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Analysis of facial ultrasonography 
images based on deep learning
Kang‑Woo Lee1,4, Hyung‑Jin Lee2,4, Hyewon Hu1 & Hee‑Jin Kim1,3*

Transfer learning using a pre‑trained model with the ImageNet database is frequently used when 
obtaining large datasets in the medical imaging field is challenging. We tried to estimate the value 
of deep learning for facial US images by assessing the classification performance for facial US images 
through transfer learning using current representative deep learning models and analyzing the 
classification criteria. For this clinical study, we recruited 86 individuals from whom we acquired 
ultrasound images of nine facial regions. To classify these facial regions, 15 deep learning models 
were trained using augmented or non‑augmented datasets and their performance was evaluated. The 
F‑measure scores average of all models was about 93% regardless of augmentation in the dataset, 
and the best performing model was the classic model VGGs. The models regarded the contours of skin 
and bones, rather than muscles and blood vessels, as distinct features for distinguishing regions in 
the facial US images. The results of this study can be used as reference data for future deep learning 
research on facial US images and content development.

Abbreviations
MRI  Magnetic resonance imaging
CT  Computed tomography
US  Ultrasonography
LIME  Locally interpretable model-agnostic explanations
BRISQUE  Blind/Referenceless Image Spatial Quality Evaluator

Facial anatomical structures are small and interconnected. Although these structures can be observed and distin-
guished well through dissection, the detection of the target muscle structure cannot be easily distinguished using 
imaging equipment such as magnetic resonance imaging (MRI) or computed tomography (CT). Distinguishing 
facial anatomical structures is important for detecting various diseases or performing cosmetic procedures such 
as botulinum  neurotoxin1–8 and filler  injections9–11.

While MRI and CT are considered standard medical imaging modalities that reveal high-resolution images of 
anatomical structures, potential disadvantages of these pieces of equipment include the need for radiation expo-
sure for CT, elevated costs, and long analysis  time12,13. As an alternative, ultrasonography (US), one of the most 
widely used imaging modalities, is considered to be a strong and omnipresent screening and diagnostic assess-
ment tool for  clinicians1,4–6,8,14. Over the decades, US has demonstrated several major advantages over other medi-
cal imaging modalities such as X-ray, MRI, and CT because of its convenience and cost-effectiveness1,4–6,8,12,13. 
However, US also has unique drawbacks, such as low image quality caused by artifacts, high dependence on 
practitioner experience, and differences in the manufacturers’ US  system12,13.

To overcome these drawbacks, automated image analysis based on deep learning has recently been developed; 
however, there have been no attempts to apply this useful and smart method in the field of facial US  anatomy12,13. 
The three major basic tasks of medical imaging, namely, classification, detection, and segmentation, are widely 
applied to different anatomical structures in medical US analysis, including the  breast15,16,  prostate17,18,  liver19, 
heart/cardiac20,21,  carotid22,  thyroid23,  intravascular24,25, lymph  nodes26,  kidney27,  bone28,29,  muscle30, nerve 
 structure31. However, there have been no attempts to apply this useful and smart method in the field of facial US 
anatomy, which is the main cue of several non-invasive surgical  procedures32.

Deep learning has rapidly developed in the automatic analysis of low- and high-quality medical imaging for 
diagnoses as well as image-based  interventions12,13. Most of the classification models in the medical image field 
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were created by using transfer learning from pre-trained models from ImageNet (Stanford Vision Lab, Stanford 
CA), which contains a wide variety of images ranging from faces to cats, cars, and  mountains33,34. However, an 
intrinsic difference in image quality and complexity could affect deep learning performance and should be taken 
into special consideration in US  applications34. The US images appear to have a significantly different image 
quality from that of ImageNet photos and other medical  images34; therefore, it is crucial to evaluate several deep 
learning models before entering US images into deep learning algorithms and make US diagnoses and US-guided, 
non-invasive facial surgical procedures/therapies more objective, precise, and reliable.

