m � 1
EB½s

ðkÞ
B 2� ð25Þ

We updated the mean and variance for 10,000 iterations, and afterward, we froze them.

The role of normalization of wavelet subbands is optimizing every subband equally by bal-

ancing the weights of each subband. As depicted in Fig 6, the low-frequency (LL2) subband has

relatively high coefficients, thus, the loss in low frequency is relatively high compared to other

high-frequency losses. By normalizing each subband, we can readjust the subband coefficients

with the normal distribution and evenly assign the weights of each subband in the wavelet

domain loss. Without normalization, low frequency subband, which has large energy, has

higher prior to optimize than high frequency subbands, thus objective quality was slightly

decreased.

2.6 Experimental Setup

2.6.1 In vivo and phantom data acquisition. We scanned the anthropomorphic phan-

toms of the chest, neck, and pelvis and a Catphan 500 phantom [34] on two different multislice

CT scanners (Siemens SOMATOM Sensation Open and Toshiba Aquilion TSX-201A).

Table 2 lists the acquisition protocols used to obtain the image for the phantom datasets. A

fixed tube voltage (120 kV) was used in all images. After acquiring a normal-dose image using

routine CT acquisition protocols for each organ used in the clinic, a low-dose image pair was

Table 2. Computed tomography acquisition parameters used to acquire normal-dose (high), low-dose (low) image pairs of anthropomorphic phantoms and a qual-

ity assurance phantom. The reported radiation dose values are in mAs units, and # represents the number of CT axial slice images.

Siemens Toshiba

# High Low # High Low

pelvis 233 200 50 375 200 50

head-neck 188 180 40 283 180 30

chest 340 180 30 515 180 30

Catphan 159 150 30 242 150 30

https://doi.org/10.1371/journal.pone.0274308.t002
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acquired with a low tube current exposure time product (mAs) value about 25% of normal-

dose image. We divided training and test dataset within the volume of each phantom object.

We used the lower 90% axial slices in the z-axis direction of the volume for model training and

validation, and the remaining upper 10% for testing. The independent test dataset was not uti-

lized during the model training or validation phase.

For clinical data, we used the Mayo Clinic dataset (2016 NIH-AAPM-Mayo Clinic Low

Dose CT Grand Challenge) [35]. These clinical data were obtained after approval by the insti-

tutional review board of Mayo clinic. The library was HIPAA compliant and built with a

waiver of informed consent. The Mayo Clinic dataset contains anonymized CT images of ten

patients in total. Each patient record contains normal-dose abdominal CT images and quarter-

dose CT images. There are 1 mm and 3 mm thicknesses in the dataset, and we used both thick-

nesses for our training and testing. We first chose CT slices of three patients for test dataset,

which include more number of lesions with small shape and can be regarded as clinically diffi-

cult task for diagnosis. CT slices of other seven patients were used for training and validation.

We divided the training and validation of the CT slices of seven patients randomly with a ratio

of 0.95:0.05.

2.6.2 Experimental setting. For all the experiments, we used the Adam solver [36]. All

networks were trained with a learning rate of 0.0002. We scheduled the learning rate to halve

when the minimum loss does not change after five iterations. All images were normalized

between 0 and 1 and were used as input for the proposed method. Data augmentation is per-

formed on training images, including random rotations of 90, 180, and 270 and flipping hori-

zontally. In each training batch, a random patch with a size of 80 × 80 is extracted as input.

The networks are implemented in the PyTorch framework and trained with four Nvidia Tesla

V100 graphical processing units. We set the same settings except that images are normalized

between -0.5 and 0.5 when we implemented the existing state-of-the-art algorithms to com-

pare the performance.

3 Experimental results

3.1 Ablation study

3.1.1 Effectiveness of designing the network. Our proposed network design was modi-

fied from EDSR, and its performance was improved through the following structural modifica-

tions. A global skip connection allows the network to learn the residual, which was introduced

in the DnCNN [30], thus enabling the network to learn the image noise. Therefore, the global

skip connection has been adopted in denoising algorithms in [28, 37]. Then, the network per-

formance was enhanced by replacing the CT image input with the SWT seven-channel sub-

bands. Finally, we adopted normalization to increase the network performance.

The performance increase in the PSNR by gradually adding each feature was summarized

in Table 3, demonstrating that the strategy effectively achieved higher objective quality in the

network design.

