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Deep learning‑based 
reconstruction on cardiac CT 
yields distinct radiomic features 
compared to iterative and filtered 
back projection reconstructions
Sei Hyun Chun1, Young Joo Suh1*, Kyunghwa Han1, Yonghan Kwon2, Aaron Youngjae Kim3 & 
Byoung Wook Choi1

We aimed to determine the effects of deep learning‑based reconstruction (DLR) on radiomic features 
obtained from cardiac computed tomography (CT) by comparing with iterative reconstruction (IR), and 
filtered back projection (FBP). A total of 284 consecutive patients with 285 cardiac CT scans that were 
reconstructed with DLR, IR, and FBP, were retrospectively enrolled. Radiomic features were extracted 
from the left ventricular (LV) myocardium, and from the periprosthetic mass if patients had cardiac 
valve replacement. Radiomic features of LV myocardium from each reconstruction were compared 
using a fitting linear mixed model. Radiomics models were developed to diagnose periprosthetic 
abnormality, and the performance was evaluated using the area under the receiver characteristics 
curve (AUC). Most radiomic features of LV myocardium (73 of 88) were significantly different in 
pairwise comparisons between all three reconstruction methods (P < 0.05). The radiomics model on IR 
exhibited the best diagnostic performance (AUC 0.948, 95% CI 0.880–1), relative to DLR (AUC 0.873, 
95% CI 0.735–1) and FBP (AUC 0.875, 95% CI 0.731–1), but these differences did not reach significance 
(P > 0.05). In conclusion, applying DLR to cardiac CT scans yields radiomic features distinct from those 
obtained with IR and FBP, implying that feature robustness is not guaranteed when applying DLR.

Abbreviations
CNR  Contrast-to-noise ratio
DLR  Deep learning-based reconstruction
FBP  Filtered back projection
GLMM  Generalized linear mixed-effect model
ICC  Intraclass correlation coefficient
IR  Iterative reconstruction
LASSO  Least absolute shrinkage and selection operator
LV  Left ventricular
SNR  Signal-to-noise ratio

Cardiac computed tomography (CT) is widely used to diagnose obstructive coronary artery disease and evaluate 
intra-cardiac  structures1–4. Cardiac CT allows visual analysis and quantitative parameters about cardiovascular 
structures such as coronary plaques, peri-coronary fat tissue, myocardium, and intra-cardiac  mass5–9. Radiomics 
is a high throughput approach that extracts of high-dimensional quantitative information from digital medical 
images. Data obtained from radiomics provides more comprehensive and quantitative analysis than visual assess-
ment or conventional quantitative parameters. Radiomic features derived from cardiac CT images contribute 
additional diagnostic or prognostic value to conventional quantitative CT  parameters10–13.
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However, concerns have been raised about the reproducibility or robustness of radiomic features due to effects 
such as observers who perform segmentation, image acquisition, and reconstruction parameters. For example, 
iterative reconstruction (IR) can potentially affect radiomic features because it reduces image noise and changes 
the appearance and texture of CT  images14–16. Recently, deep learning-based reconstruction (DLR) methods have 
been developed that achieve more dose reduction and faster reconstruction than IR while preserving the image 
quality and texture obtained with filtered back projection (FBP)17. DLR is expected to overcome the limitations 
of unnatural image appearance and texture that occur with IR. DLR improves image quality compared with 
FBP or  IR18–20 and facilitates dose reduction while maintaining the image quality and diagnostic performance 
of CT  scans21. The effect of other deep learning-based technology, for example, deep learning-based conversion 
of reconstruction kernel, on the reproducibility of radiomic features has been studied  before22,23. However, the 
effects of DLR on radiomic features have not yet been compared to other reconstruction methods.

The purpose of this study was to evaluate and compare the effects of DLR with IR and FBP cardiac CT recon-
struction algorithm on the radiomic features of the myocardium and in diagnosing postoperative periprosthetic 
pathology.

