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Abstract: This study aimed to improve the quality of ultrasound images by modeling an algorithm
using a non-local means (NLM) noise-reduction approach to achieve precise quality control and
accurate diagnosis of thyroid nodules. An ATS-539 multipurpose phantom was used to scan the
dynamic range and gray-scale measurement regions, which are most closely related to the noise
level. A convex-type 3.5-MHz frequency probe is used for scanning according to ATS regulations.
In addition, ultrasound images of human thyroid nodules were obtained using a linear probe. An
algorithm based on the NLM noise-reduction approach was modeled based on the intensity and
relative distance of adjacent pixels in the image, and conventional filtering methods for image
quality improvement were designed as a comparison group. When the NLM algorithm was applied
to the image, the contrast-to-noise ratio and coefficient of variation values improved by 28.62%
and 19.54 times, respectively, compared with those of the noisy images. In addition, the image
improvement efficiency of the NLM algorithm was superior to that of conventional filtering methods.
Finally, the applicability of the NLM algorithm to human thyroid images using a high-frequency
linear probe was validated. We demonstrated the efficiency of the proposed algorithm in ultrasound
images and the possibility of capturing improved images in the dynamic range and gray-scale region
for quality control parameters.

Keywords: ultrasound quality control; accurate diagnosis of thyroid nodules; non-local means
approach; noise reduction; quantitative evaluation of image quality

1. Introduction

This examination method can capture real-time images non-invasively and non-
destructively; therefore, ultrasound imaging is actively used for the physical examination
of the abdomen, thyroid gland, and breast [1–3]. An ultrasound examination is conducted
to establish the cause of pain or inflammation. It may also aid in the early identification
of tumors in patients without symptoms. It is often used to evaluate prenatal fetuses [4].
In addition, when performing a biopsy on multiple organs, ultrasonography can be safely
and efficiently performed to monitor the ultrasound image in real time [5].

Recently, the use of ultrasound for the early diagnosis of cancer and other illnesses has
rapidly increased. In Korea, the number of patients who underwent abdominal ultrasounds
in 2019 was approximately 3.5 million; this number has increased exponentially since
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2017 [6]. Compared with early lesion detection in relatively young patients, ultrasound
examination for accurate lesion observation in elderly patients is crucial. Mahale et al.
reported that ultrasound examination during health checkups significantly helps in the
early detection of fatty liver and the accurate diagnosis of metabolic syndrome in asymp-
tomatic patients [7]. With the increase in interest and number of ultrasound examinations,
the importance of quality control of the device is also increasing. Management policies
focusing on pre-testing are being implemented worldwide to reduce the number of unnec-
essary or inappropriate ultrasound examinations. The importance of quality control for
accurate ultrasound device management is gradually increasing owing to this situation.
Thus, the Korean Society of Radiology and the Korean Society of Ultrasound in Medicine
developed a method that utilizes the ATS 539 multipurpose phantom as a standard for
ultrasound image evaluation [8]. Quality control of the ultrasound imaging equipment
is achieved by evaluating eight parameters according to medical device-related laws and
enforcement regulations.

Although most ultrasound diagnostic devices pass the quality control criteria for
the eight parameters, the image quality attributed to noise is declining. When an inap-
propriate ultrasound diagnostic device is used, the diagnosis accuracy decreases and the
re-examination rate increases, which may cause a significant problem. Based on data
from the Health Insurance Review and Assessment Service, domestic ultrasound imaging
devices yield low-quality images [9]. An evaluation by the National Cancer Screening
Agency indicated that the nonconformity rate for phantom imaging was 19.3%–23.3%, and
the nonconformity rate for clinical imaging was 6.0%–45.7% [9]. Thus, it is necessary to
reduce noise to enhance ultrasound image quality.