3.1.2 Weight of a low-frequency subband in wavelet domain loss. We evaluated the

objective image quality by varying the low-frequency weight αlow in (10) by 0.15 from 0.2 to

0.8, and the resulting PSNR value is reported in Table 4. We did not include αlow of 0 and 1.0

because the resulting PSNR values are very low, 8.403 and 28.401, respectively. As indicated in

Table 3. The EDSR-based model’s performance improvement, benefiting from gradual structural modification.

EDSR +global skip +SWT +normalization

PSNR 39.875 39.896 39.939 39.950

https://doi.org/10.1371/journal.pone.0274308.t003
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Table 4, by assigning low-frequency weight as 0.2 and high-frequency weight as 0.8 (1-αlow),

which mean we strengthen the high-frequency domain loss more than the low-frequency

domain loss, we gain the best performance of objective quality with the proposed network. We

applied this obtained αlow (0.2) to (19) and trained the network to secure a high PSNR while

pursuing perceptual quality.

3.2 Denoising results

3.2.1 Histogram distribution results. We tested how the histogram distribution changes

using the proposed algorithms in Fig 7. When we optimized the objective losses with Lwo, the

histogram distribution is zero-centered in high-frequency subbands; thus, the denoised images

have less detailed information. However, in terms of objective quality, the zero-centered distri-

bution is the average subband value, which coincides with the fact that the denoised image

from the denoising network is the average output of all plausible images [38].

In contrast, when we optimized the perceptual loss with Lwp, the histogram distribution of

the denoised images in the high-frequency subbands demonstrates more comparable match-

ing between normal-dose and denoised CT images. Thus, the denoised CT images have richer

textures and patterns, which look like the ground truth CT images, whereas it might entail the

loss of objective image quality.

3.2.2 Objective quality results. We compared the proposed method with the existing

state-of-the-art image denoising algorithms for RGB natural and LDCT images that maximize

the objective quality using the Mayo Clinic dataset to validate the network effectiveness with

the optimization of Lwo. In natural RGB image denoising algorithms, it is still common to max-

imize only the objective quality, so we compared our algorithm with the optimization of Lwo to

the image denoising algorithms. For fair comparison, all algorithms were trained on Mayo

Table 4. Changes in objective image quality in terms of the peak signal to noise ratio (PSNR) depending on the low-frequency weight value (αlow) when optimizing

Lwo loss.

αlow 0.2 0.35 0.5 0.65 0.8

PSNR 39.950 39.942 39.940 39.904 39.845

https://doi.org/10.1371/journal.pone.0274308.t004

Fig 7. Histogram distribution results from two networks that optimized Lwo and Lwp. For better visuality, we

included only LL2, LH2,HL2, andHH2 subbands.

https://doi.org/10.1371/journal.pone.0274308.g007

PLOS ONE Wavelet subband-specific learning for low-dose CT denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0274308 September 9, 2022 13 / 25

https://doi.org/10.1371/journal.pone.0274308.t004
https://doi.org/10.1371/journal.pone.0274308.g007
https://doi.org/10.1371/journal.pone.0274308


Clinic dataset. As summarized in Table 5, our proposed network with the optimization of Lwo
performed the best in terms of PSNR compared with other existing state-of-the-art denoising

algorithms for natural RGB images and LDCT images.

In addition, we analyzed whether our proposed network maintains a better objective quality

in the process of optimizing both objective (Lwo) and perceptual loss (Lwp) compared with the

following existing LDCT denoising algorithms: U-Net [19], RED-CNN [3], WavResNet [5],

WGAN-VGG [13], and CPCE3D [15]. The original U-Net is for segmentation tasks, but with

a slight modification, it has also been widely used in denoising tasks [6]. When implementing

WavResNet, instead of using the contourlet transform, we used the SWT with the Haar func-

tion. While implementing WGAN-VGG, U-Net replaced the original generator because it

makes the network more stable when optimizing the network.

We can divide these LDCT denoising algorithms into two groups: one group with U-Net

[19], RED-CNN [3], WavResNet [5], and our network with optimization Lwo, and the other

group with WGAN-VGG [13], CPCE3D [15], and our network with optimization Lwp. The

former group maximized the objective quality by optimizing the objective loss, and the latter

group pursued the perceptual quality by optimizing the perceptual loss. As presented in

Table 6, our two proposed networks (optimizing Lwo and Lwp) have a higher objective quality

than others in each group in both the PSNR and structural similarity index measure (SSIM)

metrics.

