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Machine learning based risk 
prediction for Parkinson’s disease 
with nationwide health screening 
data
You Hyun Park1,7, Jee Hyun Suh2,7, Yong Wook Kim3, Dae Ryong Kang4, Jaeyong Shin5, 
Seung Nam Yang6 & Seo Yeon Yoon6*

Although many studies have been conducted on machine learning (ML) models for Parkinson’s 
disease (PD) prediction using neuroimaging and movement analyses, studies with large population-
based datasets are limited. We aimed to propose PD prediction models using ML algorithms based 
on the National Health Insurance Service-Health Screening datasets. We selected individuals who 
participated in national health-screening programs > 5 times between 2002 and 2015. PD was defined 
based on the ICD-code (G20), and a matched cohort of individuals without PD was selected using 
a 1:1 random sampling method. Various ML algorithms were applied for PD prediction, and the 
performance of the prediction models was compared. Neural networks, gradient boosting machines, 
and random forest algorithms exhibited the best average prediction accuracy (average area under 
the receiver operating characteristic curve (AUC): 0.779, 0.766, and 0.731, respectively) among the 
algorithms validated in this study. The overall model performance metrics were higher in men than in 
women (AUC: 0.742 and 0.729, respectively). The most important factor for predicting PD occurrence 
was body mass index, followed by total cholesterol, glucose, hemoglobin, and blood pressure levels. 
Smoking and alcohol consumption (in men) and socioeconomic status, physical activity, and diabetes 
mellitus (in women) were highly correlated with the occurrence of PD. The proposed health-screening 
dataset-based PD prediction model using ML algorithms is readily applicable, produces validated 
results, and could be a useful option for PD prediction models.

Parkinson’s disease (PD) is a progressive neurological disorder associated with progressive neuronal loss of the 
substantia nigra and other brain structures and is characterized by tremor, bradykinesia, rigidity, and postural 
instability1. PD is an age-related and the second most common neurodegenerative condition. The prevalence 
of PD increases in the aging population, thus increasing the economic burden on the society2–4. The cardinal 
motor symptoms of PD are identified relatively late in the pathological process (i.e., when approximately 50% 
of dopaminergic neurons are lost in the substantia nigra); thus, PD diagnosis is often delayed5,6. Early detection 
or prediction of PD could make early pharmacological and non-pharmacological management possible, which 
could slow its progression. The benefits of early prediction and management of PD would affect not only the 
individual (and their families) but also the wider society and research community.

The diagnosis of PD is commonly based on medical observations and the assessment of clinical signs, such 
as resting tremor, bradykinesia, rigidity, and postural instability7. Recently, machine learning (ML) techniques 
have been increasingly applied in the healthcare sector, including the detection of PD8. For the early detection 
of PD, ML models have been applied to multiple data modalities, including movement, neuroimaging, and voice 
and handwriting patterns9. However, ML studies on PD prediction based on a large population-based dataset 
are scarce10. To our knowledge, there has been only one study on ML-based PD prediction using administrative 
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claims data, and it contained 89,790 patients with PD10. In Korea, all insured adults aged ≥ 40 years are eligible 
for a general health-screening program that is biennially conducted, and the results are stored in the National 
Health Insurance Service-Health Screening (NHIS-healS) database11. Applying ML algorithms for PD prediction 
using the NHIS-healS database could be a cost-effective method because it uses existing data, thus negating the 
effort of new data collection. The NHIS-healS database has a large number of participants and includes vari-
ous factors that could be related to the occurrence of PD, including demographic and anthropometric factors, 
socioeconomic status (SES), and comorbidities.

Lifestyle habits modulate the risk of PD12; however, since lifestyle factors change over time, it would be difficult 
to predict the occurrence of PD using baseline values of lifestyle factors. Therefore, in this study, we used health-
screening data (measured more than five times) and attempted to elucidate how time-varying variables, such 
as lifestyle factors, anthropometric factors, and laboratory data, influence PD occurrence using ML algorithms. 
We aimed to construct data-driven ML models for PD prediction using repeatedly measured health-screening 
data and identified variables associated with PD occurrence stratified by sex. We also attempted to determine 
how the predictive performance of ML algorithms changed according to various factors, including demographic 
and anthropometric factors, SES, and comorbidities.

