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Introduction: In this study, we developed a simplified artificial intelligence

to support the clinical decision-making of medical personnel in a resource-

limited setting.

Methods: We selected seven infectious disease categories that impose a heavy

disease burden in the central Vietnam region: mosquito-borne disease, acute

gastroenteritis, respiratory tract infection, pulmonary tuberculosis, sepsis,

primary nervous system infection, and viral hepatitis. We developed a set of

questionnaires to collect information on the current symptoms and history of

patients suspected to have infectious diseases. We used data collected from

1,129 patients to develop and test a diagnostic model. We used XGBoost,

LightGBM, and CatBoost algorithms to create artificial intelligence for clinical

decision support. We used a 4-fold cross-validation method to validate the

artificial intelligence model. After 4-fold cross-validation, we tested artificial

intelligence models on a separate test dataset and estimated diagnostic

accuracy for each model.

Results: We recruited 1,129 patients for final analyses. Artificial intelligence

developed by the CatBoost algorithm showed the best performance, with

87.61% accuracy and an F1-score of 87.71. The F1-score of the CatBoost

model by disease entity ranged from 0.80 to 0.97. Diagnostic accuracy was

the lowest for sepsis and the highest for central nervous system infection.

Conclusion: Simplified artificial intelligence could be helpful in clinical

decision support in settings with limited resources.
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Introduction

Although there have been successes in decreasing the

disease burden of infectious diseases, there has been a dramatic

emergence of infectious diseases, and they remain significant

public health challenges (1). Southeast Asia is one of the ‘hot

spots’ for infectious diseases, and it has experienced a rapid surge

of infectious diseases and emerging infectious diseases. This

rapid increase in disease burden results from multiple reasons,

including environmental factors (2, 3), changes in biodiversity

(4), and economic factors (5). Several infectious diseases such

as dengue fever (6), malaria (7), and central nervous system

infection (8) are imposing a heavy disease burden on Southeast

Asia as their prevalence grows.

Artificial intelligence (AI) is increasingly being used in

fields of medical practices. Particularly, AI was proven to help

assist medical decision-making. For example, AIs for diagnosing

respiratory diseases (9, 10), cardiovascular diseases (11), and

infectious diseases (12, 13) have been developed and used

for diagnostic assistance. Particularly for infectious disease

management, AIs to support clinical decision-making for

managing emerging infectious diseases, including tuberculosis

(14, 15), vector-borne diseases (16, 17) and COVID-19 (18,

19) had been developed. Such previous models have achieved

high diagnostic accuracy, proving their effectiveness in medical

decision-making for infectious diseases (16, 20, 21).

Previously, regression-based classifiers had been widely used

for developing prediction model for clinical decision making, as

it is highly intuitive and often one of the models with highest

predictability for dichotomous outcome (22–24). However, in

order to apply logistic regression model, data must conform

statistical assumptions such as avoidance of multicollinearity of

independent variables and independence of observation (25).

Machine learning classifiers can avoid this issue and can be

applied to wider range of unstructured dataset, and therefore

have been implemented to develop and improve artificial models

for disease (20, 26). A number of machine learning methods,

including artificial neural networks (27), XGBoost (28), and

support vector machine methods (29, 30) are being used for

diagnostic assistance and clinical decision making.

Up to this date, however, little has been documented on

applying AI for public health in resource-limited settings of low-

and middle-income countries (LMICs) (31). Although there are

vigorous activities on developing and using AI for public health

in resource-limited settings (32–34), its application is still at

its elementary level. Several difficulties in the application of

AIs, such as challenges in building and maintenance of expert

systems (35), limitations in IT infrastructure (36), differences

in socioeconomic contexts (36, 37) and lack of personnel to

supervise the procedure of development and application (38)

hinder effective use of AIs for public health in the resource-

limited setting of LMICs. To increase the availability and

accessibility of AI in LMICs, AI needs to be tailored to the

resource-limited settings and fit for local sociomedical contexts

and infrastructure needs (31, 39).

Our objective of this research was to develop a simplified

version of AI that we could effectively apply in resource-limited

settings. We conducted a pilot study collaborating with local

authorities and healthcare institutions in Da Nang, Vietnam.We

tried to develop an AI for diagnosing infectious diseases that

impose a heavy disease burden in the Central region of Vietnam.

