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LETTER TO TH E EDITOR

Intercellular communications and metabolic
reprogramming as new predictive markers for
immunotherapy responses in gastric cancer

Dear Editor,
Immune-directed therapeutic approaches have changed

the paradigm of cancer treatment. The tumor-immune
microenvironment [1] is a dynamic milieu consisting of
heterogeneous metabolic conditions such as low oxygen,
nutrient deficiency, acidity, and interactions betweenmul-
tiple cell types. In particular, immune cells in the tumor
microenvironment are vulnerable to cellular dysfunctions
(because of metabolic reprogramming [2]) and engage
in intercellular communications with neighboring cells,
thereby contributing to a tolerogenic and incompetent
immune environment. Here, we evaluated 84 metabolic
pathways in 12,422 single cells from patients with gas-
tric cancer (GC) [3] and predicted immune checkpoint
blockade (ICB) responses associated with cell type-specific
metabolic features using clinical outcome data from 45 GC
patients treated with ICB at the Samsung Medical Center
(the SMC cohort) (Supplementary Table S1) [4] andmolec-
ular subtype data from 497 GC patients treated at Yon-
sei SeveranceHospital (the Yonsei cohort) (Supplementary
Table S2) [5].
We first analyzed differences in the metabolic path-

ways in bulk GC samples between ICB responders and
non-responders. The clinical data of the SMC cohort
was subjected to systematic bioinformatics analyses for
seven metabolic signatures [6]. In the responder group,
biosynthetic pathways associated with amino acid syn-
thesis (P = 0.026) and nucleotide synthesis (P = 0.006)
were significantly enriched (Figure 1A). Differences in 84
metabolic pathways were also examined (Supplementary
Figure S1A). The responder and non-responder groups
demonstrated significant differences in 10 metabolic path-

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes;
ICB, Immune-checkpoint blockade; SMC, Samsung Medical Center;
TIDE, Tumor Immune Dysfunction and Exclusion; TCGA, The Cancer
Genome Atlas
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ways. The highest differences were found in glutathione,
glycerolipid, and nitrogenmetabolic pathways (Figure 1B).
Furthermore, we predicted the responders and non-

responders in the Yonsei cohort by analyzing the bulk
transcriptomedata using Tumor ImmuneDysfunction and
Exclusion (TIDE) for fivemolecular subtypes (Supplemen-
tary Table S3) [5, 7]. The stem-like subtype, which was
associated with the worst prognosis [5], predicted the low-
est proportion of responders (Figure 1C). Non-responders
showed higher tumor immune dysfunction (P = 0.014)
and exclusion scores (P < 0.001) than those shown by
responders (Supplementary Figure S1B). Five metabolic
pathways (thiamine metabolism, ether lipid metabolism,
fatty acid elongation, phosphonate phosphinate, and cys-
teine methionine metabolism) were associated with the
stem-like subtype (Supplementary Figure S1C). Further,
in the non-responder group with the inflammatory and
mixed-stroma subtypes, the glycosaminoglycan biosynthe-
sis - chondroitin sulfate/dermatan sulfate pathwaywas sig-
nificantly enriched (Supplementary Figure S1D).
Tumor-induced immune suppression can be ascribed to

direct tumor factors and bystander tumor-related factors.
To identify predictive biomarkers related to ICB respon-
siveness in terms of metabolic activity, we predicted the
responses to ICB for each cell type using single-cell data.
First, we prepared 8 simulated primary tumor samples for
each patient with gastric single-cell data and predicted the
ICB responses using TIDE. These samples were classified
as 6 non-responder and 2 responder samples (Figure 1D;
Supplementary Tables S5-S6). A total of 12,422 single
cells were classified into 8 cell types, and each cell type
showed a different response frequency (Figure 1E-1F). In
the responder group, T and B cells related to innate immu-
nity showed high metabolic activity. Macrophages had
lower tricarboxylic acid cycle (TCA) levels in the respon-
der group (false discovery rate [FDR] < 0.001; Figure 1G).
The amino acid, carbohydrate, lipid, nucleotide, and TCA
levels in adenocarcinoma cells were significantly higher
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F IGURE 1 Intercellular communications and metabolic reprogramming as new predictive markers for immunotherapy responses in
gastric cancer. (A) Boxplot of seven metabolic signatures related to immunotherapeutic responses in responders and non-responders in the
SMC cohort (n = 45). (B) Metabolic pathways that differed significantly between responders and non-responders in the SMC dataset, among
the 84 metabolic pathways studied. (C) Fractions of predicted responders and non-responders according to the molecular subtypes in the
Yonsei cohort (n = 497). (D) UMAP plot of patient identification numbers from the gastric tumor dataset. (E) UMAP plot of 8 cell types for 8
samples from the gastric tumor dataset. (F) Bar graph showing fractions of predicted responders and non-responders in the gastric tumor
dataset according to the 8 cell types. (G) Heat map of the activities of seven metabolic signatures between cells from responder and
non-responder samples. (H) Boxplot of seven metabolic signatures related to immunotherapeutic responses using scRNA-seq data of
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in responder samples than in non-responder samples (all
P < 0.001; Figure 1H). Among other cancer hallmarks,
allograft rejection, decreased responses to ultraviolet light,
and increased KRAS signaling were significantly enriched
in adenocarcinoma cells from responder samples (FDR <