Results
Study population. Two CT scans were excluded from the comparison of image quality because measuring 
coronary artery attenuation values was difficult due to a severe artifact on the coronary artery (n = 1) and a con-
genital coronary anomaly (n = 1) (Fig. 1). A total of 283 CT scans from 282 patients (133 men and 149 women; 
mean age, 65.9 ± 12.4 years) were included in the CT image quality analysis. We excluded one CT scan from 
comparing myocardium radiomic features because of a metal artifact from an LV assist device. A total of 284 
CT scans from 283 patients (133 men and 150 women; mean age, 66.0 ± 12.4 years) were included to compare 
myocardium radiomic features. We identified a subgroup of 68 patients who had undergone prior cardiac valve 
operation to compare the value of radiomic features in diagnosing periprosthetic masses. Among this subgroup, 
19 CT scans from 18 patients (10 men and 8 women; mean age, 75.8 ± 4.2 years; Supplemental Table S1) were 
included because their CT scans showed volume-occupying masses in the perivalvular region. In total, 29 ROI of 
periprosthetic masses were segmented, and the final diagnoses of the periprosthetic masses were normal (n = 2; 
4 ROI), degeneration (n = 3; 3 ROI), thrombus (n = 10; 18 ROI), and pannus (n = 4; 4 ROI). Mean dose length 
product of cardiac CT was 287.1 ± 91.3 mGy ∙ cm.

Comparison of CT image quality parameters between reconstruction methods. The mean CT 
attenuation values of coronary arteries, image noise, SNR, and CNR are shown in Table  1. All image qual-
ity parameters differed significantly between reconstruction groups (P < 0.001). DLR, followed by IR and FBP, 
showed the lowest noise (32.4 HU vs. 60.0 HU vs. 81.6 HU), the highest SNR (20.4 vs. 10.6 vs. 8.0), and the 
highest CNR (22.4 vs. 11.9 vs. 8.7).

Figure 1.  Flow chart for patient enrollment. LVAD, left ventricular assist device; DLR, learning-based 
reconstruction; IR, iterative reconstruction; FBP, filtered back projection.
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Comparison of myocardial radiomic features between reconstruction methods. Among the 90 
radiomic features extracted from LV myocardium, two (GLCM_MCC, GLRLM_LRHGE) showed poor to mod-
erate interobserver agreement (ICC < 0.75) and were excluded from subsequent analysis (Supplemental Table S2 
and Fig. 2a). Among the 88 remaining features, 81 features differed significantly between the three reconstruc-
tion methods (Supplemental Table S3).

DLR showed significant differences in pairwise comparison with IR in 76 features. The following 12 features 
did not show significant differences: FirstOrder_RMS, Histo_Mean, Histo_Skewness, Percentile_50, GLCM_
InverseVariance, GLCM_Autocor, GLCM_SumAverage, GLRLM_LRLGE, GLDM_HGLE, GLDM_LDLGLE, 
Moment_J1, and Moment_J2. DLR showed significant differences in pairwise comparison with FBP in 80 fea-
tures. The following eight features did not show significant differences: Histo_Mean, Percentile_50, GLCM_
SumAverage, GLRLM_LRLGE, NGTDM_Strength, GLDM_LDLGLE, Moment_J1, and Moment_J2. IR also 

Table 1.  CT image quality parameters for each reconstruction method. Data are presented as mean values 
with the 95% confidence interval in parentheses. DLR, deep learning-based reconstruction; IR, iterative 
reconstruction; FBP, filtered back projection; CTNo, mean CT attenuation values of left main and right 
coronary arteries; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio.

Image quality DLR IR FBP P value

CTNo (HU) 623.882 (601.032, 646.731) 610.857 (587.969, 633.746) 612.344 (589.516, 635.171) < 0.001

Noise (HU) 32.391 (29.673, 35.11) 59.961 (57.244, 62.679) 81.628 (78.903, 84.353) < 0.001

SNR 20.36 (19.929, 20.792) 10.593 (10.162, 11.024) 7.977 (7.545, 8.408) < 0.001

CNR 22.384 (21.742, 23.025) 11.899 (11.206, 12.592) 8.737 (8.053, 9.421) < 0.001

Figure 2.  Distribution plot for intraclass correlation of radiomic features of (a) myocardium and (b) 
periprosthetic mass. Radiomic features are lined on the x axis and color coded based-on which family of 
radiomics features they belong to, while their corresponding intraclass correlation coefficient is plotted on the y 
axis.
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showed significant differences in 78 features in a pairwise comparison with FBP. The following ten features did 
not show significant differences: Histo_Mean, Histo_skewness, Percentile_50, GLCM_CP, GLCM_CS, GLCM_
SumAverage, GLRLM_LRLGE, GLDM_LGLE, Moment_J1, and Moment_J2). Seventy-three radiomic features 
showed significant differences in all three pairwise comparisons.