3.2.3 Perceptual quality results. To qualitatively compare the perceptual image quality,

we selected several CT images. Window levels in Hounsfield unit (HU) are adjusted and writ-

ten in figures. Fig 8 presents representative denoised output slices of the Catphan phantom.

For a clearer visual comparison between the resulting images, their close-up images are also

displayed in Fig 9. Our proposed method of optimizing Lwo has the minimum noise among all

Table 5. Comparisons of the objective quality with state-of-the-art algorithms for RGB and LDCT images.

Algorithms PSNR Algorithms PSNR

MLP [39] 26.700 WavResNet [5] 39.692

U-Net [19] 39.677 RCAN [40] 39.890

RED30 [41] 39.594 CBDNet [42] 38.352

IrCNN [21] 37.408 RIDNet [43] 39.723

DnCNN [30] 39.481 DHDN [44] 39.664

MemNet [45] 39.727 BRDNet [46] 39.864

RED-CNN [3] 39.613 RDN [37] 39.483

FFDNet [47] 39.248 DSWN [29] 39.881

MWCNN [28] 39.812 Ours (Lo) 39.950

https://doi.org/10.1371/journal.pone.0274308.t005

Table 6. Comparison of the objective quality for phantom and Mayo Clinic datasets.

Optimization Algorithm Phantom In vivo clinic

PSNR SSIM PSNR SSIM

Objective loss RED-CNN 42.852 0.9771 39.613 0.9867

WavResNet 43.050 0.9776 39.692 0.9849

U-Net 44.227 0.9776 39.677 0.9877

Ours (Lwo) 44.659 0.9785 39.950 0.9878

Perceptual loss WGAN-VGG 41.925 0.9700 38.478 0.9838

CPCE3D 41.598 0.9713 38.517 0.9847

Ours (Lwp) 42.997 0.9745 39.167 0.9862

https://doi.org/10.1371/journal.pone.0274308.t006
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algorithms, revealing smooth surface over piece-wise constant regions with the same density.

If we compare our method with Lwo (Fig 9(e)) to the networks optimizing the objective loss in

Fig 9(b) to 9(d), it has less noise in the denoised output and the shape of the objects are better

kept than the others. However, textural details are lost because the output results present

blurry images. For instance, the linearly aligned dots in Fig 9(e) cannot be distinguished from

each other.

In contrast, the networks optimizing the perceptual loss in Fig 9(f) to 9(h) preserve these

shapes and edges better than the networks optimizing the objective loss in Fig 9(b) to 9(e). Our

proposed algorithm with Lwp (Fig 9(h)) preserves the detailed structures better than other algo-

rithms optimizing perceptual loss. For instance, Fig 9(h) exhibits clearer separation and accu-

rate placement of the vertically aligned points than the other, thus, our algorithm outputs

more reliable and realistic CT results. Among the compared algorithms optimizing perceptual

Fig 8. Representative slice from the Catphan object in the phantom dataset. The display window is [-160, 240]HU.

https://doi.org/10.1371/journal.pone.0274308.g008

Fig 9. Regions of interest from Fig 8. The display window is [-160, 240]HU.

https://doi.org/10.1371/journal.pone.0274308.g009
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loss, the proposed algorithm with Lwp had the highest quantitative PSNR value, as displayed in

Table 6. The proposed algorithm exhibited the best qualitative noise reduction performance.

Therefore, the proposed algorithm, which optimized Lwp demonstrates the effectiveness of

reducing noise and preserving information with phantom datasets.

From the Mayo Clinic dataset, we selected CT slices that contain lesions and bone tissues.