Materials and methods

Developing questionnaire

We selected seven infectious disease categories that were

most common in central Vietnam or imposed a heavy

disease burden on central Vietnam: mosquito-borne diseases,

acute gastroenteritis, respiratory tract infection including

coronavirus disease (COVID-19), pulmonary tuberculosis,

sepsis, central nervous system (CNS) infection, and viral

hepatitis. Classification of disease entity was done following

ICD-10 diagnostic codes (Supplemental material 1). We used

the Delphi method to develop questionnaires for patient

assessment and history taking. A preventive medicine specialist

in English initially created a questionnaire. Then, it was reviewed

by a Korean preventive medicine specialist, a Korean public

health specialist, two Vietnamese internal medicine specialists, a

Vietnamese public health specialist, and an English-Vietnamese

interpreter. After review and feedback, a professional translator

translated the questionnaire set into Vietnamese. We have

attached the final questionnaire as Supplemental material 2.

Before data collection, we conducted two rounds of a pilot

study to receive feedback and edit questionnaires: once on

5 Vietnamese individuals residing in Korea and once on 10

Vietnamese recruited from Da Nang.

After the pilot study, a Korean preventivemedicine specialist

developed an instruction manual for research personnel, which

was used to educate physicians and nurses at the Department

of Tropical Medicine, Da Nang Hospital, before conducting the

survey. In addition, a survey application was developed and

installed to tablet PCs used for data collection.

Study participants

We recruited patients who had been diagnosed with either

of the target disease entities. About 160 participants for each

disease category were recruited to ensure the model’s predictive

power. Due to decreased outpatient visits due to the COVID-19

outbreak in Vietnam, we used a two-track recruitment strategy.

Patients admitted to the department of tropical medicine,

Da Nang Hospital, Da Nang Hospital, and Da Nang Lung

Hospital from November 8th, 2021, to January 1st, 2022, were

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1023098
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2022.1023098

recruited and responded to the survey. Simultaneously, research

personnel conducted a phone survey on patients who had been

diagnosed with target diseases. We recruited a total number

of 1,131 patients either prospectively or retrospectively. We

excluded two participants who were diagnosed with other

conditions were excluded from the final analysis.

Data collection and management

All participants then underwent an interview with a

developed questionnaire and physical examination. Data was

collected using the application on a tablet PC, then directly

transmitted to the server. We measured systolic and diastolic

blood pressure with a standardized sphygmomanometer after

5min of rest. In addition, other vital signs such as pulse

rate, respiratory rate, and body temperature were measured by

physicians and nurses at the Department of Tropical Medicine,

Da Nang Hospital. For retrospectively recruited participants, we

collected records on electronic medical records (EMRs) of Da

Nang Hospital, and we did an additional telephone survey to

collect data. After the survey, the physician gave a final diagnosis

to participants and was compiled with its corresponding ICD-10

codes. Following ICD-10 codes and diagnosis, participants were

categorized into seven disease entity subgroups.

Development of artificial intelligence (AI)
for disease classification

Survey results were processed to a dataset with 211

independent variables. We used three different algorithms

(XGBoost, LightGBM, CatBoost) to develop AI for prediction

and compared the predictive accuracy of the three models.

XGBoost, one of the Gradient Boosting Models (GBM), is

an ensemble model of decision trees (40). By implementing

parallel processing and CART (Classification and Regression

Tree) model-based regression, XGBoost works extremely faster

compared to the previous gradient models and efficiently

handles overfitting problem of GBM (40). LightGBM utilizes

gradient-based one-side sampling (GOSS) and Exclusive Feature

Bundling (EFB), adopting the leaf-wise tree grwoth algorithm

unlike level-wise growth algorithms commonly used in previous

GBMs (41). LightGBM has considerably lower false predictions

due to application of leaf-wise tree growth, and it has

faster training speed and lesser memory usage compared to

conventional GBMs such as XGBoost by efficiently reducing

the number of data instances and features (41). However,

due to such characteristic, insufficient sample size may cause

overfitting in LightGBM. CatBoost builds the base model with

the residual error of independently sampled sub-dataset. The

model is continuously updated by taking the residual error with

the remaining dataset, solving the problem of prediction-shift

FIGURE 1

Architecture of artificial intelligence model construction.

(42). In addition, CatBoost creates clusters for each category

during training, efficiently reflecting the categorical features

to the model algorithm (42). The implementation of ordered

boosting algorithm and ordered target statistics (TS) accelerates

the training process, increases predictability, and reduces the

possibility of overfitting (42). Moreover, the base parameters are

already optimized in CatBoost, which minimizes the need of

hyperparameter tuning (42).