Results
Participant characteristics.  Table  1 presents the demographic and medical characteristics of the PD 
group at the time of diagnosis and those of the comparison group at the final follow-up. The follow-up duration 
of the PD group was 3783.32 ± 615.29 days and that of the comparison group was 4602.66 ± 356.57 days. There 
were no significant differences in age between the two groups, indicating that age-matching was performed 
appropriately. There were no significant differences in sex between the two groups.

Patients with PD had a lower proportion of current smokers and were less likely to drink alcohol or perform 
regular physical activity (PA); had lower mean body mass index (BMI), total cholesterol, and hemoglobin (Hb) 
levels; and had a higher prevalence (P < 0.05) of diabetes mellitus, cerebrovascular disease, dementia, irritable 
bowel syndrome, and constipation and lower prevalence (P > 0.05) of chronic pulmonary disease and metastatic 
solid tumors than those without PD.

Predictive model for PD development.  For predictive models, sex, SES (residential area, insurance 
type, and income level), anthropometric data (BMI, systolic and diastolic blood pressure), laboratory data (fast-
ing glucose, total cholesterol, and Hb), lifestyle factors (smoking, alcohol consumption, and PA), and 22 comor-
bidities (such as hypertension, dyslipidemia, and diabetes mellitus) were evaluated (Table 1). For ML algorithms, 
we developed the following three predictive models based on different risk factors for PD development: model 
1 included 26 variables, such as sex, SES, and comorbidities; model 2 included 29 variables, such as sex, SES, 
comorbidities, and lifestyle factors; and model 3 included 35 variables, such as sex, SES, comorbidities, lifestyle 
factors, and anthropometric and laboratory data. The area under the receiver operating characteristic curve 
(AUC) for each model ranged from 0.661 to 0.779 (Table 2). The model performance generally increased as more 
variables were included in the ML algorithms, and most ML algorithms demonstrated the best performance in 
model 3.

In model 3, the comparison of model performances showed that the model using a neural network algorithm 
exhibited the highest AUC (0.779; Fig. 1), followed by the gradient boosting machine (GBM) (AUC = 0.766) 
and random forest (AUC = 0.731). The accuracies of the neural network, GBM, and random forest algorithms 
were 0.687, 0.629, and 0.699, respectively. The performance of the PD prediction models for the algorithms is 
presented in Table 3.

We conducted variable selection using the random forest algorithm with permutation importance (Fig. 2). 
Of the 35 variables considered in this study, BMI was the most important contributing factor to PD predic-
tion, followed by total cholesterol, fasting glucose, Hb, and blood pressure. Lifestyle factors (smoking, alcohol 
consumption, and PA) and SES (income level, insurance type, and residential area) were included in the top 20 
factors. The top 20 comorbidities were cerebrovascular disease, constipation, dementia, irritable bowel syndrome, 
chronic pulmonary disease, dyslipidemia, mild liver disease, and ischemic heart disease.

Subgroup analyses.  We used model 3 to perform a neural network algorithm analysis based on sex, which 
included SES, comorbidities, lifestyle factors, and anthropometric and laboratory data. The AUC and accuracy 
of the predictive model were 0.742 and 0.679 (for men) and 0.729 and 0.661 (for women), respectively. Overall, 
most model performance metrics were higher for men than for women. (Fig. 3, Table 4). Figure 4 displays the 
feature importance for the PD prediction model using the neural network algorithm according to sex. BMI was 
the most important predictive factor for PD development in both sexes, followed by cholesterol and Hb levels. 
There were some differences in feature importance between the sexes. Alcohol consumption and smoking were 
the top factors in men than in women, and smoking was not included in the top 20 predictive factors for women 
in the PD prediction model. In women, PA and DM were more highly ranked in terms of feature importance 
in the PD prediction model than in men. SES, including income level, insurance type, and residential area, was 
included as a predictive factor in both sexes, and each SES factor was more highly ranked in the PD prediction 
model in women than in men.