Facial esthetic research has been conducted by using deep learning in facial aesthetic  prediction35–37 and the 
facial rejuvenation recommendation  system38. However, studies on the examination of the facial anatomical 
structures, which is helpful in diagnosing facial skin  disease39, preventing iatrogenic side effects, and establish-
ing the safest and most effective treatment plan, are  few1,4,6,8,9,32,40,41. Moreover, several previous deep learning 
models have not yet established which model is acceptable to classify the facial US images and how many data 
sets are needed, even though the anatomical information is crucial for some clinical tasks such as deciphering 
facial structures of US images before a procedure. Therefore, we aimed to estimate the value of deep learning 
for facial US images by assessing the classification performance for facial US images through transfer learning 
using current representative deep learning models and analyzing the classification criteria.

Materials and methods
All experimental procedures in this study were performed in accordance with the Declaration of Helsinki of 
the World Medical Association (version of October 2013). The study was approved by the Institutional Review 
Board of Yonsei University Dental Hospital (approval no. 2-2019-0026, granted on July 30, 2019). A real-time 
two-dimensional B-mode US system (E-CUBE 15 Platinum, ALPINION Medical Systems, Seoul, Korea) with a 
60-mm-wide linear-array transducer (8.0–17.0 MHz; L8-17X, ALPINION Medical Systems) was used to obtain 
US images of the masseter muscle of healthy young individuals. These US images are unpublished data. The tables 
and figures in this paper were constructed based on data from the Supplementary Information.

Participant selection and data acquisition. Signed written informed consent and facial US image data 
were obtained from 86 healthy, young individuals (48 males and 38 females, aged 25.4 ± 4.1 years). The exclu-
sion criteria were orthodontic treatment, temporomandibular joint disorder, plastic surgery, or botulinum neu-
rotoxin injection within the previous 6 months. The participants were placed in a supine position on a chair 
reclined at 45°. The US sampling frequency was adjusted to 15.0 MHz, which is an ideal frequency for observing 
depths between 1.5 and 4 cm, depending on the presence of skin, fat, and muscle tissues. The US transducer was 
positioned perpendicular to the skin surface over the scanning site. US scanning was performed on the midline 
and left side of the face. We used MATLAB deep-learning tools to implement the predictive model.

Deep learning models trained based on ImageNet data were evaluated for the classification of the nine facial 
regions. A total of 1440 US images were obtained from volunteers. From these, 160 US images were obtained 
from each region. All US images were transverse cross-section images. The facial landmarks and related US 
images for each facial region are shown in Fig. 1.

CNN models for the classification of facial US images. ImageNet database, the most common and 
representative deep learning database, employed millions of images to train models and compared the clas-
sification performance of photographed facial US images. The evaluated CNN models were (1) GoogleNet, (2) 
SqueezeNet, (3) Mobilenet-v2, (4) ResNet-18, (5) ResNet-50, (6) ResNet-101, (7) Inception-v3, (8) Inception-
ResNet-v2, (9) AlexNet, (10) VGG-16, (11) VGG-19, (12) DenseNet-201, (13) Xception, (14) NasNet-Mobile, 
and (15) ShuffleNet (Table 1).

Verification of the nine regions of the face classification ability using the selected model. We 
trained 15 deep learning models to classify nine facial regions (Fig. 1). The training was conducted after adjust-
ing the US image size to 224 × 224 × 3, 227 × 227 × 3, and 299 × 299 × 3 transforming the image to match the input 
size of the pre-trained deep learning model and augmenting the images. The training images were randomly 
translated up to 30 pixels and horizontally and vertically scaled up and down to 10%.

We evaluated the performance of each model using a tenfold cross-validation method. For the 160 US images 
of each region, 20 images were used as a test set, while the remaining 140 were divided into ten folds. One model 
has ten trained sub-models, and the sub-models were each evaluated for performance against the test set.