We pre-processed the raw dataset into numerical dataset.

For numeric variables, wemodified the value to “– 1” for missing

values and did not modify other responses before including

them into the final dataset. For non-numeric features, we

modified the value to “1” if the answer exists and to “– 1” if not.

We did not consider the specific response of the question, as the

presence of the feature was more important in predicting results.

The preprocessed dataset was divided into a training set,

validation set, and test set. First, we divided the preprocessed

data into a training set and a test set with a ratio of 9:1.

Although there is no profound theoretical background on

optimal training/test split ratio, a recent study had suggested

that optimal training/test ratio with p features is approximately
√
p:1 (43). Since our study has 211 features, the optimal ratio

would have been ∼14.51:1, but we followed the precedent of

previous studies on AI development with clinical purposes

(44–46). Then we separated the training set into four groups

for 4-fold cross-validation, rotationally using each set for

validation and the rest for training (Figure 1). We conducted

9:1 splitting to secure the number of cases used for training

and cross-validation. Finally, we modified the value of selected

hyperparameters for each algorithm to optimize the model

performance. The optimal value of each hyperparameter is

shown in Supplemental material 3.

Feature importance, which is defined as ‘the increase in

the model’s prediction error after permuting the feature, was
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TABLE 1 Characteristics of study participants by disease entity.

1. Mosquito-

borne disease

(N = 163)

2. Acute infectious

gastroenteritis

(N = 162)

3. Respiratory

tract infection

(N = 158)

4. Pulmonary

tuberculosis

(N = 161)

5. Sepsis

(N = 161)

6. CNS

infection

(N = 162)

7. Viral

hepatitis

(N = 162)

Total

(N = 1,129)

Age, mean (SD) 36.12 (14.73) 45.8 (19.9) 48.86 (19.13) 46.40 (14.85) 56.02 (16.47) 44.05 (16.99) 44.46 (16.25) 45.96 (17.88)

Sex, N (%)

Male 92 (56.44) 70 (43.21) 77 (48.73) 123 (76.40) 95 (59.01) 100 (61.73) 112 (69.14) 669 (59.26)

Female 71 (45.56) 92 (56.79) 81 (51.27) 38 (23.60) 66 (40.99) 62 (0.13) 50 (30.86) 461 (40.74)

Height, mean (SD) 162.01 (10.65) 159.78 (9.17) 159.99 (8.05) 162.81 (6.31) 159.59 (7.50) 162.20 (7.23) 163.04 (6.91) 161.36 (8.21)

Body weight, mean (SD) 58.38 (9.73) 56.87 (11.05) 56.96 (10.42) 52.78 (9.32) 55.73 (8.94) 56.76 (8.8) 57.24 (8.91) 56.38 (9.76)

BMI, mean (SD) 22.7 (9.13) 22.17 (3.18) 22.18 (3.3) 19.73 (3.37) 21.83 (2.84) 21.52 (2.64) 21.48 (2.62) 21.65 (4.53)

Waist circumference, mean (SD) 78.11 (10.61) 73.15 (9.39) 72.2 (8.99) 73.14 (10.23) 74.18 (11.73) 77.23 (9.74) 77.65 (11.41) 75.1 (10.60)

Systolic blood pressure, mean (SD) 113.68 (10.27) 117.72 (15.84) 119.81 (15.28) 116.70 (14.27) 113.51 (19.13) 118.81 (13.37) 116.53 (11.97) 116.67 (14.69)

Diastolic blood pressure, mean (SD) 70 (9.07) 71.6 (9.42) 73.23 (8.73) 71.77 (9.4) 69.38 (11.83) 73.26 (8.59) 70.56 (7.72) 71.41 (9.43)

Pulse rate, mean (SD) 80.85 (5.72) 81.02 (9.83) 87.63 (13.7) 83.81 (8.77) 88.85 (12.25) 84.36 (8.92) 79.09 (5.83) 83.65 (10.23)

Respiratory rate, mean (SD) 19.99 (0.73) 20.35 (3.24) 19.58 (1.83) 20.53 (1.14) 21.42 (5.73) 20.73 (4.01) 20.69 (3.41) 20.47 (3.34)

Current symptoms, N (%) 0(0) 0(0) 0(0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Systematic

General weakness 14 (8.59) 3 (1.85) 21 (13.29) 61 (37.89) 27 (16.77) 26 (16.15) 10 (6.17) 162 (14.35)