Diagnostic values of radiomic features for discrimination of periprosthetic masses. Three radi-
omic features (Histo_ExcessKurtosis, GLCM_MCC, and GLRLM_GNUN) exhibited poor to moderate interob-
server agreement (ICC < 0.75) and were excluded from subsequent analysis (Fig. 2b). Selected radiomic features 
were distinct, depending on the reconstruction method (Table 2). The radiomics model based on IR had the 
best diagnostic performance (AUC, 0.948; 95% CI 0.880–1) relative to DLR (AUC, 0.873; 95% CI 0.735–1) and 
FBP (AUC, 0.875; 95% CI 0.731–1; Fig. 3), but these differences did not reach significance (P > 0.05 for AUC 
difference; Table 3). Each radiomics model was well calibrated (P > 0.999) based on the Hosmer–Lemeshow cali-
bration for goodness-of-fit. When rad-scores from one reconstruction method were validated against another 
reconstruction method, diagnostic performance differed. For example, rad-score from DLR had an AUC of 
0.795 (95% CI 0.573–1) on IR, 0.863 (95% CI 0.703–1) on FBP, and 0.873 (95% CI 0.735–1) on DLR.

Table 2.  Specifications of the radiomics scores obtained by and radiomics model performance for each 
reconstruction method. Rad-score, radiomics score; DLR, deep learning-based reconstruction; IR, iterative 
reconstruction; FBP, filtered back projection; AUC, area under the receiver operating characteristic curve; CI, 
confidence interval.

Model DLR IR FBP

Number of selected features 4 8 6

Name of selected features GLCM_DiffVariance, GLSZM_LAHGLE, 
NGTDM_Coarseness, GLDM_SDHGLE

Grad_Mean, Grad_std, GLCM_DiffVariance, 
GLCM_IMC2, GLSZM_LAHGLE, NGTDM_
Coarseness, NGTDM_Busyness, GLDM_DV, 
GLDM_SDLGLE

Histo_Min,GLCM_HomogeneityNormalized, 
GLCM_DiffEntropy,GLSZM_ZV, Coarseness, 
NGTDM_Busyness

Formula for calculation of rad-score
0.058 × GLCM_DiffVari-
ance − 0.015 × GLSZM_LAH-
GLE + 10.193 × NGTDM_Coarse-
ness + 0.002 × GLDM_SDHGLE

0.012 × Grad_Mean + 0.002 × Grad_
std + 0.071 × GLCM_Dif-
fVariance + 0.264 × GLCM_
IMC2 − 0.001 × GLSZM_LAH-
GLE + 139.262 × NGTDM_Coarse-
ness − 3.72 × NGTDM_Busy-
ness − 0.07 × GLDM_DV − 32205.9 × GLDM_
SDLGLE

0.002 × Histo_Min − 23.303 × GLCM_Homo-
geneityNormalized + 3.259 × GLCM_
DiffEntropy − 0.282 × GLSZM_
ZV + 48.924 × NGTDM_Coarse-
ness − 2.589 × NGTDM_Busyness

AUC (95% CI) 0.873 (0.735, 1) 0.948 (0.880, 1) 0.875 (0.731, 1)

Comparisons of AUC DLR vs. IR DLR vs. FBP IR vs. FBP

AUC difference (95% CI), P value 0.075 (− 0.007, 0.157), 0.074 0.002 (− 0.052, 0.057), 0.928 0.073 (− 0.017, 0.162), 0.113

Figure 3.  Receiver operating characteristic curves of radiomics models from three different reconstruction 
methods. DLR, learning-based reconstruction; IR, iterative reconstruction; FBP, filtered back projection.
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Discussion
Our study demonstrates that CT image quality is better in DLR than IR or FBP, whereas 73 of 88 (83.0%) radiomic 
features of LV myocardium differ in pairwise comparisons between DLR, IR, and FBP. Each radiomics model 
exhibits varying performance levels for diagnosing periprosthetic masses, but the differences between models 
are not statistically significant.