The training set for the model was a mini-batch size of 20, and the stochastic gradient descent with momen-
tum (SGDM) moment was used. The maximum number of epochs was 20, and the learning rate was 0.0003, 
which was constant throughout the training.

Evaluation metrics. Precision and recall. We calculated the precision by dividing the number of True 
Positive elements by the total number of positively predicted units, where “k” represents a generic class.

The recall was calculated by dividing the number of True Positive elements by the total number of positively 
classified units.

Precisionk =
True Positivek

True Positivek + False Positivek
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Figure 1.  Nine facial regions, their landmarks, and US images corresponding to each landmark. Transverse 
US images at the region were used for deep learning models. Forehead: 1, trichion (hair line at the midline); 
2, metopion (midpoint of bilateral frontal eminence), 3, half point between 2 and 4; 4, glabella; 5, frontal 
eminence; 6, meeting point between lines passing 3 and medial canthus; 7, meeting point between lines passing 
3 and mid-pupil; 8, meeting point between lines passing through 3 and lateral canthus. Oral: 9, half point 
between subnasale and 10; 10, lower point on cupid’s bow; 11, stomion; 12, midpoint of lower vermillion border. 
Mentum: 13, deepest point of the chin at the midline; 14, pogonion; 15, gnathion. Nose: 16, sellion; 17, rhinion; 
18, pronasale. Supraorbital: 19, meeting point between lines passing 20 and the medial canthus; 20, superior 
orbital rim at the mid-pupillary line; 21, meeting point between lines passing 20 and the lateral canthus; 22, 
meeting point between lines passing 20 and the lateral orbital rim. Lateral nose: 23, meeting point between lines 
passing 26 and the medial canthus; 24, point between 23 and 25; 25, alare. Infraorbital: 26, superior orbital rim 
at the mid-pupillary line; 27, meeting point between lines passing 26 and the lateral canthus; 28, meeting point 
between lines passing 26 and the lateral orbital rim; 29, point between 26 and 32; 30, point between 27 and 33; 
31, point between 28 and 34; 32, meeting point between lines passing alare and middle pupil; 33, meeting point 
between lines passing alare and the lateral canthus; 34, meeting point between lines passing alare and the lateral 
orbital rim. Anterior cheek: 35, meeting point between the line passing 9 and nasolabial folds; 36, meeting 
point between lines passing stomion and middle pupil; 37, meeting point between lines passing stomion and 
lateral cantus. Posterior cheek: 38–41, points that divide the masseter by the upper and lower boundaries.
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The arithmetic mean of the metrics for separate classes is used to calculate the Macro Average Precision and 
Recall, where K is the total number of class.

Accuracy. The accuracy was calculated by dividing the correct predictions (including true positives and true 
negatives) by the total number of examined cases.

F‑measure. F-measure or F1-Score aggregates Precision and Recall measures under the concept of harmonic 
mean was measured.

Macro F-measure, which is the arithmetic mean of class-wise F-measure, was calculated as shown below.

The performance of the deep learning model was evaluated using the abovementioned metrics, and the per-
formance score of one model is the mean of tenfold scores. The score for the model training is provided as the 
final accuracy and loss value. The score for the validation set is shown as precision, recall, and F-measure. Each 
result is illustrated in tables and box plots.

LIME (locally interpretable model‑agnostic explanations). Deep learning models are complicated, 
and their actions may be difficult to comprehend. The LIME approach approximates a deep neural network’s 
classification behavior with a smaller, more easily interpretable  model42. The neural network’s decisions may be 
deduced by interpreting the decisions of this simpler model.