Discussion
We analyzed the data of 2204 matched patients extracted from the NHIS-healS database: 1102 in the PD group 
and 1102 in the comparison group. We proposed a data-driven ML model that predicts PD occurrence using 
population-based, repeatedly measured health-screening data. The model performance was highest with the 
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Parkinson’s disease 
group Comparison group

P value

(n = 1102) (n = 1102)

n % n %

Age

Mean (SD) 70.91 (8.41) 70.91 (8.41) 1.000

40–49 7 0.64 7 0.64 1.000

50–59 128 11.62 128 11.62

60–69 273 24.77 273 24.77

70–79 531 48.19 531 48.19

80 ≥  163 14.79 163 14.79

Sex

Male 597 54.17 610 55.35 0.5780

Female 505 45.83 492 44.65

Residential area

Urban 426 38.66 413 37.48 0.5685

Rural 676 61.34 689 62.52

Insurance type

NHI, self-employees 257 23.32 294 26.68 0.1788

NHI, employees 825 74.86 791 71.78

Medical aid 20 1.81 17 1.54

Income level

Lowest 156 14.16 174 15.79 0.2091

Low-middle 206 18.69 204 18.51

Middle-high 282 25.59 310 28.13

Highest 458 41.56 414 37.57

Body mass index

Mean (SD) 23.69 (3.14) 24.09 (3.18) 0.0025

 < 18.5 17 1.54 10 0.91 0.0651

18.5–23 395 35.84 340 30.85

23–25 317 28.77 337 30.58

25–30 349 31.67 378 34.30

 ≥ 30 24 2.18 37 3.36

Systolic blood pressure

Mean (SD) 127.7 (15.87) 128.1 (12.24) 0.5756

Diastolic blood pressure

Mean (SD) 76.71 (10.00) 76.85 (9.99) 0.7284

Fasting glucose

Mean (SD) 104.6 (25.68) 103.8 (24.01) 0.4872

Total cholesterol

Mean (SD) 186.0 (39.30) 190.9 (38.13) 0.0035

Hemoglobin

Mean (SD) 13.43 (1.55) 13.65 (1.56) 0.0011

Smoking

No 796 72.43 738 67.21 0.0178

Ex-smoker 212 19.29 239 21.77

Current smoker 91 8.28 121 11.02

Alcohol consumption (per 1 week)

No 380 34.89 230 21.26  < 0.0001

 ≤ 3 685 62.90 852 78.74

 ≥ 4 24 2.20 68

Physical activity (per 1 week)

 ≤ 4 730 66.24 665 60.34 0.0041

 ≥ 5 372 33.76 437 39.66

Hypertension 781 70.87 744 67.51 0.0878

Dyslipidemia 578 52.45 588 53.36 0.6696

Diabetes mellitus 521 47.28 442 40.11 0.0007

Ischemic heart disease 337 30.58 328 29.76 0.6762

Continued
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neural network algorithm, followed by GBM and random forest. The neural network, GBM, and random forest 
algorithms exhibited average AUCs of 0.779, 0.766, and 0.731, respectively. When analyzed separately by sex, 
for PD prediction ability, the AUC of the neural network algorithm was 0.742 and 0.729 in men and women, 
respectively, and the overall model performance metrics were higher in men than in women. The most important 
contributing factor for PD prediction was BMI, followed by total cholesterol, fasting glucose, Hb, and blood 
pressure levels. Smoking and alcohol consumption (in men) and SES, PA, and DM (in women) were highly 
correlated with PD.

The diagnosis of PD is commonly based on medical observations and the assessment of clinical signs, includ-
ing the characterization of a variety of motor symptoms. Although non-motor symptoms of PD precede motor 
symptoms, various non-specific non-motor symptoms can be overlooked, making the diagnosis of PD challeng-
ing at an early stage. PD is one of the most common neurodegenerative diseases and has heterogeneous clinical 
outcomes. Hence, highly accurate predictive models are required for early detection and treatment guidance. 
In a previous study of an ML-based PD prediction model using demographic data and various comorbidities, 
the authors suggested that PD could be identified five years prior to PD diagnosis10. Several ML models exist for 
predicting PD using neuroimaging or video recordings; however, health record data-based prediction models 
for PD are limited. Herein, we used the NHIS-healS database, which covers over 500,000 representatives of the 
Korean population, to construct an ML model for PD prediction. In the database, various factors including 
demographic and lifestyle factors, SES, and comorbidities, which have rarely been considered when estimating 
PD risk, were included. Additionally, the NHIS-healS database contains longitudinal health-screening data, which 
allows the evaluation of the effects of time-varying covariables for PD prediction. Another strength of our study 