A representative method for improving image quality for ultrasound quality control
is to employ software technologies. In particular, clutter and speckle noise in ultrasound
images are common, and several studies on their removal have been conducted. Kang
et al. observed that near-field clutter artifacts could be reduced using a wavelet transform
in echocardiography [10]. Kim et al. confirmed that the image quality improved after
noise filtering methods were applied to the thyroid ultrasound image in the spatial do-
main [11]. Although the image quality improvement efficiency of the wavelet transform
and spatial filtering methods has been demonstrated, improved noise-reduction technology
in diagnostic imaging is still being investigated. Among the noise-reduction methods,
the non-local means (NLM) approach is modeled based on the weighting principle and
effectively removes noise by measuring the similarity of local parts of an image [12]. Coupé
et al. implemented the comparison study between NLM based speckle filtering and other
methods in simulation and experiment [13]. Recently, the modified NLM method has also
introduced to effectively remove the noise from ultrasound images in combination with
deep-learning, which exhibits outperformed results [14,15].

In this study, we investigated that qualitative and clinical accuracy is improved when
applying noise reduction algorithm in thyroid nodules. Here, the noise reduction algorithm
is applied with a basic NLM method. The ATS 539 multipurpose phantom was employed,
and a thyroid image was used to confirm its applicability in clinical practice.

2. Materials and Methods
2.1. Compliance with Ethical Standards

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board of Gachon University (1044396-202210-
HR-218-01). Written consent was obtained from patients before they were included in
the study.

2.2. Ultrasound Imaging System and Phantom

The probe used for scanning was a convex-type probe with 3.5 MHz frequency ac-
cording to ATS regulations, and 30 images were captured and used for image analysis.
An ATS-539 multipurpose phantom was used to scan the dynamic range and gray-scale
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measurement regions, which are most closely related to the noise level. In addition to
the ATS phantom images, a human thyroid ultrasound image was also acquired. For the
human ultrasound images, a linear probe with a frequency of 7.5 MHz was used.

2.3. NLM Noise-Reduction Algorithm Modeling

In this study, the NLM noise-reduction approach was modeled using the method
proposed by Buades et al. [16]. The NLM approach for basic noise reduction is based on
Equation (1):

I(i) = ∑j∈Ni
wij I(j) (1)

where I(i) is the brightness of the ith pixel, Ni is the search window value at the ith position,
wij is the weight value between the i and j pixels, and I(j) is the brightness of the jth pixel.
The wij representing the weight indicates the similarity between pixels i and j and should
have a numerical value between 0 and 1. The final weight using the normalizing term, (Zi),
is defined as follows:

wij =
1
Zi

exp−
‖
→
I(i)−

→
I(j)‖2

h2 (2)

where h is a constant multiple of the standard deviation of the noise, and the degree
of smoothing can be adjusted. A simple schematic of the weights is shown in Figure 1.
Considering the p, q1, and q2 regions in the ultrasound sample image, the q1 region
exhibited highly consistent image similarity compared to the p region, but the q2 region
exhibited high heterogeneity. Based on these characteristics, noise could be reduced while
maintaining sharpness by applying a large weight between the p and q1 regions (w(p, q1))
and a small weight between the p and q2 regions (w(p, q2)).
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Figure 1. Description of weighting part during processing of NLM noise-reduction algorithm image.

The weight was adjusted based on the Euclidean distance, and the standard deviation
value (δ) was set to 20. Figure 2a,b show the original NLM denoised image and the
corresponding residual image based on the default δ value, respectively.
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2.4. Quantitative Evaluation of Image Quality

Parameters for evaluating the noise level were used to quantitatively analyze the
applicability of the proposed NLM noise-reduction algorithm to ultrasound images. In this
study, the noise level in ultrasound images was evaluated using the contrast-to-noise ratio
(CNR) and coefficient of variation (COV). The CNR and COV values were calculated using
Equations (3) and (4), respectively:

CNR =

∣∣∣STarget − SBackground

∣∣∣√
σTarget

2 + σBackground
2

(3)

COV =
σTarget

STarget
(4)

where STarget and σTarget are the mean signal value and standard deviation of the region of
interest (ROI) in the target, respectively, and SBackground and σBackground are the mean signal
value and standard deviation, respectively. Figure 3 shows the location of the ROI in the
ATS phantom and human thyroid ultrasound images for the CNR and COV measurements.
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Figure 3. ROI setup for quantitative evaluation of ultrasound images: (a) ATS phantom and (b) hu-
man thyroid. In the ATS phantom image, the average values derived from six areas where gray-scale
and dynamic range can be measured were used.