Fever 159 (97.55) 65 (40.12) 56 (35.44) 77 (47.83) 135 (83.85) 152 (93.83) 8 (4.94) 652 (57.75)

Chill 126 (77.3) 30 (18.52) 31 (19.62) 61 (37.89) 76 (47.2) 122 (75.31) 1 (0.62) 447 (39.59)

Fatigue 158 (96.93) 83 (51.23) 96 (60.76) 109 (67.7) 141 (87.58) 152 (93.83) 128 (79.01) 867 (76.79)

Loss of appetite 43 (26.38) 7 (4.32) 45 (28.48) 6 (3.73) 41 (25.47) 19 (11.73) 13 (8.02) 174 (15.41)

Change in body weight 12 (7.36) 4 (2.47) 8 (5.06) 87 (54.04) 14 (8.70) 9 (5.56) 22 (13.58) 156 (13.82)

Pain 59 (36.19) 1 (0.62) 3 (1.90) 5 (3.11) 10 (6.21) 10 (6.17) 1 (0.62) 89 (7.88)

HEENT

Headache 156 (95.71) 29 (17.90) 23 (14.56) 9 (5.59) 36 (22.36) 154 (95.06) 3 (1.85) 410 (36.32)

Neck stiffness 1 (0.61) 0 (0) 0 (0) 1 (0.62) 3 (1.86) 87 (53.70) 0 (0) 92 (8.15)

Dizziness 48 (29.45) 11 (6.79) 10 (6.33) 4 (2.48) 11 (6.83) 70 (43.21) 3 (1.85) 157 (13.91)

Vertigo 47 (28.83) 16 (9.88) 11 (6.96) 5 (3.11) 18 (11.18) 40 (24.69) 5 (3.09) 142 (12.58)

Sore throat 14 (8.59) 2 (1.23) 42 (26.58) 6 (3.73) 2 (1.24) 4 (2.47) 0 (0) 70 (6.20)

Rhinorrhea 3 (1.84) 3 (1.85) 16 (10.13) 1 (0.62) 0 (0) 5 (3.09) 0 (0) 28 (2.48)

Nasal stiffness 3 (1.84) 2 (1.23) 31 (19.62) 5 (3.11) 1 (0.62) 2 (1.23) 0 (0) 44 (3.90)

Nasal bleeding 2 (1.23) 0 (0) 0 (0) 0 (0) 1 (0.62) 2 (1.23) 0 (0) 5 (0.44)

Respiratory

(Continued)
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TABLE 1 (Continued)

1. Mosquito-

borne disease

(N = 163)

2. Acute infectious

gastroenteritis

(N = 162)

3. Respiratory

tract infection

(N = 158)

4. Pulmonary

tuberculosis

(N = 161)

5. Sepsis

(N = 161)

6. CNS

infection

(N = 162)

7. Viral

hepatitis

(N = 162)

Total

(N = 1,129)

Cough 22 (13.5) 10 (6.17) 105 (66.46) 135 (83.85) 29(18.01) 12 (7.41) 2 (1.23) 315 (27.90)

Sneeze 6 (3.68) 1 (0.62) 11 (6.96) 1 (0.62) 1(0.62) 1 (0.62) 0 (0) 21 (1.86)

Sputum 4 (2.45) 2 (1.23) 44 (27.85) 91 (56.52) 17(10.56) 4 (2.47) 0 (0) 162 (14.35)

Hemoptysis 0 (0) 0 (0) 5 (3.16) 35 (21.74) 1 (0.62) 0 (0) 0 (0) 41 (3.63)

Dyspnea 8 (4.91) 12 (7.41) 34 (21.52) 58 (36.02) 39 (24.22) 5 (3.09) 6 (3.70) 162 (14.35)

Dyspnea on exertion 2 (1.23) 4 (2.47) 10 (6.33) 56 (34.78) 23 (14.29) 3 (1.85) 6 (3.70) 104 (9.21)

Orthopnea 4 (2.45) 4 (2.47) 10 (6.33) 40 (24.84) 23 (14.29) 4 (2.47) 6 (3.70) 91 (8.06)

Cardiovascular

Chest discomfort or pain 8 (4.91) 11 (6.79) 14 (8.86) 62 (38.51) 13 (8.07) 0 (0) 9 (5.56) 117 (10.36)

Radiating pain 2 (1.23) 0 (0) 3 (1.9) 7 (4.35) 1 (0.62) 0 (0) 0(0) 13 (1.15)