As the first step in the LIME method, we divided the ultrasound image into a grid of square features. The 
LIME method then uses bicubic interpolation to up-sample the computed map to match the image resolution. 
A 10 × 10 grid of features was created to increase the resolution of the computed map. LIME creates a composite 
image based on the original observation by randomly selecting a feature and replacing all pixels of that feature 

Recallk =
True Positivek

True Positivek + False Negativek

Macro Average Precision =

∑K
k=1

Precisionk

K

Macro Average Recall =

∑K
k=1

Recallk

K

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

F-measurek = 2×

(

Precisionk × Recallk

Precisionk + Recallk

)

Macro F-measure =

∑K
k=1

F-measurek

K

Table 1.  Pre-trained deep learning models using ImageNet. a The NasNet-Mobile does not consist of a linear 
sequence of modules. MB, megabyte.

Model Depth Size (MB) Parameters (millions) Image input size

AlexNet 8 227 61 227 × 227

DenseNet-201 201 77 20 224 × 224

GoogleNet 22 27 7 224 × 224

Inception-ResNet-v2 164 209 55.9 299 × 299

Inception-v3 48 89 23.9 299 × 299

Mobilenet-v2 53 13 3.5 224 × 224

NasNet-Mobile a 20 5.3 224 × 224

ResNet-18 18 44 11.7 224 × 224

ResNet-50 50 96 25.6 224 × 224

ResNet-101 101 167 44.6 224 × 224

ShuffleNet 50 5.4 1.4 224 × 224

SqueezeNet 18 5.2 1.24 227 × 227

VGG-16 16 515 138 224 × 224

VGG-19 19 535 144 224 × 224

Xception 71 85 22.9 299 × 299
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with the average image pixel, effectively removing that feature. The number of random samples was set to 6,000. 
The linear regression model used lasso regression.

Facial US images’ quality. The sizes of US images used in this study were 169 × 150 × 3 (smallest); 
567 × 418 × 3 (medium); and 848 × 533 × 3 (largest) (Fig. 2). When US images of various sizes are transformed to 
fit the data input size of the deep learning model, the quality of the images changes. The quality of each trans-
formed image and its original was quantified using BRISQUE (Blind/Referenceless Image Spatial Quality Evalu-
ator) and displayed through a box plot (Fig. 3).

BRISQUE. BRISQUE is an image analysis tool that adopts mathematical evaluation rather than objective 
image quality  grading43. Unlike a qualitative comparison performed by humans, this is a repeatable quantitative 
method for image quality inspection. BRISQUE is a feature calculation model that simply employs picture pixels. 
It is shown to be highly efficient because it calculates its characteristics without the use of any transformations. 
According to the BRISQUE scoring system, the image quality values range from 0 to 100, corresponding to best 
and worst, respectively.

Results
During the training process of all models, the accuracy and loss values reached a plateau between 10 and 15 
epochs. All average values are arithmetic mean values and are shown with standard deviation.

Training results of the models. After training for ultrasound facial region classification, the mean of 
the final accuracy of all models using the non-augmented dataset was 93.56 ± 1.38%. The model with the lowest 
mean final accuracy of 91.50 ± 3.36% was NasNet-Mobile, while the model with the highest mean final accuracy 
was VGG-19 with 96.75 ± 1.60% (Table 2 and Fig. 4).

Figure 2.  Scatter plot of facial US images’ size.

Figure 3.  BRISQUE score according to facial US image size change. 224: 224 × 224 × 3, 227: 227 × 227 × 3, 229: 
229 × 229 × 3.
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The lowest final accuracy among all folds was that of NasNet-Mobile, which recorded 87.30%, while the 
highest was 99.20%, recorded by the fold of NasNet-Mobile. The mean of the final loss values of all models was 
0.22 ± 0.03. VGG-19 showed the lowest average loss value of 0.13 ± 0.07, and NasNet-Mobile revealed the high-
est average loss value of 0.28 ± 0.08. The model that recorded the lowest loss value among the folds was the fold 
of VGG-19 with a value of 0.06, while the fold that exhibited the highest loss value was that of VGG-16 with a 
value of 0.48 (Table 2 and Fig. 4).