Recent advances in artificial intelligence have led to the development of DLR for CT and its application to 
various body parts. Most previous studies investigated whether DLR would facilitate noise reduction without 
altering image quality or diagnostic  confidence18–21,24. Multiple studies reported that applying DLR to cardiac 
CT scans reduced noise and improved SNR and CNR more than conventional  reconstruction18,25,26. Our study 
shows that DLR produces superior image quality (noise, SNR, and CNR) relative to IR and FBP and is consistent 
with previous studies.

The reproducibility and model performance of radiomic features are affected by reconstruction methods, 
and the effects of IR on radiomic features have been  investigated14,15,27,28. The IR algorithm tended to produce 
CT images with a more “plastic-looking” texture than FBP reconstructions, so the effects of IR on quantitative 
radiomic features make  sense29. Although DLR aims to produce a more natural texture similar to FBP recon-
struction, few studies to date have investigated the effects of DLR on quantitative radiomic  features30. Our study 
showed that most radiomic features obtained from LV myocardium differ depending on the reconstruction 
methods and are presumably affected by the reconstruction method. This result is in line with a previous study 
showing that applying DLR yielded superior feature consistency, discriminative power and repeatability to IR, 
and FBP for radiomic features on abdominal  CT30. DLR uses a deep neural network to enhance image quality by 
removing noise from signal without changing the noise texture itself and is thought to produce adequate images 
for feature extraction and diagnostic modelling.

In our study, the robustness of radiomics models for diagnosing periprosthetic masses was also affected by 
the reconstruction method. The selected features used to compute rad-scores varied with each reconstruction 
method, and the diagnostic performance values (AUC) of each radiomics model differed in pairwise compari-
sons, even though statistical significance was not reached. The largest AUC in the radiomics model based on IR 
among the models in our study was an unexpected finding, because DLR showed the best image quality among 
three kinds of reconstruction methods. However, the better image quality is not always associated with a higher 
diagnostic performance, as a previous study showed that the use of model-based IR lowers the diagnostic per-
formance for the discrimination of invasive pulmonary adenocarcinomas among subsolid nodules, compared to 
 FBP31. To date, the effect of the image reconstruction algorithm on the diagnostic performance of the radiomics 
model has been scarcely investigated. Moreover, the degree of effects of the reconstruction algorithm on the 
radiomic features differs according to the anatomic region, strength level of the algorithm, or types of diagnostic 
 task27,31,32. Therefore, further comprehensive studies with more anatomic regions or various kinds of diagnostic 
tasks should be conducted to study the effect of DLR on the diagnostic performance of the radiomics model. 
Until then, when validating a CT radiomics model for radiologic diagnosis, it is worth remembering that the 
diagnostic performance is not guaranteed because the reconstruction algorithm has changed.

Our study has several limitations. First, it was conducted in a retrospective manner with a relatively small 
number of participants, so the generalizability of our results could not be secured. Second, the radiomics models 
were not validated with external data, and additional studies using data from multiple centers might increase the 
reliability of the diagnostic performance analysis. Finally, we investigated the effect of only one vendor-specific 
DLR method, although various approaches have been  suggested17.

In conclusion, DLR produces myocardial radiomic features that are distinct relative to IR and FBP. Radiomic 
models based on DLR demonstrate different performances in diagnosing periprosthetic abnormalities than IR 
or FBP, implying that feature robustness is not guaranteed when applying DLR.

Table 3.  Validating radiomics scores calculated with one reconstruction method in other reconstruction 
methods. Rad-score, radiomics score; DLR, deep learning-based reconstruction; IR, iterative reconstruction; 
FBP, filtered back projection; AUC, area under the receiver operating characteristic curve; CI, confidence 
interval; N/A, not-applicable.

Reconstruction 
method for 
rad-score 
calculation DLR IR FBP

Reconstruction 
method for rad-
score validation DLR IR FBP DLR IR FBP DLR IR FBP

AUC (95% CI) 0.873 (0.735, 1) 0.795 (0.573, 1) 0.863 (0.703, 1) 0.902 (0.813, 
0.992) 0.948 (0.880, 1) 0.887 (0.730, 1) 0.873 (0.742, 1) 0.853 (0.692, 1) 0.875 (0.731, 1)