Representative CT slices that contain a lesion are depicted in Figs 10 and 11. Perception of

lesions, which can be understood as visibility, should not be degraded after producing

denoised CT images from the proposed algorithms. As expected, our network with the optimi-

zation of Lwo removed the noise better than the other algorithms, but the shapes are smoothed,

which weakens the contrast of the lesions in the region of interest. The networks optimizing

perceptual loss (WGAN-VGG, CPCE3D, and our network with optimizing Lwp) recovered the

loss of the contrast, and the visibility was strengthened. Another CT slice that contains bone

Fig 10. Representative slice of the abdomen from the Mayo Clinic dataset. The display window is [-150, 250]HU.

https://doi.org/10.1371/journal.pone.0274308.g010

Fig 11. Regions of interest from Fig 10. The display window is [-150, 250]HU.

https://doi.org/10.1371/journal.pone.0274308.g011
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tissues is depicted in Figs 12 and 13. Bone tissues are a good indicator of the sharpness and

edges because they have a very subtle but complicated texture pattern. Among networks that

minimize objective loss, our network with Lwo also has a more accurate texture pattern with

relatively less loss of the trabecular microstructure than the others, which indicates that per-

ceptual quality can be more easily enhanced from the proposed network. In addition,

WGAN-VGG, CPCE3D, and the proposed network with the optimization of Lwp exhibit com-

parable perceptual quality to the reference normal-dose CT image. They all have similar tex-

ture patterns, and the details are slightly lost from the high- dose CT image.

Moreover, our proposed network with Lwp has a higher objective quality with less noise

than WGAN-VGG and CPCE3D. This result is significant because we achieved higher noise

reduction performance than the WGAN-VGG and CPCE3D, even when we maximized the

Fig 12. Representative slice of the pelvis from the Mayo Clinic dataset. The display window is [-160, 240]HU.

https://doi.org/10.1371/journal.pone.0274308.g012

Fig 13. Regions of interest from Fig 12. The display window is [-160, 240]HU.

https://doi.org/10.1371/journal.pone.0274308.g013
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perceptual quality to be comparable to the WGAN-VGG and CPCE3D. Thus, our proposed

network demonstrated a better PD trade-off than the current state-of-the-art methods.

3.2.4 Blind reader study with radiologists. To conduct a blind reader study, we selected

a representative group of 10 denoised CT slices from LDCT denoising algorithms. Seven CT

slices are from the Mayo Clinic dataset, and the remaining three CT slices are from phantom

datasets. Reference normal-dose and low-dose images are included in each group, and we

randomly showed our denoised CT images to two radiologists with more than 10 years of

experience in chest CT interpretation. They were asked to score each image with the

following criteria: noise reduction, structural preservation, and overall quality. The score ran-

ged from 1 (unacceptable) to 5 (excellent), and the resulting scores for each algorithm are

reported as the mean score of two radiologists plus or minus the standard deviation (mean
±std) in Table 7.

In general, algorithms optimizing objective loss (RED-CNN, WavResNet, U-Net and ours

with Lwo) have excellent noise reduction performance, and algorithms pursuing perceptual

loss (WGAN-VGG, CPCE3D, and ours with Lwp) received excellent scores in terms of struc-

tural preservation and overall quality. Our proposed network with Lwo optimization achieved

the best performance in noise reduction, and our network with Lwp optimization performs the

best performance in structural preservation and overall quality. Interestingly, ours (Lwo) scored

a higher score in structural preservation and overall quality than WGAN-VGG [13] although

ours (Lwo) optimized the objective quality whereas WGAN-VGG optimized perceptual quality.

3.2.5 Perception-distortion trade-off curve. To prove that our proposed algorithms have

a more effective PD trade-off, we implemented two networks, U-Net [19] and the proposed

network, and optimized two networks with different loss functions: Lwo, Lwp, Lo, and Lp in

(10), (19), (20) and (21), respectively. Their objective quality results are summarized in

Table 8. Their representative whole cropped CT slices for effective perceptual quality are

depicted in are in Fig 14.

From Table 8, from the point of objective quality, reveals the following:

• We achieved a higher PSNR with the optimization of Lwo than the optimization of Lo in both

networks: 39.677 < 39.695 (U-Net) and 39.875 < 39.950 (ours).

• Optimization with Lwp had a higher PSNR than the optimization with Lp in both networks:

37.717 < 39.013 (U-Net) and 38.856 < 39.110 (ours).

• The PD trade-off from the optimization with Lwo to the optimization Lwp is smaller than

from the optimization with Lo to the optimization Lp: 0.682< 1.960 (U-Net) and

0.840< 1.019 (ours).

Table 7. Subjective image quality scores (mean±std) for different algorithms from a blind reader study.