The mean final accuracy was 94.25 ± 1.00% using the augmented dataset. The lowest mean final accuracy was 
recorded by GoogleNet as 92.22 ± 3.03%, and the highest one was recorded by VGG-16 as 96.03 ± 2.01%. The fold 
of SqueezeNet showed the lowest accuracy of 87.30% among the folds, while the model with the highest accuracy 
of 100% was that of VGG-16. The mean final loss values of all models was 0.19 ± 0.04. The DenseNet-201 model 
recorded the lowest average loss value, which was 0.15, while the highest average loss value was 0.28, recorded 
by SqueezeNet. The model that recorded the lowest loss value among all folds was the fold of VGG-16 with a 
value of 0.02, while the model showing the highest loss value was 0.78 with SqueezeNet. The mean of the lowest 
final accuracy among all models was recorded by GoogleNet as 92.22 ± 3.03%, and the model with the highest 
accuracy was VGG-16, recording 96.03 ± 2.01%. The fold of SqueezeNet showed the lowest accuracy among all 
folds at 87.30%, and the model with the highest accuracy of 100% was VGG-16. The mean of the final loss val-
ues of all models was 0.19 ± 0.04. The DenseNet-201 model recorded the lowest average loss value at 0.15, while 
SqueezeNet recorded the highest average loss value of 0.28. The model that recorded the lowest loss value among 
all folds was the fold of VGG-16 with a value of 0.02, while SqueezeNet was the model showing the highest loss 
value of 0.78 (Table 2 and Fig. 4).

Test results of models. The mean values of precision, recall, and F-measure for the test set of all models 
using the non-augmented dataset were 93.88 ± 1.37, 93.55 ± 1.83%, and 93.52 ± 1.83%, respectively. The order of 

Table 2.  The training final accuracy and loss values of the model using the non-augmented dataset and the 
models using the augmented dataset (accuracy: mean ± standard deviation %).

Model

Non-augmented dataset Augmented dataset

Accuracy Loss Accuracy Loss

AlexNet 94.68 ± 1.40 0.21 ± 0.06 94.12 ± 1.13 0.19 ± 0.07

DenseNet-201 93.88 ± 1.94 0.19 ± 0.07 95.31 ± 2.60 0.15 ± 0.08

GoogleNet 91.90 ± 2.14 0.23 ± 0.06 92.22 ± 3.03 0.23 ± 0.07

Inception-ResNet-v2 92.53 ± 2.45 0.24 ± 0.07 93.65 ± 3.26 0.20 ± 0.07

Inception-v3 93.73 ± 2.68 0.2 ± 0.07 94.92 ± 2.05 0.16 ± 0.07

Mobilenet-v2 92.77 ± 2.09 0.19 ± 0.04 94.52 ± 2.06 0.16 ± 0.05

NasNet-Mobile 91.50 ± 3.36 0.28 ± 0.08 93.88 ± 1.35 0.21 ± 0.06

ResNet-18 94.04 ± 2.40 0.19 ± 0.07 94.52 ± 2.13 0.18 ± 0.08

ResNet-50 93.17 ± 1.84 0.21 ± 0.06 94.36 ± 2.06 0.18 ± 0.08

ResNet-101 94.12 ± 1.80 0.18 ± 0.04 94.52 ± 1.88 0.17 ± 0.05

ShuffleNet 93.49 ± 2.50 0.22 ± 0.08 94.12 ± 2.54 0.17 ± 0.07

SqueezeNet 93.17 ± 1.80 0.24 ± 0.08 93.01 ± 3.05 0.28 ± 0.19

VGG-16 95.71 ± 1.98 0.17 ± 0.11 96.03 ± 2.01 0.16 ± 0.10

VGG-19 96.74 ± 1.60 0.13 ± 0.07 95.63 ± 2.15 0.20 ± 0.10

Xception 91.82 ± 2.89 0.26 ± 0.04 92.85 ± 2.84 0.25 ± 0.06

Figure 4.  Training results for 10 folds of each deep learning model.
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prediction, recall, and F-measure scores of the models was the same. The models with the lowest and highest 
scores were NasNet-Mobile and VGG-16, respectively. The fold scores suggestive of the lowest precision, recall, 
and F-measure were those of NasNet-Mobile, which were 89.11%, 88.33%, and 88.33%, respectively. The fold 
with the highest scores was the fold of VGG-16, with precision, recall, and F-measure scores of 97.80%, 97.78%, 
and 97.76%, respectively (Table 3 and Fig. 5).