0.001; Figure 1I). Specifically, adenocarcinoma cells from
responder samples were highly enriched (FDR< 0.001) for
the mucin-type O-glycan biosynthesis, glycosaminoglycan
biosynthesis - keratan sulfate, nitrogenmetabolism, valine,
leucine, and isoleucine biosynthesis, and glycosaminogly-
can biosynthesis - chondroitin sulfate/dermatan sulfate
pathways (Supplementary Figures S2 and S3A).
Macrophages were predicted to be the most respon-

sive cells at the single-cell level (Figure 1F). However,
it is unknown how macrophages regulate responsive-
ness to ICB. Furthermore, M2 macrophages from respon-
der and non-responder patients in the SMC and Yonsei
cohorts showed no significant difference in terms of gly-
colysis (Supplementary Figures S1D & S2). Macrophages
from responder patients showed low levels of amino acid
(P < 0.001), nucleotide (P = 0.003), and vitamin (P =

0.001), but high levels of carbohydrate (P = 0.002) and
TCA (P = 0.009) (FDR < 0.001; Figure 1J). Single-cell
data revealed high glycan metabolic reprogramming in
macrophages from responder patients (Figure 1K). The
metabolic pathways in cells from responder and non-
responder patients differed by 83.33%. In cells from respon-
der patients, the glycosphingolipid biosynthesis - globo
and isoglobo series, glycosphingolipid biosynthesis - gan-
glio series, and glycosaminoglycan biosynthesis - chon-
droitin sulfate/dermatan sulfate reference pathways were
highly enriched.
Further analysis revealed enrichment of all the seven

metabolic signatures in T cells from responder patients (P
< 0.001; Figure 1L). Particularly, pyrimidine metabolism,
propanoate metabolism, and the biosynthesis of unsat-
urated fatty acids were highly enriched (FDR < 0.001;
Figure 1M). Clustering T cells according to the degree

of stemness using the VarID and StemID algorithms [8]
showed that cluster 2 had the highest stemness whereas
cluster 3 had the lowest stemness among others (Figure 1N,
Supplementary Figure S3B). Of the cells constituting clus-
ters 2 and 3, most (99%) of the T cells with the low-
est stemness were in the non-responder group, and clus-
ter 2 showed the highest stemness with over 90% in the
responder group (Figure 1N). These results demonstrated
that the immune response was activated while under-
going metabolic reprogramming (Supplementary Figure
S3C) during T cell differentiation and activation.
As a cognate receptor interacting with C-C motif

chemokine ligand 5 (CCL5), a prioritized T cell ligand,
C5AR1, was predicted to be themost probable macrophage
receptor (Figure 1O). C5a mediates macrophage polariza-
tion, and the combined inhibition of C5A/C5AR1 and pro-
grammed cell death 1 (PD-1) signaling have been predicted
to show a synergistic anti-tumor effect [9]. The Pearson
correlation analysis between C5AR1 and genes related to
the glycerolipid metabolism pathways in the SMC dataset
revealed an inverse correlation of the Aldo-Keto Reduc-
tase Family 1 Member B (AKR1B1) expression between
the responder and non-responder groups (Figure 1P; Sup-
plementary Table S7). AKR1B1 links glucose metabolism
to epithelial-to-mesenchymal transition and is a potential
cancer diagnostic marker [10]. We demonstrated that high
AKR1B1 expression was associated with a poor prognosis,
and it was expressed at significantly higher levels in the
non-responder group (Figure 1Q-1R).
In this study, we unraveled how different immune

cells engage in immunotherapy responses by cell type-
dependent metabolic reprogramming at the single-cell
level in GC. Our results demonstrated that intercellular
conversation betweenmacrophages and T cells in the non-
responder group created a tumor metabolic microenviron-
ment that suppressed overall immunity. Moreover, signal
transduction in T cells and macrophages may affect glyc-
erolipid metabolic reprogramming and be associated with

adenocarcinoma cells from responder and non-responder samples. (I) Heat map of the top-ranked cancer hallmark signatures among 50
cancer hallmark pathways in adenocarcinoma cells from responder and non-responder samples. (J) Seven metabolic signatures between
macrophages from responders and non-responders using scRNA-seq data. (K) Heat map of 84 metabolic pathways in macrophages from
responder and non-responder samples. (L) Boxplot of the seven metabolic signatures between T cells from responders and non-responders
using scRNA-seq data. (M) Heat map of 84 metabolic pathways in T cells from responder and non-responder samples. (N) tSNE plot of
stem-like T cell trajectories using VarID and StemID (blue: high entropy; red: low entropy). Cluster 2 has the highest entropy, and cluster 3 has
the lowest entropy. Since the entropy shows the direction from high to low, the metabolic pathway activity on the left is significantly different
between the two clusters. Oxidative phosphorylation, one carbon pool by folate, and sulfur metabolism are also significantly different
between cluster 2 and cluster 3. (O) Heat map of prior interaction potential between prioritized T cell ligands and receptors expressed by
macrophages. (P) Bar plot of Pearson correlation between C5AR1 and top three genes in the glycerolipid, glutathione, and nitrogen metabolic
pathways in responders and non-responders from the SMC cohort. (Q) Kaplan-Meier overall survival curves of the patients with high and low
expression of AKR1B1 in TCGA STAD dataset. (R) Boxplot of AKR1B1 expression in responders and non-responders from the Yonsei cohort (P
< 0.001). Abbreviations: SMC, Samsung Medical Center; TCA,tricarboxylic acid cycle; UMAP, Uniform manifold approximation and
projection; scRNA-seq, single-cell RNA-sequencing; tSNE, t-distributed stochastic neighbor embedding; TCGA, The Cancer Genome Atlas
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immunotherapeutic outcomes in non-responder patients.
We speculate that lipid components of the cell mem-
brane might affect the phagocytosis of macrophages that
would explain the reprogrammed glycerolipid metabolic
activity in non-responders. Collectively, this study pro-
vides substantial metabolic insights for developing pre-
cision immunotherapy, which may help achieve better
immunotherapeutic outcomes and potentially overcome
ICB resistance in GC patients.
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