AUC difference 
(95% CI) N/A

0.078 (− 0.014, 
0.169)
P = 0.096

0.01 (− 0.058, 
0.078)
P = 0.773

0.045 (− 0.001, 
0.091)
P = 0.056

N/A
0.06 (− 0.069, 
0.189)
P = 0.363

0.02 (− 0.059, 
0.064)
P = 0.937

0.022 (− 0.063, 
0.108)
P = 0.608

N/A
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Methods
Study population. The Severance Hospital Institutional Review Board approved this study and waived the 
requirement for informed consent. Our study was conducted in accordance with the Declaration of Helsinki. 
Our study retrospectively included 387 cardiac CT scans performed with a specific type of CT scanner (Revolu-
tion™ CT, GE Healthcare) in 379 consecutive patients between February 2020 and June 2020 at our institution, 
regardless of indication of CT. Cardiac CT data obtained with this scanner were routinely reconstructed using 
three methods: DLR, IR, and FBP. CT scans were excluded when reconstructions from any method were not 
available (n = 102). Finally, 285 CT scans from 284 patients were included in the analysis (Fig. 1).

CT image acquisition. All cardiac CT examinations were performed using a CT scanner with a 256-slice, 
16-cm wide detector (Revolution™ CT, GE Healthcare). The parameters used for scanning were as follows: a 
prospective electrocardiogram (ECG)-triggering axial mode; tube voltage from attenuation-based tube potential 
selection software (kV Assist, GE Healthcare), with a baseline of 100 kV; tube current from automated exposure 
control software (Smart mA, GE Healthcare); and tube rotation time of 280 ms. Beta-blockers to control heart 
rate were not used. Contrast media was administered using a triple-phase method (5 mL/s injections of 70 mL 
iopamidol, 30 mL 50% iopamidol in saline, and 20 mL saline). CT angiography was performed with prospective 
ECG-gating with a padding range of 20%–120% in the R-R interval and acquired 6 s after obtaining 150 HU 
on the ascending aorta. CT datasets obtained from the best cardiac phases with the least motion artifacts were 
reconstructed in the axial plane with a slice thickness/interval of 0.625 mm/0.625 mm, using three reconstruc-
tion methods for each scan: DLR, “TrueFidelity at high levels” (TF-H); IR, adaptive statistical iterative recon-
struction-V (ASIR-V) 60%; and FBP). DLR utilizes a deep neural network-based model to differentiate noise 
from anatomical structures and emulate high-quality FBP  images33. In the training process, the DLR engine 
generates output images from a low-dose input sinogram, compares them with high-dose FBP images from 
the same objects, and repeatedly fine-tunes the parameters of the deep neural network to suppress image noise, 
retain the preferred noise texture, and improve spatial resolution.

CT image analysis. All CT images in each reconstruction group were assessed by two observers (S.H.C., 
a third-year senior radiology resident, and A.Y.K., a fourth-year medical student) for image quality, image 
noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) by consensus, according to previously 
described  methods34,35. Circular regions of interest (ROI) were placed on axial CT images in the ascending 
aorta immediately cranial to the left coronary ostium by choosing the largest size, excluding the aortic wall. 
Image noise was defined as the standard deviation of the CT attenuation within the ROI. Four additional 
circular ROI were placed in the lumen and the adjacent perivascular fat tissue of the left main and the right 
proximal coronary artery, respectively. SNR and CNR were calculated as follows: SNR = (HULM+HURCA

2
)/Noise

;CNR =

[

HULM+HURCA
2

−
HULMPVF+HURCAPVF

2

]

Noise
, where LM is the left main coronary artery; RCA is the proximal right 

coronary artery, and PVF is perivascular fat.
ROI were independently drawn by two radiologists (Y.J.S., a board-certified radiologist with 12 years of 

experience in cardiac imaging, and S.H.C., a third-year radiology resident) to segment the left ventricular (LV) 
myocardium and periprosthetic masses for radiomics analysis. DLR images were segmented using commer-
cially available segmentation software (AVIEW Research, Coreline Soft), and ROIs were copied to IR and FBP 
reconstructed images.

LV myocardium was segmented by selecting a single slice of an axial CT image at the mid-ventricular myo-
cardial level and drawing an ROI along the LV myocardium, excluding the LV blood  pool15. Ill-defined blood 
pools and trabeculae were excluded as much as possible to minimize uncertainty in delineating the endocardium 
(Fig. 4).