Previously used filtering and denoising methods were modeled to verify the usefulness
of the NLM noise-reduction algorithm. The noise-reduction efficiency of the ultrasound
images modeled using the denoising methods was quantitatively analyzed based on the
CNR and COV evaluation parameters.
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3. Results

Quality control of a device used in diagnostic medical ultrasound is one of the most
critical factors for improving the diagnostic accuracy of lesions. Reducing noise, which is
essential when scanning an ultrasound image, helps achieve precise quality control. NLM-
based algorithms, which are widely used in various diagnostic and medical imaging fields,
are very effective. Thus, the purpose of this study was to model an NLM noise-reduction
algorithm to verify its applicability to ultrasound images for quality control.

Figure 4 shows the ATS ultrasound phantom images acquired in the dynamic range
and gray-scale evaluation area using the proposed NLM noise-reduction algorithm and
conventional filtering methods. Through visual examination, we observed that the noise-
reduction efficiency was best for the image to which the NLM algorithm was applied
(Figure 4e). Two main ultrasound image quality metrics, that is, CNR and COV, were ap-
plied to the ATS phantom images. Figure 5a,b show the CNR and COV results, respectively,
obtained by applying different conventional filtering methods, including the proposed
NLM noise-reduction algorithm, to the acquired ATS phantom image. The average CNR
and COV values were calculated by setting six ROI regions on the acquired ATS phantom
images. The average CNR values obtained using the noisy image, median filter, Wiener
filter, patch group prior denoising (PGPD), and proposed NLM noise-reduction algorithm
were 5.73, 5.91, 6.17, 6.85, and 7.36, respectively. We confirmed that the CNR results for
the ultrasound images subjected to NLM noise reduction improved by 28.62%, 24.66%,
19.37%, and 7.47% for the noisy image, median filter, Wiener filter, and PGPD, respectively.
In addition, the average COV values obtained using the noisy image, median filter, Wiener
filter, PGPD, and proposed NLM noise-reduction algorithm were 4.63, 1.63, 0.79, 0.53, and
0.24, respectively. The CNR values of the ultrasound images for the noisy image, median
filter, Wiener filter, and PGPD subjected to NLM noise reduction improved 19.54, 6.89, 3.34,
and 2.25 times, respectively.
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filter, (d) PGPD, and (e) proposed NLM noise-reduction algorithm.
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Figure 5. Graphs for quantitative evaluation of (a) CNR and (b) COV in acquired ATS ultrasound
phantom images.

Figure 6 shows the results of applying noise-reduction methods to an actual thyroid
ultrasound image. When the NLM noise-reduction algorithm was applied, the noise
level was visually reduced the most, and the trend was similar to the ATS phantom
results. In particular, when the NLM noise-reduction algorithm was applied to the resulting
ultrasound image, the noise that could lead to misdiagnosis of the disease was significantly
reduced in the parenchyma of the thyroid lobe. The CNR and COV were evaluated to
objectively quantify the noise-reduction level by setting the thyroid lobe part as a target
and the peripheral blood vessel part as a background. Figure 7 shows the CNR and COV
results obtained by applying different filtering methods, including the proposed NLM
noise-reduction algorithm, to the acquired thyroid ultrasound image. The CNR values for
thyroid ultrasound images were 5.52, 6.64, 6.71, 7.75, and 8.15 for the noisy image, median
filter, Wiener filter, PGPD, and proposed NLM noise-reduction algorithm, respectively. The
CNR values for the ultrasound images subjected to NLM noise reduction improved by
47.64%, 22.74%, 21.46%, and 5.16% for the noisy image, median filter, Wiener filter, and
PGPD, respectively. In addition, the COV values were 4.625, 1.630, 0.790, 0.532, and 0.237
for the noisy image, median filter, Wiener filter, PGPD, and proposed NLM noise-reduction
algorithm for thyroid ultrasound images, respectively. The CNR values of the ultrasound
images subjected to NLM noise reduction improved 2.36, 1.44, 1.28, and 1.18 times for the
noisy image, median filter, Wiener filter, and PGPD, respectively.
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4. Discussion