Algorithm Noise reduction Structural preservation Overall quality

Normal-dose - - 4.00 ± 0

Low-dose - - 1.15 ± 0.37

RED-CNN 4.47 ± 0.52 3.57 ± 0.42 3.58 ± 0.47

WavResNet 4.55 ± 0.27 3.71 ± 0.35 3.70 ± 0.45

U-Net 4.48 ± 0.52 3.60 ± 0.41 3.60 ± 0.45

Ours (Lwo) 4.68 ± 0.25 3.77 ± 0.24 3.81 ± 0.32

WGAN-VGG 3.77 ± 0.31 3.70 ± 0.24 3.74 ± 0.23

CPCE3D 3.82 ± 0.57 3.83 ± 0.22 3.88 ± 0.36

Ours (Lwp) 4.12 ± 0.27 3.88 ± 0.21 4.09 ± 0.35

https://doi.org/10.1371/journal.pone.0274308.t007
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The CT images in the top row of Fig 14, which are the output of the network optimizing the

objective loss, exhibit higher noise reduction, but the marked areas show overly smoothed

results for shape. In contrast, the network optimizing the perceptual loss generated images

with sharper edges and higher contrast, displayed in the bottom row of Fig 14. The proposed

network with optimization of Lwp has a higher PSNR than the others in the bottom row. There-

fore, it has a lower noise level in our denoised results and low distortion compared to the

ground truth image. From these facts, the wavelet perceptual loss (Lwp) effectively improves

the trade-off between the PD relationship. Thus, we minimize the loss of the objective quality

while maximizing the perceptual quality.

To provide an example of the PD trade-off using our blind study results, we chose the

U-Net, WGAN-VGG, and the proposed networks with optimization of Lwo and Lwp and

depicted the trade-off in Fig 15. Because we trained WGAN-VGG with U-Net, it is a network

that optimized the perceptual quality from the U-Net network. In the case of U-net in Fig 15,

in order to raise the perceptual quality from 3.60 to 3.74, the objective quality decreased from

39.68 to 37.71. For our proposed algorithm, to improve the perceptual quality from 3.81 to

4.09, the objective quality was reduced from 39.95 to 39.11. Here, the value obtained by divid-

ing the decrease in objective quality by the increase in perceptual quality can be interpreted as

a trade-off value of objective quality to increase the unit perceptual quality value, and the

Table 8. Trade-off of perception-distortion of U-Net and our proposed network. The metric is the peak signal to

noise ratio (PSNR).

U-Net Ours

Loss Lo 39.677 39.875

Lp 37.717 38.856

Lwo 39.695 39.950

Lwp 39.013 39.110

Trade-off Lo − Lp 1.960 1.019

Lwo − Lwp 0.682 0.840

https://doi.org/10.1371/journal.pone.0274308.t008

Fig 14. Denoised CT images from U-Net and the proposed methods with various loss functions. Images in (b), (c),

(d), and (e) are from the networks that optimized the objective loss functions. Images in (g), (h), (i), and (j) are from the

networks that optimized the perceptual loss functions. The display window is [-160, 240]HU. Red circles and blue

arrows point to the low attenuation lesion and blood vessels in the posterior right liver lobe, respectively.

https://doi.org/10.1371/journal.pone.0274308.g014
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resulting division values of U-Net and our proposed algorithm are -14.0 and -3.0, respectively.

Although the blind review score is subjective to radiologists, this measure demonstrates that

the proposed methods with the wavelet domain loss have a better trade-off than the U-Net-

based network between the optimization of Lo and Lp.

4 Discussion

In this paper, we proposed a novel LDCT denoising method to generate high objective and

perceptual quality denoised images. Moreover, recent studies have focused more on the per-

ceptual quality in LDCT denoising; however, the objective quality is still an important key fac-

tor to measure algorithm performance. Thus, our motivation for this paper was to maintain

the objective quality to be as high as possible while enhancing the perceptual quality. Our key

contributions to accomplish this goal are as follows. 1) We developed the network with the

SWT, which can achieve the highest objective quality among the state-of-the-art denoising

algorithms for natural and LDCT images. 2) We also presented a novel wavelet subband-spe-

cific learning strategy to preserve the structural and textural information in images while mini-

mizing the loss of the objective quality. As a result, we demonstrated a better PD trade-off with

the proposed method using the wavelet domain loss. Finally, 3) we tested the performance of

the proposed methods with a phantom dataset and the NIH-AAPM-Mayo Clinic Low Dose CT
Grand challenge dataset, demonstrating that ours can achieve better objective quality while

preserving the perceptual quality than other state-of-the-art LDCT denoising methods.