The precision score for region classification was lowest in the oral region at 87.85 ± 5.35%, followed by 
the orbit-upper region at 87.97 ± 7.36%. The recall score was lowest in the anterior cheek at 82.3 ± 6.33%. The 
F-measure scores were lowest in the anterior cheek and orbit-upper regions at 87.31 ± 4.11% and 87.71 ± 5.48%, 
respectively. The regions with the highest precision, recall, and F-measure scores were the lateral nose and nose 
regions. Precision and F-measure scores were 99.8 ± 0.93% and 99.11 ± 1.21% in the lateral nose region, and the 
recall score was highest in the nose region (98.73%) (Table 3 and Fig. 5).

The mean values of precision, recall, and F-measure for the test set of all models using the augmented dataset 
were 94.18 ± 1.53, 93.77 ± 1.63%, and 93.74 ± 1.65%, respectively. The order of precision, recall, and F-measure 
scores of the models were all the same. The model with the lowest score was NasNet-Mobile, while the model 
with the highest score was VGG-16. The fold scores indicative of the lowest precision, recall, and F-measure were 

Table 3.  Performance on the test set of the model with the non-augmented dataset and the models with the 
augmented dataset (model) (mean ± standard deviation %).

Model

Non-augmented dataset Augmented dataset

Precision Recall F-measure Precision Recall F-measure

AlexNet 95.51 ± 0.74 95.22 ± 0.79 95.23 ± 0.79 94.51 ± 1.29 94.11 ± 1.64 94.12 ± 1.58

DenseNet-201 94.35 ± 0.88 94.22 ± 0.88 94.20 ± 0.87 94.99 ± 0.90 94.72 ± 0.95 94.74 ± 0.98

GoogleNet 93.65 ± 1.15 93.28 ± 1.06 93.24 ± 1.06 93.58 ± 0.74 93.06 ± 0.92 93.00 ± 0.96

Inception-ResNet-v2 91.70 ± 1.31 91.17 ± 1.45 91.13 ± 1.49 93.74 ± 1.22 93.33 ± 1.31 93.30 ± 1.33

Inception-v3 94.24 ± 0.82 94.00 ± 0.86 93.96 ± 0.85 93.86 ± 0.99 93.56 ± 0.99 93.48 ± 1.00

Mobilenet-v2 93.92 ± 0.84 93.67 ± 0.88 93.66 ± 0.86 95.03 ± 0.80 94.83 ± 0.87 94.80 ± 0.87

NasNet-Mobile 91.06 ± 1.27 90.17 ± 1.28 90.13 ± 1.30 91.32 ± 1.17 90.44 ± 1.30 90.41 ± 1.30

ResNet-18 93.82 ± 1.12 93.50 ± 1.17 93.49 ± 1.17 93.58 ± 1.29 94.44 ± 1.39 93.04 ± 1.44

ResNet-50 95.07 ± 0.97 94.83 ± 1.02 94.79 ± 1.01 96.31 ± 0.62 96.06 ± 0.67 96.05 ± 0.66

ResNet-101 93.71 ± 1.00 93.33 ± 1.14 93.20 ± 1.18 94.97 ± 1.14 96.06 ± 1.48 94.41 ± 1.51

ShuffleNet 92.06 ± 1.18 91.56 ± 1.36 91.59 ± 1.30 92.52 ± 0.94 91.94 ± 1.12 91.98 ± 1.09