For optimal operation of the diagnostic imaging system, including ultrasonography,
the user should periodically inspect and check for defects in the device [16]. In Korea, qual-
ity control for computed tomography, magnetic resonance imaging, and mammography
was implemented in 2004, centered on the Korea Medical Imaging Quality Management
Institute. In particular, phantom and actual clinical images have been inspected for im-
age quality, including the management of equipment and personnel for these systems.
However, the legalization of quality control for ultrasound imaging devices is yet to be
actively implemented, and many difficulties in quality control are encountered owing to
inappropriate image quality, necessitating system improvement. We developed an NLM
noise-reduction approach that is more efficient than existing approaches in controlling ul-
trasonic picture quality. In addition, we verified the applicability of the proposed algorithm
using an area capable of measuring the dynamic range and gray scale of the ATS phantom.

A significant drawback of lesion diagnosis using an ultrasound image is that the
diagnostic accuracy depends on the user’s ability to scan the image. Hence, maintaining
the image quality is critical. In addition, because the intrinsic characteristics of the patient
significantly influence the ultrasound image, it is essential to control the quality of the
device and maintain image quality. Thus, objective indicators must be set to overcome these
problems, and quantitative image quality evaluation is expected to improve ultrasound
quality control. Among the image qualities, noise is one of the most significant factors that
reduces the accuracy of lesion diagnosis in ultrasound images. An approach is required for
denoising and laying the foundation for quality control measures for noise levels [17].

Noise in an ultrasound image can be generated in various forms. Speckle noise, the
most critical type of noise for degrading ultrasound image quality, is a product type in
which the mean and standard deviation are mutually proportional and generally follow a
Rayleigh distribution [18]. Improved median and Wiener filters have been widely used to
reduce speckle noise generated in ultrasound images [19,20]. However, due to difficulties in
processing the generated noise assuming a Gaussian distribution or when the mean value
and variance of the image are proportional, many parts undesirable for the ultrasound
image appear. In addition, Gupta et al. modeled various filters and analyzed the speckle
noise suppression efficiency in ultrasound images [21]. However, none of the previously
developed filters has high noise-removal efficiency for ultrasound images, and a patch
group-based filtering method has been used to compensate for these shortcomings. PGPD
is a patch group-based filtering method, and it is modeled using a method that adequately
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removes noise through the learning and denoising stages [22]. The learning stage of
PGPD is a process of grouping similar patch types. During the denoising stage, noise is
appropriately reduced using various control parameters for the learned patch group. Kim
et al. modeled this principle as a filter and applied PGPD to simulations and actual thyroid
ultrasound images; through various quantitative evaluations, they proved that it exhibits
superior characteristics compared to conventional noise-removal methods [11]. In this
study, we developed an adequate NLM approach with higher noise-removal efficiency
than PGPD, whose superiority has been demonstrated. When the proposed NLM noise-
reduction algorithm was applied to human thyroid ultrasound images, the CNR and COV
improved by 5.16% and 1.18 times, respectively, compared to PGPD.

Blurring inevitably occurs when software technology is applied to remove noise from
ultrasound images. Such blurring of the ultrasound image deteriorates the edge informa-
tion, affecting diagnostic accuracy. Thus, the noise level and the degree of blurring should
be determined simultaneously to assess ultrasound image quality. Several methods for
evaluating the overall quality of medical images are available, but recently, parameters
that can be evaluated without a reference image were proposed by Mittal et al. [23,24].
Representative methods of image quality assessment based on no-reference include the
blind/referenceless image spatial quality evaluator (BRISQUE) and the natural image qual-
ity evaluator (NIQE). Although both evaluation methods are models developed based on
natural science statistics, NIQE is more accurate than BRISQUE because it can satisfactorily
reflect the corpus of natural images [24]. Thus, we evaluated NIQE to measure the noise
level and the degree of blurring in the captured human thyroid ultrasound image. When
the NLM noise-reduction algorithm was applied to the ultrasound image, a NIQE of 16.93
was obtained. When the noisy image, median filter, Wiener filter, and PGPD were used, the
NIQE values were 16.68, 17.11, 17.29, and 17.06, respectively. Based on the NIQE results, we
can infer that when the NLM noise-reduction algorithm is applied to the ultrasound image,
the edge part closest to the noisy image can be preserved. Compared to conventional
denoising methods, the NLM noise-reduction algorithm produces excellent quality of the
entire ultrasound image. In an ultrasound image, the edge area should be adequately
maintained for accurate length measurements of lesions and human organs. The proposed
NLM noise-reduction algorithm can reduce the signal distortion and blurring effect of
conventional filtering methods in terms of the overall geometric structure of the image [25].