Parkinson’s disease 
group Comparison group

P value

(n = 1102) (n = 1102)

n % n %

Osteoporosis 460 41.74 432 39.20 0.2243

Congestive heart failure 172 15.61 188 17.06 0.3566

Peripheral vascular disease 163 14.79 137 12.43 0.1063

Cerebrovascular disease 582 52.81 377 34.21  < .0001

Dementia 253 22.96 133 12.07  < 0.0001

Chronic pulmonary disease 741 67.24 791 71.78 0.0207

Rheumatologic disease 198 17.97 200 18.15 0.9118

Peptic ulcer disease 776 70.42 764 69.33 0.5775

Mild liver disease 459 41.65 499 45.28 0.0857

Hemiplegia or paraplegia 58 5.26 35 3.18 0.0148

Renal disease 30 2.72 45 4.08 0.0780

Moderate or severe liver disease 14 1.27 16 1.45 0.7131

Metastatic solid tumor 15 1.36 31 2.81 0.0171

Ankylosing spondylitis 25 2.27 26 2.36 0.8873

Gout 56 5.08 80 7.26 0.6989

Irritable bowel syndrome 629 57.08 620 56.26 0.0233

Inflammatory bowel disease 19 1.72 19 1.72 1.0000

Constipation 463 42.01 315 28.58  < 0.0001

Table 1.   Characteristics of study participants.

Table 2.   Comparison of area under the receiver operating characteristic curve (AUC) by Machine Learning 
Algorithms in Parkinson’s disease prediction according to different included variables. Model 1: Including sex, 
SES and comorbidities. Model 2: Including sex, SES, comorbidities and lifestyle factors. Model 3: Including 
sex, SES, comorbidities, lifestyle factors, and anthropometric and laboratory data. GBM gradient boosting 
machines, XGBoost eXtreme gradient boosting.

Logistic 
regression Random forest Neural network GBM Decision tree Naïve Bayes XGBoost

Model 1 0.696 (0.646–
0.746)

0.674 (0.614–
0.734)

0.713 (0.660–
0.766)

0.691 (0.642–
0.741)

0.704 (0.651–
0.757)

0.661 (0.624–
0.706)

0.682 (0.629–
0.724)

Model 2 0.702 (0.644–
0.749)

0.691 (0.633–
0.749)

0.767 (0.724–
0.814)

0.764 (0.708–
0.818)

0.713 (0.661–
0.764)

0.674 (0.631–
0.717)

0.710 (0.658–
0.759)

Model 3 0.728 (0.676–
0.777)

0.731 (0.679–
0.783)

0.779 (0.732–
0.826)

0.766 (0.717–
0.815)

0.709 (0.668–
0.759)

0.687 (0.649–
0.725)

0.722 (0.679–
0.765)
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is that we suggested a cost-effective model for PD prediction. Using existing large-scale claims data for the ML 
model instead of collecting new data saved time and obviated additional costs and burdens.

This study shows that our ML algorithm for PD risk could be a useful option for PD prediction. Hall et al. 
investigated a PD prediction model using clinical and demographic data, family history, and genetic information 
and obtained an AUC of 0.7313. According to a study by Mei et al., the average AUC of the ML prediction model 
of a CSF-based study was 0.88. The prediction performances of our ML algorithm for PD risk were similar to the 
results of previous prediction models that used various data such as demographic data, genetic information, labo-
ratory data, and motion analysis8,13,14. Some previous studies have shown superior AUC values than our results; 
however, most of these studies required complex and expensive tests, including motion analysis using wearable 
multimodal sensors and diffuse tensor imaging15. Herein, we created three predictive models to determine how 
the performance of the ML algorithms changed according to various factors included in the analyses. Model 
performance generally increased as more variables were included in the ML algorithms. According to the neural 
network algorithm, the AUCs of models 2 and 3 were 0.767 and 0.779, respectively. Based on our results, even 
though the inclusion of anthropometric and laboratory data could increase prediction accuracy, PD could also 
be predicted with high accuracy using only clinical and lifestyle data that are more easily obtainable.