Palpitation 6 (3.68) 2 (1.23) 0 (0) 1 (0.62) 2 (1.24) 0 (0) 1 (0.62) 12 (1.06)

Coldness in limbs 15 (9.20) 1 (0.62) 3 (1.90) 1 (0.62) 2 (1.24) 0 (0) 0(0) 22 (1.95)

Cyanosis 4 (2.45) 0 (0) 5 (3.16) 0 (0) 1 (0.62) 0 (0) 0(0) 10 (0.89)

Gastrointestinal

Anorexia 119 (73.01) 23 (14.2) 36 (22.78) 75 (46.58) 75 (46.58) 127 (78.40) 112 (69.14) 567 (50.22)

Nausea 96 (58.90) 109 (67.28) 14 (8.86) 4 (2.48) 62 (38.51) 112 (73.46) 28 (17.28) 432 (38.26)

Vomiting 34 (20.86) 94 (58.02) 7 (4.43) 1 (0.62) 39 (24.22) 92 (56.79) 12 (3.91) 279 (24.71)

Diarrhea 32 (19.63) 150 (92.59) 5 (3.16) 6 (3.73) 46 (28.57) 5 (3.09) 10 (6.17) 254 (22.50)

Constipation 1 (0.61) 3 (1.85) 2 (1.27) 2 (1.24) 6 (3.73) 35 (21.60) 5 (3.09) 54 (4.78)

Abdominal pain 31 (19.02) 158 (97.53) 12 (7.59) 8 (4.97) 70 (43.48) 16 (9.87) 61 (37.65) 356 (31.53)

Hematemesis 1 (0.61) 1 (0.62) 0 (0) 1 (0.62) 1 (0.62) 0 (0) 3 (1.85) 7 (0.62)

Melena 2 (1.23) 1 (0.62) 0 (0) 2 (1.24) 3 (1.86) 0 (0) 4 (2.47) 12 (1.06)

Hematochezia 0 (0) 1 (0.62) 0 (0) 0 (0) 1 (0.62) 0 (0) 0 (0) 2 (0.18)

Jaundice 1 (0.61) 1 (0.62) 0 (0) 0 (0) 10 (6.21) 0 (0) 59 (36.42) 71 (6.29)

Ascites 0 (0) 0 (0) 0 (0) 0 (0) 7 (4.35) 0 (0) 13 (8.02) 20 (1.77)

Genitourinary

Dysuria 2 (1.23) 0 (0) 5 (3.16) 3 (1.86) 11 (6.83) 7 (4.35) 1 (0.62) 29 (2.57)

Gross hematuria 0 (0) 0 (0) 0 (0) 1 (0.62) 4 (2.48) 0 (0) 0 (0) 5 (0.44)

Urgency 1 (0.61) 0 (0) 0 (0) 2 (1.24) 6 (3.73) 10 (6.17) 1 (0.62) 20 (1.77)

Frequency 6 (3.68) 3 (1.85) 1 (0.63) 3 (1.86) 10 (6.21) 3 (1.85) 1 (0.62) 27 (2.39)

(Continued)
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TABLE 1 (Continued)

1. Mosquito-

borne disease

(N = 163)

2. Acute infectious

gastroenteritis

(N = 162)

3. Respiratory

tract infection

(N = 158)

4. Pulmonary

tuberculosis

(N = 161)

5. Sepsis

(N = 161)

6. CNS

infection

(N = 162)

7. Viral

hepatitis

(N = 162)

Total

(N = 1,129)

Hesitancy 0 (0) 0 (0) 1 (0.63) 0 (0) 2 (1.24) 18(1.43) 0 (0) 21 (1.86)

Flank pain 8 (4.91) 1 (0.62) 0 (0) 4 (2.48) 15 (9.32) 2(0.16) 1 (0.62) 31 (2.75)

Edema 0 (0) 5 (3.09) 1 (0.63) 2 (1.24) 7 (4.35) 0 (0) 11 (6.79) 26 (2.30)

Skin & musculoskeletal 145 (88.96) 14 (8.64) 45 (28.48) 15 (9.32) 48 (29.81) 13(8.02) 0 (0) 280 (24.80)

Myalgia 66 (40.49) 6 (3.7) 26 (16.46) 6 (3.73) 17 (10.56) 9 (5.56) 0 (0) 131(11.58)

Joint pain 11 (6.75) 8 (4.94) 16 (10.13) 8 (4.97) 18 (11.18) 3 (1.85) 0 (0) 65(5.75)