The use of proposed NLM noise-reduction algorithm in diagnostic ultrasound imaging
is expected to help diagnose thyroid diseases and increase the diagnostic efficiency. Figure 8
shows the results for the proposed NLM noise-reduction algorithm applied to an ultrasound
image of a thyroid nodule patient after each smoothing step. The lesion was visually
observed in all stages of low, middle, and high smoothing using the NLM noise-reduction
algorithm. In addition, the proposed algorithm may be useful when the diagnosis is difficult
since the margin is unclear when following up on the changes in the thyroid mass size. The
margin part was observed more clearly when the high smoothing step was applied to the
thyroid ultrasound image than with the low smoothing step, and we expected that the size
measurement accuracy of the mass part would be improved. Figure 9 is an ultrasound
image of the thyroid nodule in order to observe in more detail the margin change with and
without algorithm application (red arrow: margin of actual nodule, yellow arrow: part that
can be mistaken for margin). As shown in Figure 9a, it can be seen that the margin of the
thyroid nodule is not clear in the original ultrasound image before the denoising process.
However, in Figure 9b, when the NLM noise-reduction algorithm based on high smoothing
is used, we can confirm that the margin is relatively clearly revealed.
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Figure 9. Ultrasound images to observe changes in the margin of the thyroid nodule: (a) noisy image
and (b) NLM denoising with high smoothing. The red arrow means the actual exact nodule margin,
and the yellow arrow means the margin that can be misunderstood.

In particular, the shape, size, and degree of echo of thyroid nodules observed on
ultrasound images vary widely; therefore, a framework that satisfies Korean standards
was established, called the “Korean Thyroid Imaging Reporting and Data System (K-
TIRADS)” [26]. The K-TIRADS is divided into five stages based on the clinical observations
of the ultrasound image, and the probability of malignancy and biopsy criteria are presented.
Among nodule types, approximately 3% of spongiform nodules are likely malignant, and
biopsy is recommended if they are larger than 2 cm. In addition, when a nodule is classified
into four stages, a maximum 50% chance of malignancy exists; therefore, if the nodule
exceeds 1 cm, a biopsy should be performed immediately. We expect that the proposed
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algorithm will help measure the exact size of a thyroid nodule and determine whether
biopsy is indicated or not.

Recently, researchers have actively investigated the segmentation of organs or struc-
tures in ultrasound images using deep-learning and image-processing techniques. Hafiane
et al. used the convolutional neural network (CNN) architecture, which is the most widely
used deep-learning technique, and the neural part of the ultrasound image was separated
more precisely than with conventional methods [27]. In addition, a fusion model of a CNN
and recurrent neural network in the ultrasound field was established by Chen et al., and
the generative adversarial network was confirmed to be a very effective model for seg-
mentation [28,29]. During this segmentation process, the noise from the ultrasound image
increases the false positive rate, reducing the accuracy of the deep-learning algorithm. If
the proposed NLM noise-reduction algorithm is applied to deep-learning-based ultrasound
imaging technology, it is expected that the accuracy and usefulness of the deep-learning
model will improve. In addition, the proposed algorithm applies not just to the thyroid
area, but to a technique that can improve ultrasound imaging accuracy for abdominal
diseases and reduce mirror artifacts.

5. Conclusions

In this work, we evaluated the image performance and accuracy of diagnostic accord-
ing to the speckle noise reduction using the NLM algorithm in ultrasound thyroid image.
The NLM noise-reduction algorithm yields better metrics than conventional denoising
methods. The accuracy of clinical ultrasound quality control can be improved using the
results of this study, and the misdiagnosis rate of lesions in organs, including the thyroid
gland, can be minimized.
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