SqueezeNet 93.95 ± 1.39 93.50 ± 1.53 93.47 ± 1.52 93.86 ± 1.86 93.28 ± 2.33 93.24 ± 2.44

VGG-16 96.88 ± 0.50 96.78 ± 0.51 96.76 ± 0.51 96.85 ± 0.84 96.67 ± 0.94 96.64 ± 0.97

VGG-19 96.69 ± 0.57 96.56 ± 0.57 96.54 ± 0.58 95.99 ± 1.68 95.56 ± 1.98 95.58 ± 1.92

Xception 91.63 ± 0.77 91.44 ± 0.84 91.39 ± 0.84 91.71 ± 0.57 91.56 ± 0.63 91.44 ± 0.59

Figure 5.  Test results for 10 folds of each deep learning model.
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those of NasNet-Mobile, which were 88.72%, 87.22%, and 87.23%, respectively. The highest fold scores were those 
of the VGG-19 fold, which were 97.85%, 97.77%, and 97.79%, respectively (Table 3 and Fig. 5).

The precision score for region classification was lowest in the orbit-upper region at 86.77 ± 7.58%, followed by 
that of the oral region, which was 89.31 ± 6.36%. The recall score was lowest in the anterior cheek at 84.5 ± 7.25%. 
The F-measure scores were the lowest in the anterior cheek and the orbit-upper regions at 88.64 ± 4.37% and 
86.84 ± 5.14%, respectively. The lateral nose region exhibited the highest precision, recall, and F-measure scores, 
which were 99.93 ± 0.54%, 99.33 ± 1.7%, and 99.62 ± 0.9%, respectively (Table 4 and Fig. 6).

Discussion
For facial ultrasound image region classification, the relatively classic models VGG-16, VGG-19, and ResNet-50 
had the highest scores (Table 3 and Fig. 5). Looking at the above simplification, the models with better perfor-
mance have in common a large number of parameters, shallow depth, and small image input size (Table 1 and 
Table 3). The same was observed in previous studies when comparing deep learning performance on medical 
images such as ultrasound and CT images, where shallow and classical models performed better than deep 
modern  algorithms44. Considering that the performance is improved from ResNet-18 to ResNet-50 and then 
decreased in ResNet-101, it seems that a numerical balance between the model depth and the number of param-
eters is necessary.

The BRISQE score for US images generally shows the highest score among medical images such as MRI 
and CT, indicating the lowest image  quality34. Counterintuitively, the BRISQUE score tended to decrease as the 
US image size was, arbitrarily, reduced in this study. This may be related to the high-performance scores of the 
models using the small US image size.

The average performance of the model using the augmented dataset was 0.2% higher than the model using 
the non-augmented dataset; therefore, there was no significant difference in the performance of the model 
regardless of whether the data was augmented or not. A significant performance improvement was exception-
ally observed only in Inception-ResNet-v2, ResNet-50, and ResNet-101 among the 15 models evaluated in this 
study (Table 3 and Fig. 5). Data augmentation is the most popular method implemented to prevent  overfitting45. 
The dataset was augmented by horizontal movement and zoom in and out according to the characteristics of 
neighboring landmarks in the region used in this study; however, the effect was weak. This indicates that the 
effect of data augmentation may vary depending on data characteristics or models. As in the case of Inception-
v3, the performance score decreased after augmentation in some cases; thus, training using unconditional data 
augmentation requires attention.

The average performance score for each region was about 85% to 99%, which significantly differed between 
each region. Among all regions, lateral nose and nose were the most clearly distinguished (Table 4 and Fig. 6). By 
examining the most meaningful locals in the lateral nose and nosed through LIME, it is evident that the models 
clearly distinguish the skin and bone contours from other regions and their features (Fig. 7). Although the shape 
of the other regions under investigation are different, the models mainly considered hyperechoic skin and bones 
or their surroundings as the main features. Artifacts such as gels and bone shadows were sometimes regarded by 
the models as genuine features; however, in most cases, the artifacts were suitably ignored.