Joint stiffness 0 (0) 0 (0) 2 (1.27) 0 (0) 4 (2.48) 0 (0) 0 (0) 6(0.53)

Rash 30 (18.4) 0 (0) 0 (0) 1 (0.62) 2 (1.24) 1 (0.62) 0 (0) 34(3.01)

Heat 38 (23.31) 0 (0) 1 (0.63) 0 (0) 7 (4.35) 0 (0) 0 (0) 47(4.16)

Neurologic

Altered consciousness 1 (0.61) 2 (1.23) 4 (2.53) 0 (0) 31 (19.25) 78 (48.15) 0 (0) 117(10.34)

Altered orientation 1 (0.61) 0 (0) 2 (1.27) 1 (0.62) 19 (11.8) 69 (42.59) 0 (0) 92(8.13)

Altered cognition 1 (0.61) 1 (0.62) 3 (1.90) 0 (0) 27 (16.77) 68 (41.98) 0 (0) 100(8.84)

Altered sensory function 2 (1.23) 0 (0) 2 (1.27) 1 (0.62) 2 (1.24) 8 (4.94) 0 (0) 15(1.33)

Altered motor function 3 (1.84) 4 (2.47) 7 (4.43) 2 (1.24) 13 (8.07) 19 (11.73) 0 (0) 48(4.24)

Tremor 19 (11.66) 2 (1.23) 3 (1.90) 1 (0.62) 4 (2.48) 7 (4.32) 0 (0) 36(3.18)

Spasm 1 (0.61) 0 (0) 1 (0.63) 0 (0) 1 (0.62) 25 (15.43) 0 (0) 28(2.48)

Plegia 0 (0) 0 (0) 1 (0.63) 0 (0) 2 (1.24) 15 (9.26) 0 (0) 18(1.59)

Paresis 0 (0) 1 (0.62) 0 (0) 0 (0) 0 (0) 10 (6.17) 0 (0) 11(0.97)

Gait disturbance 2 (1.23) 2 (1.23) 4 (2.53) 0 (0) 4 (2.48) 12 (7.41) 0 (0) 24(2.12)

Aphasia 0 (0) 0 (0) 2 (1.27) 0 (0) 3 (1.86) 4 (2.47) 0 (0) 9(0.8)
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calculated for each variable included in the prediction model

(47, 48). Global diagnostic accuracy and F1-score weremeasured

to evaluate the developed prediction model. Global diagnostic

accuracy was defined as the proportion of correct classification

(Equation 1). Precision is defined as the proportion of true

positive among samples classified as true (Equation 2). Recall,

or sensitivity is defined as the proportion of true positive among

positive samples (Equation 3). F1-score, which is a harmonic

mean of precision and recall, shows the model performance of

the developed model (Equation 4). After the global test for AI

performance, we calculated performance parameters (precision,

recall, specificity, and F1-score) by disease category.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall (Sensitivity) =
TP

TP + FN
(3)

F1− score = 2 ×
Precision× Recall

Precision+ Recall
(4)

Specificity =
TN

TN + FP
(5)

Multi-comparison table for each classifier was constructed

for further comparison of model performance.

Ethics approval

The institutional review board of Da Nang Hospital, Da

Nang, Vietnam reviewed and approved the study protocol

(Supplemental material 4). In addition, we acquired informed

consent from all participants of this study. All procedures were

contributing to this work to comply with the ethical standards

of the relevant national and institutional committees on human

experimentation and with the 1975 Declaration of Helsinki,

which was revised in 2008.

Results

Participant characteristics

We recruited a total number of 1,129 participants for the

survey. The number of patients diagnosed with mosquito-borne

diseases, acute gastroenteritis, viral hepatitis, respiratory tract

infection, pulmonary tuberculosis, sepsis, and CNS infection

was 163 (14.44%), 162 (14.35%), 162 (14.35%), 158 (13.99%),

161 (14.26%), 161(14.26%) and 162 (14.44%), respectively.

The mean age of participants was 45.96 years (standard

deviation [SD] 17.88) at the point of diagnosis. Six hundred

sixty-nine patients (59.26%) were men, and 460 (40.74%)

were female.

FIGURE 2

Feature importance of variables included in artificial intelligence model.
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There were significant differences in patterns of symptoms

by disease entity. In mosquito-borne disease, fever/chill, fatigue,

headache, anorexia, diarrhea, and myalgia were common.

Gastrointestinal tract symptoms such as diarrhea, constipation,

and abdominal pain were common in acute gastroenteritis.