The most important contributing factor to predicting PD was BMI, followed by total cholesterol, fasting 
glucose levels, and Hb levels. The correction of the risk factors identified in this study needs more attention to 
predict the timing of PD onset accurately. In our study, BMI was the most important factor contributing to the 
occurrence of PD. Weight loss has been suggested to be a frequent non-motor symptom in the prodromal stage 
and during PD progression16,17. Individuals with PD began to lose weight 2–4 years before clinical diagnosis18. 
There was a significant difference in BMI values between the PD and control groups in our study, which is 
consistent with previous studies. Hence, our ML model showed that BMI was an important contributor to PD 
occurrence; therefore, weight loss in elderly people requires more attention, and appropriate nutritional support 
is warranted. The total cholesterol and Hb levels were lower in the PD group than in the control group. Many 

Figure 1.   Receiver operating characteristic curve for the Parkinson’s disease prediction performance of each 
algorithm.

Table 3.   The performance of different Machine Learning Algorithms in Parkinson’s disease prediction 
(Model3). GBM Gradient Boosting Machines, XGBoost eXtreme Gradient Boosting, MCC Matthews 
correlation coefficient, AUC​ area under the receiver operating characteristic curve.

Evaluation index Logistic regression Random forest Neural network GBM Decision tree Naïve Bayes XGBoost

Accuracy 0.663 0.699 0.687 0.629 0.706 0.687 0.721

Sensitivity 0.728 0.683 0.677 0.45 0.807 0.751 0.698

Specificity 0.593 0.714 0.698 0.841 0.602 0.623 0.75

Precision 0.664 0.686 0.695 0.731 0.686 0.672 0.737

Recall 0.728 0.683 0.677 0.451 0.807 0.751 0.698

MCC 0.694 0.685 0.686 0.533 0.741 0.709 0.717

AUC​ 0.728 0.731 0.779 0.766 0.709 0.687 0.722
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Figure 2.   Feature importance for Parkinson’s disease prediction using a neural network algorithm.

Figure 3.   Receiver operating characteristic curve of the Parkinson’s disease prediction performance for the 
neural network algorithm according to sex.

Table 4.   Evaluation of Neural Network Algorithm in Parkinson’s disease prediction stratified by Sex. MCC 
Matthews correlation coefficient, AUC​ area under the receiver operating characteristic curve.

Accuracy Sensitivity Specificity Precision Recall MCC AUC​

Male 0.679 0.727 0.638 0.635 0.727 0.678 0.742

Female 0.661 0.555 0.786 0.743 0.555 0.633 0.729
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studies have inconsistently reported an association between PD and laboratory data, including cholesterol and 
Hb levels. High cholesterol level is related to a lower risk of PD19, whereas statins (used to reduce cholesterol 
levels) are a protective factor against PD20. Recently, a statin-free cohort study in Israel showed that higher total 
cholesterol levels indicated a reduced risk of PD21. A population-based cohort study in Taiwan showed that newly 
diagnosed anemia increased the risk of PD22. In contrast, another nationwide cohort study in Korea found that 
anemia was associated with a lower risk of PD, particularly in patients with moderate-to-severe anemia23. Herein, 

Figure 4.   Feature importance for Parkinson’s disease prediction in the neural network algorithm by sex. (a) 
Male. (b) Female.
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anemia was defined as an Hb level of < 13 g/dL for men and < 12 g/dL for women. Although the Hb level in the 
PD group in our study was slightly lower than that in the comparison group, the exact value was 13.43 g/dL, 
which cannot be defined as anemia. Thus, based on our ML model, low Hb levels could be associated with PD 
risk, and the severity of anemia, PD risk, and related pathophysiology need to be further investigated.