Fig 15. Trade-off of U-Net between the objective and perceptual loss optimization and ours between the objective and

perceptual loss optimization in wavelet transform loss domain.

https://doi.org/10.1371/journal.pone.0274308.g015
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The lack of proper metrics for measuring perceptual quality in an LDCT denoising task

made it difficult to evaluate the perceptual quality of the algorithms assessed in this paper. To

evaluate the perceptual quality, we invited experienced radiologists to conduct a blind reader

study. However, conducting a blind reader study is very time-consuming and expensive, and

the outcome could depend on the radiologists’ experience [48]. As future work, we plan to

develop a metric for perceptual image quality that is well correlated with the human visual sys-

tem’s characteristics in evaluating LDCT image quality. If such a metric were developed, it

would be expected to evaluate the perceptual image quality at a low cost with little time

investment.

As the network is trained using one-to-one mapping from low-dose to normal-dose CT

images and normal-dose images are not often clean images with no noise, our proposed net-

works might learn the residual noise of the target normal-dose CT images. In addition, as nor-

mal-dose CT images are set as the standard of the network performance measurement, the

networks cannot generate a denoised image that can exceed the quality of the normal-dose CT

images. According to the overall quality reported in Table 7, WGAN-VGG and CPCE3D were

slightly lower than the normal-dose image score value, and only our algorithm was higher

than the normal-dose image score value with a marginal difference. This outcome is a very

common problem in LDCT denoising algorithms, but it does not seem to be a problem that

cannot be overcome. For instance, one could create a network capable of deriving an image

superior to the original reference image by integrating unsupervised learning into the essential

supervised learning-based LDCT denoising problem [49].

Until recently, most LDCT denoising has focused on post-processing denoising due to the

inability to access 2D projection data or proprietary reconstruction software. However, this

post-processing method in the image domain has a disadvantage in that it cannot effectively

suppress noise or artifacts that have already been introduced in the process of reconstructing

the projection images to the 3D CT images with filtered back projection [50]. Recently,

research results on reconstructing 2D images into 3D images using neural networks have

been published [51]. As other future work, we plan to optimize these reconstruction networks

for the denoising task incorporating 2D projection images to build an even better denoising

model. Moreover, as volumetric CT images have 3D spatial information, we can employ spatial

information in the out-of-plane directions to further enhance our denoising networks [15, 17].

Last but not least, due to the difficulty to obtain pairs of low- and normal-dose CT images,

researches on unsupervised and self-learning based denoising is being more actively conducted.

CycleGAN [25] to translate from noisy to clean CT images was successfully applied to LDCT

denoising [24, 52]. Self-learning-based models using only noisy images have been proposed in

LDCT denoising tasks. Studies [22, 23, 53–55] combined self-learning strategy with a CT recon-

struction pipeline or a physics-based noise model. Noise2Context [56] and Noise2Neighbors

[57] effectively suppressed noise with a physics-based CT model. Although these unsupervised

and self-learning models successfully reduced noises, they still have large margin to follow with

the state-of-the-art supervised LDCT denoising models [3, 5, 13, 15, 19]. Furthermore, as they

still have focused more on noise reduction, models to enhance perceptual quality [13, 58] or our

work can be combined with these unsupervised or self-learning LDCT denoising models to

secure denoised CT images with both excellent objective and perceptual quality.

5 Conclusion

In conclusion, the studied networks optimizing the objective loss exhibited excellent perfor-

mance in suppressing noise at the cost of the loss in detailed textures and edges that are impor-

tant for clinical diagnosis. In contrast, the networks optimizing the perceptual loss resulted in
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relatively high noise in generating realistic CT images with high perceptuality. With the key

insight that high- and low-frequency components in an image have different characteristics,

we proposed a novel network capable of achieving high objective and perceptual quality using

the presented frequency subband-specific loss in the wavelet domain. Our proposed methods

demonstrate the effective PD trade-off in LDCT denoising. With phantom and clinical data-

sets, our proposed methods result in an accurate and realistic CT image and achieve better per-

formance than the existing state-of-the-art methods in terms of objective and perceptual

quality.
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