Irrespective of the model, the local features of each region viewed with LIME were similar. The VGG models 
had exceptionally high-performance scores in the orbital-lower and orbital-upper regions, and the attention 
areas of VGG models examined through LIME were the smallest compared to the areas of other models. This 
tendency seems to be a reason why VGG models have lower performance than other models in the case of ante-
rior cheeks. Mentalis m. and masseter m., which are relatively hypoechoic areas of the muscles in the mentum 
and posterior cheeks, were ignored. Moreover, the model that considered these muscles as the main features 
showed rather poor performance.

When segmentation is performed on a facial ultrasound image, the structure shown by each region is very 
different; thus, it is critical to label each region separately. If segmentation is performed without pre-classifying 
the face parts in this manner, many images are expected to be required to achieve proper performance. Recently, 
methods to improve the performance of the segmentation model by combining the feature maps of each stage 
in the segmentation model encoder and the classification model have been  introduced46.

Table 4.  Performance on the test set of the model with the non-augmented dataset and the models with the 
augmented dataset (region) (mean ± standard deviation %).

Region

Non-augmented dataset Augmented dataset

Precision Recall F-measure Precision Recall F-measure

Anterior cheek 93.54 ± 5.59 82.30 ± 6.33 87.31 ± 4.11 93.82 ± 5.3 84.5 ± 7.25 88.64 ± 4.37

Forehead 95.03 ± 5.01 95.50 ± 5.54 95.13 ± 4.06 96.90 ± 4.52 93.23 ± 6.29 94.88 ± 4.23

Lateral nose 99.80 ± 0.93 98.46 ± 2.31 99.11 ± 1.21 99.93 ± 0.54 99.33 ± 1.70 99.62 ± 0.90

Mentum 93.88 ± 4.96 94.30 ± 2.89 94.01 ± 3.13 94.31 ± 5.26 94.00 ± 3.17 94.05 ± 3.10

Nose 98.95 ± 2.18 98.73 ± 2.6 98.81 ± 1.69 99.08 ± 2.08 99.26 ± 1.95 99.15 ± 1.43

Oral 87.85 ± 5.35 96.93 ± 3.56 92.05 ± 3.41 89.31 ± 6.36 98.56 ± 2.54 93.56 ± 3.57

Infraorbital 94.13 ± 5.45 90.13 ± 7.16 91.88 ± 4.97 93.33 ± 6.3 89.2 ± 8.33 90.83 ± 5.14

Supraorbital 87.97 ± 7.36 87.86 ± 6.24 87.71 ± 5.48 86.77 ± 7.58 87.56 ± 6.67 86.84 ± 5.14

Posterior cheek 93.74 ± 4.72 97.7 ± 3.2 95.6 ± 3.09 94.14 ± 4.43 98.26 ± 2.95 96.09 ± 2.84
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Figure 6.  Test results for 10 folds of each deep learning model in each region.
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In conclusion, the quality and characteristics of the input data are a significant part of deep learning training, 
and in the case of training using a small number of data, it responds sensitively. The repetition of a structure with 
clear contrast on the US image in one class during transfer education using a model pre-trained with ImageNet 
is expected to have a significant impact on feature extraction. When conducting transfer education using a small 
number of images, it seems crucial to properly filter the US image and strengthen the contrast for the main struc-
tures. In deep learning models, muscles, blood vessels, and nerves that lack contrast in the segmentation of facial 
US images appear to be easily ignored. In the poor-quality US images’ characteristic, the classical deep learning 
model showed better classification performance. Since the analysis through LIME is limited to local analysis, 
it was difficult to compare models with little performance difference. For detailed performance comparison, 
a method that can perform global analyses is required. The results of this study can be used as reference data 
for future deep learning research on facial US images and content development (Supplementary Information).

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. All data generated or analyzed during this study are included in this published article.
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