The third contributing factor for PD development was the fasting glucose level. DM is associated with the 
development of PD, motor progression, and cognitive decline after diagnosis24. Additionally, glycemic status 
has been suggested to be associated with PD risk, which is consistent with our findings25. According to our ML-
based prediction model for PD, blood pressure was one of the important contributing factor. Previous studies 
on the association between hypertension and PD risk have reported inconsistent results26. Additionally, only a 
few studies have directly investigated the relationship between blood pressure and PD risk, which showed no 
significant association27,28. Hypertension and PD are prevalent in older adults, and more studies focusing on 
blood pressure and PD risk are needed.

Overall, the performance of the ML model for PD prediction was higher in men than in women. Factors 
affecting the occurrence of PD also differed according to sex. Previous studies have suggested that different 
mechanisms may be involved because the incidence and progression of PD differ according to sex29,30. There 
are clear sex-related differences in the epidemiological and clinical features of this disease. PD affects men twice 
as often as it affects women; however, women have a higher mortality rate and faster disease progression31. For 
PD prediction using the ML model, lifestyle factors, including smoking and alcohol consumption, were more 
strongly related to PD risk in men, and DM, PA (related to metabolic syndrome), and SES were more strongly 
related to PD risk in women. However, the association between SES, including income level, insurance type, resi-
dential area, and PD risk, has rarely been investigated. SES has a significant relationship with healthcare-seeking 
behaviors. Additionally, a previous study showed that the duration from symptom onset to movement disorder 
specialist visit was longer among women than in men32, which could partly explain the different associations 
between SES and PD diagnosis according to sex. Both genetic and environmental factors could affect the differ-
ences related to PD according to sex, and future studies on the pathophysiological mechanisms of sex-related 
differences in PD are warranted.

Limitations
This study had several limitations. First, it was conducted in a population of the same race. Since the prevalence 
of PD differs according to race, future studies focusing on ML models for PD prediction in different races are 
warranted to generalize our results. Second, there may have been a selection bias. We only included individuals 
with PD who underwent more than five health screenings before PD diagnosis. Thus, it is possible that individuals 
with PD whose disability level was relatively mild or who had healthcare-seeking behaviors were enrolled in the 
analysis33,34. Third, a recall bias is possible. We collected data on smoking, alcohol consumption, and PA from self-
reported questionnaires. Fourth, the operational definition of PD was based on the ICD-10 codes. This study used 
nationwide claims data; thus, clinical information, including motor symptoms or PD subtypes, was unobtainable. 
Instead, we only included individuals with a PD diagnosis of more than three times and excluded individuals 
with a combined diagnosis of secondary parkinsonism or atypical parkinsonism to increase diagnostic validity.

Methods
Data source.  Korea has maintained a nationwide health insurance system since 1963 under the Korean 
NHIS, and nearly all data in the health system have been centralized in large databases. This data includes a 
unique anonymous number for each patient and summarizes age, sex, type of insurance, a list of diagnoses 
according to the International Classification of Diseases, Tenth Revision (ICD-10), medical costs claimed, and 
prescribed drugs. The NHIS provides a biannual national health-screening program (NHSP) without any cost 
to all beneficiaries aged ≥ 40 years. The NHSP includes a self-reported questionnaire on health behavior, medi-
cal history, anthropometric measurements, and laboratory tests for Hb, fasting glucose, and cholesterol levels. 
This study used the NHIS-healS database, with approximately 510,000 people randomly selected from among 
those aged ≥ 40 years in 2002 and 2003. This study was approved by the Institutional Review Board of the Korea 
University Guro Hospital, which waived the requirement for informed consent.