Valvular or perivalvular (periprosthetic) masses in patients who had cardiac valve replacement were seg-
mented by reformatting CT images along the short- and long-axes of the prosthetic valve with AVIEW software. 
Three-dimensional ROI were drawn for periprosthetic masses in images reformatted along the valves’ short-
axes. A discrete ROI was drawn for each lesion if a periprosthetic region contained more than one mass (Fig. 5). 
Calcifications, metal artifacts, and adjacent structures were avoided as much as possible.

Radiomic feature extraction. A total of 90 radiomic features were extracted from ROI in CT images 
of LV myocardium and periprosthetic masses: 17 first-order or histogram features, 2 gradient features, 22 Gy-
level co-occurrence matrix (GLCM) features, 14 Gy-level run-length matrix (GLRLM) features, 14 Gy-level size 
zone matrix (GLSZM) features, 5 neighborhood gray-tone difference matrix (NGTDM) features, 14 Gy-level 
difference matrix (GLDM) features, and 2 moment features. Shape features were not included in the analy-
sis because segmented ROI were identical between reconstruction methods. Feature extraction was performed 
using AVIEW software, based on the open source program for radiomic analysis, Pyradiomics (Pyradiomics 
library, version 2.2.0; Computational Imaging and Bioinformatics Lab, Harvard Medical School)36. Bin number 
for intensity discretization was fixed as 64. Intraclass correlation coefficients (ICC) were calculated to evaluate 
interobserver reproducibility. Features with poor to moderate interobserver reproducibility (ICC < 0.75) were 
excluded from subsequent  analysis37.

Diagnostic value of radiomic features for discriminating periprosthetic masses. Patients were 
included in a subgroup analysis to evaluate the diagnostic value of radiomic features obtained from the three 
reconstruction methods if they (a) had undergone cardiac valve surgery with a prosthetic valve (either biopros-
thetic or mechanical), (b) exhibited at least one periprosthetic mass in CT images, and (c) the periprosthetic 
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mass(es) were classified as normal, degeneration, thrombus, or pannus during redo cardiac operation or follow-
up imaging as a reference standard. For each reconstruction method, radiomics score (rad-score)-based model 
was constructed to discriminate between abnormal (degeneration, thrombus, or pannus) and normal postopera-
tive changes.

Statistical analysis. Statistical analyses were performed using R (version 4.0.4.; R Foundation for Statisti-
cal Computing, Vienna, Austria) with the “nlme,” “glmnet,” “ResourceSelection,” “rms,” “doBy,” “pheatmap,” and 
“emmeans” packages. Normally distributed data were identified using the Shapiro–Wilk W test. Image quality 
parameters (image noise, SNR, and CNR) and the myocardial radiomic features extracted with each reconstruc-
tion method were compared using a fitting linear mixed-effects model (LMM) with the reconstruction method 
as the fixed effect and patients as random effects. False discovery rate control was applied to handle type I error 
inflation by comparing multiple radiomic features using the Benjamini–Hochberg  procedure38. Post-hoc P value 
correction for pairwise comparison was done with the Tukey method. Adjusted P values under 0.05 were con-
sidered significant.

For comparison for discriminating ability of radiomic features for periprosthetic mass, radiomic features 
were selected by using the least absolute shrinkage and selection operator (LASSO) with tenfold cross-validation 
for each reconstruction method. A rad-score was calculated using a linear combination of the selected features 
weighted by each coefficient from the LASSO. To evaluate the performance of the radiomics model (rad-score), 
generalized linear mixed-effect model (GLMM) was employed to account for the multiple observations per 
patient. The performance was evaluated using the area under the receiver characteristics (ROC) curve (AUC), and 
the goodness-of-fit was assessed using Hosmer–Lemeshow calibration. AUCs from the reconstruction methods 
were compared with the Obuchowski method for clustered data because radiomic features from both observers 

Figure 4.  Axial cardiac CT image of a 77-year-old female patient. The myocardium (purple color) is segmented 
by excluding the LV blood pool and trabeculae to improve reproducibility for delineating the endocardial 
border. CT, computed tomography; LV, left ventricular.

Figure 5.  Cardiac CT images of an 83-year-old female exhibiting leaflet thrombosis of the bioprosthetic aortic 
valve. An ROI is drawn along the hypoattenuated leaflet thickening of the bioprosthetic aortic valve (green 
color). CT, computed tomography.
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were used for  modeling39. The performance of rad-score from one reconstruction method was validated against 
the other two reconstruction methods.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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