Systematic symptoms such as fever/chill and fatigue were the

most common in sepsis and viral hepatitis, with no other

prominent symptoms present (Table 1).

Performance comparison of developed
artificial intelligence

Figure 2 presents the top 20 influential features of the global

model with feature importance values. The X-axis indicates

the relative feature importance, and the y-axis represents the

names of the feature. Headache and its duration were the most

influential variables, followed by cough, fever, and pulse rate.

Feature importance of variables by disease entity is presented in

Supplemental material 5.

Table 2 shows the global diagnostic accuracy and F1-

score of developed AI models. The model developed by

the CatBoost algorithm showed the highest global diagnostic

accuracy of 87.61%, and the model developed by the XGBoost

algorithm showed the lowest global accuracy of 83.18%. We

conducted 4-fold cross-validation on the model developed by

the CatBoost algorithm, the model with the highest global

diagnostic accuracy. Results from 4-fold cross validation also

showed that diagnostic accuracy was the highest in CatBoost

classifier: mean diagnostic accuracy of XGBoost, LightGBM,

and CatBoost classifier were 0.832 (standard deviation [SD]

0.019), 0.839 (SD 0.009), and 0.850 (SD 0.019), respectively.

Mean F1-score of XGBoost, LightGBM, and CatBoost classifier

were 0.833 (SD 0.018), 0.840 (SD 0.009), and 0.850 (SD 0.019),

respectively.

Multi-comparison table for each classifier showed

that performance of CatBoost algorithm was relatively

higher compared to XGBoost and LightGBM. False

prediction rates of XGBoost, LightGBM and CatBoost

classifier were 16.81, 16.81, and 11.76, respectively.

(Table 3) The result from multi-comparison table is

concurrent with Table 2, which shows higher global

accuracy in CatBoost classifier compared to other

two classifiers.

Parameters on AI performance by disease category

are shown below in Table 4. Precision and recall were the

TABLE 2 Diagnostic accuracy and F1-score of AI models developed under di�erent algorithm.

Precision Recall Specificity F1-score

XGBoost: Global accuracy= 83.18%, Global F1-score= 83.26

Mosquito-borne disease 0.81 0.76 0.96 0.79

Acute gastroenteritis 0.87 0.81 0.97 0.84

Respiratory tract infection including COVID-19 0.86 0.75 0.97 0.80

Pulmonary tuberculosis 0.83 0.94 0.96 0.88

Sepsis 0.70 0.88 0.93 0.78

Central nervous system infection 0.93 0.81 0.98 0.87

Viral hepatitis 0.88 0.88 0.97 0.88

LightGBM: Global accuracy= 82.74%, Global F1-score= 83.33

Mosquito-borne disease 0.81 0.79 0.96 0.79

Acute gastroenteritis 0.87 0.81 0.97 0.84

Respiratory tract infection including COVID-19 0.87 0.81 0.97 0.84

Pulmonary tuberculosis 0.88 0.88 0.97 0.88

Sepsis 0.68 0.81 0.93 0.74

Central nervous system infection 0.88 0.88 0.97 0.88

Viral hepatitis 0.88 0.88 0.97 0.88

CatBoost: Global accuracy= 87.61%, Global F1-score= 87.71

Mosquito-borne disease 0.88 0.88 0.97 0.88

Acute gastroenteritis 0.93 0.88 0.98 0.90

Respiratory tract infection including COVID-19 0.87 0.81 0.97 0.84

Pulmonary tuberculosis 0.87 0.81 0.97 0.84

Sepsis 0.74 0.88 0.94 0.80

Central nervous system infection 1.00 0.94 1.00 0.97

Viral hepatitis 0.88 0.94 0.97 0.91
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TABLE 3 Results from 4-fold cross validation on the model developed

by XGBoost, LightGBM, and CatBoost algorithm.

Accuracy F1-score

XGBoost 0.832 (±0.019) 0.833 (±0.018)

LightGBM 0.839 (±0.009) 0.840 (±0.009)

CatBoost 0.850 (±0.019) 0.850 (±0.019)

TABLE 4 Multi-class confusion matrix.