Study population.  From the data of 512,836 Koreans in the health check-up database, we selected data 
from individuals who had participated in the NHSPs more than five times between 2002 and 2015. To define 
a diagnosis of PD, we first selected patients with a primary or secondary diagnosis of ICD-10 code G20. In 
2004, the Korean government started operating a registration program for rare intractable diseases including 
PD. Thus, individuals diagnosed with PD between 2004 and 2005 were excluded to ensure that the PD group 
included only individuals with new PD episodes. To ensure diagnostic validity, we included only those individu-
als who visited the clinics more than three times with a diagnosis of PD and excluded those with a combined 
diagnosis of secondary parkinsonism or atypical parkinsonism (ICD-10 code: G21–23). Individuals without a 
PD diagnosis who took part in the NHSP more than five times before the last healthcare visit date were included 
as a comparison cohort, and the PD group and the comparison group were subjected to 1:1 age matching. 
Finally, 2204 individual datasets (1102 in the PD and 1102 in the comparison groups) were used to train and 
validate the ML algorithms of the prediction model (Supplemental Material 1).

Health‑screening data.  All participants in the NHSP were required to fill out self-report questionnaires, 
which included questions on smoking status (never, ex-smoker, and current smoker), alcohol consumption, and 
PA. Current smokers were defined as those who had smoked ≥ 100 cigarettes in their lifetime. Alcohol consump-
tion was categorized based on weekly frequency of drinking (none, ≤ 3 times/week, or ≥ 4 times/week). PA was 
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categorized based on the weekly frequency of exercise (≤ 4 or ≥ 5 times/week). Anthropometric data, including 
height, weight, and blood pressure (systolic and diastolic), were assessed. BMI was calculated as the weight 
divided by height squared (kg/m2) and categorized into five groups according to the Asia–Pacific BMI criteria 
established by the Western Pacific Region of the World Health Organization: < 18.5, 18.5–23.0, 23–25, 25–30, 
and ≥ 30 kg/m2. Venous samples were drawn after an overnight fast to determine fasting plasma glucose, total 
cholesterol, and Hb levels. Regarding the results from more than five NHSPs, the average for continuous vari-
ables and the mode for categorical variables were set as representative values.

Other variables.  Age was categorized into five groups: 40–49, 50–59, 60–69, 70–79, and ≥ 80 years. Residen-
tial areas were categorized into urban and rural. NHI premium was used as a proxy measure of income because 
it is proportional to monthly income, including earnings and capital gains. The income deciles of enrolled indi-
viduals were categorized into four groups (Q1, Q2, Q3, and Q4, indicating all medical aid enrollees + 0–20, 
21–50, 51–80, and 81–100 percentile of NHI enrollees, respectively). Comorbidity was defined using the Charl-
son Comorbidity Index, the validity of which has been confirmed, and other diseases, which are prevalent or 
known to be related to PD development, including dyslipidemia, osteoporosis, ankylosing spondylitis, gout, 
irritable bowel syndrome, inflammatory bowel disease, and constipation, were extracted using their ICD-10 
codes21,28,35,36.

Statistical analyses.  Baseline clinical characteristics of the PD and comparison groups were compared 
using the Student’s t-test for continuous variables and the chi-squared test for categorical variables. All statistical 
analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) with the statistical signifi-
cance level set at P < 0.05.

We built three predictive models to elucidate which factors could increase the performance of ML algorithms, 
and variables included in the models were age, sex, SES, BMI, blood pressure, fasting glucose, total cholesterol, 
Hb, smoking, alcohol consumption, PA, and comorbidities. Seven ML algorithms were implemented: logistic 
regression, random forest, neural network, GBM, decision tree, naïve Bayes, and eXtremeXGBoost. The training 
set was randomly partitioned into five subsets of almost equal size for five-fold cross validation. One partition 
was selected as the validation set, and the remaining partitions were used to train the predictive models. For 
feature selection, permutation importance was calculated by performing a random forest analysis, which is 
more appropriate for nonlinear classifiers37. We performed hyperparameter tuning, a process that adjusts an 
algorithm to improve the accuracy of the prediction model. Model performance metrics were measured with 
the test dataset using the AUC, accuracy, sensitivity, specificity, recall, and MCC38,39. The ML algorithms used 
in our study were developed using R version 3.3.3, including the packages caret40, neural network41, random 
forest42, e107143, rpart44, GBM45, XGBoost46, ROCR47, and pROC48.

Data availability
The corresponding authors take responsibility for the integrity of the data and the accuracy of the data analysis. 
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors on reasonable request.
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