XGBoost Predicted class

1 2 3 4 5 6 7

1 13 0 1 2 1 0 0

2 0 13 1 0 1 0 1

3 1 0 12 0 2 0 1

4 0 1 0 15 0 0 0

5 1 0 0 0 14 1 0

6 0 1 0 0 2 13 0

7 1 0 0 1 0 0 14

LightGBM Predicted class

1 2 3 4 5 6 7

1 13 0 1 1 2 0 0

2 0 13 0 0 2 0 1

3 1 0 13 1 0 1 0

4 0 1 0 14 1 0 0

5 2 1 0 0 13 0 0

6 0 0 1 0 0 14 1

7 0 0 0 0 1 1 14

CatBoost Predicted class

1 2 3 4 5 6 7

1 15 0 1 0 1 0 0

2 0 14 1 1 0 0 0

3 1 0 13 1 1 0 0

4 0 0 0 13 3 0 0

5 0 1 0 0 14 0 1

6 0 0 0 0 0 15 1

7 1 0 0 0 0 0 15

lowest in the “sepsis” category and the highest in the “CNS

infection” category. On the other hand, precision, recall,

and sensitivity were generally higher in AI developed

by the CatBoost algorithm, with exceptions such as

the “mosquito-borne disease” category and the “CNS

infection” category.

Discussion

In this pilot study, we achieved around 85% of global

diagnostic accuracy with AI developed with limited data, only

including medical histories, physical examination results, and

symptom assessments. The global accuracy increases up to

90% after excluding sepsis, which is a condition that requires

a complex diagnostic procedure for accurate assessment (49).

The accuracy we have achieved in this study is reasonably

high, considering that the prediction model developed in

this study did not include any laboratory test results or

radiologic findings. For instance, machine learning algorithms

for predicting hepatitis C in patients enrolled in National

Treatment Program of HCV patients in Egypt showed accuracy

of 66–84.4%, while our CatBoost model showed accuracy of 88%

(50). Accuracy of predicting pulmonary tuberculosis was 87%

in our model developed by CatBoost algorithm, while previous

models based on chest X-ray showed area under curve of 0.75–

0.99 (51). Considering that artificial intelligence in this study

relied solely on survey questionnaire, diagnostic accuracy of the

models developed in this study is relatively high compared to

previous studies.

The global diagnostic accuracy of AI developed in this

study is relatively low compared to other AIs, usually achieving

90% of higher diagnostic accuracy (12, 52). However, these

AIs typically rely on additional tests such as radiologic studies,

laboratory tests, and pathologic results. Our study developed a

survey-based AI without additional tests except for vital sign

assessments and physical examination, making it applicable to

resource-limited settings (53).

While the developed AI cannot be a replacement for the

clinical decision-making process, we could use it for screening

tests and initial disease evaluation under circumstances of

insufficient medical expertise, which is a common condition in

LMICs (53, 54). However, there are significant challenges in

applying AI to LMICs, mostly from local governance capacity

and AI literacy (31, 55). Using tailored AI with high cost-

efficacy and collaboration with experts in AI development and

management will effectively screen and manage the disease

of interest. Our study showed that simplified survey-based AI

provides certain benefits in detecting and controlling infectious

diseases in the Central region of Vietnam. We are planning to

improve the diagnostic accuracy of AI further and evaluate the

cost and efficacy of the developed AI by applying it to multiple

hospitals in Hue, Vietnam, and Da Nang, Vietnam.

It is one of few academic studies on the development

and application of AI in LMICs. The study is a product of

international collaboration, including epidemiologists, global

health experts, professional programmers, and local physicians

in Vietnam, facilitating questionnaire development, data

collection, and AI development.
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As this study is a pilot study, there are several limitations.

First, we only used data from a single hospital at Da Nang,

Vietnam, so additional validation is required before applying

it to other regions. Due to the decrease in the number of

patients visiting the hospital, a certain proportion of patients

were recruited retrospectively via telephone survey. Although

we tried to keep data integrity by reviewing EMR, data

validity of retrospective data might have affected the result.

Finally, our AI could not diagnose infectious diseases without

definite clinical manifestation, such as sepsis. To correctly

identify complex diseases and syndromes, we should include

in-depth assessments of symptoms and clinical features in the

model. To address these shortcomings, we plan to develop

assessment questionnaires further, distribute the AI to multiple

collaborating hospitals and healthcare centers in Vietnam and

assess the efficacy of the AI in collaborating institutions.

Conclusion

This study is one of few academic studies on AIs in resource-

limited settings. Our results implied that even survey-based

questionnaires without laboratory or radiologic tests could be

beneficial in screening infectious diseases in LMIC. Additional

studies on other collaborating institutions will further develop

and validate the current model we have developed and provide

epidemiologic evidence on the effectiveness of AI application in

a resource-limited setting.
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