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METHODOLOGY

A simulation study for geographic cluster 
detection analysis on population‑based health 
survey data using spatial scan statistics
Jisu Moon and Inkyung Jung* 

Abstract 

Background:  In public health and epidemiology, spatial scan statistics can be used to identify spatial cluster pat-
terns of health-related outcomes from population-based health survey data. Although it is appropriate to consider 
the complex sample design and sampling weight when analyzing complex sample survey data, the observed survey 
responses without these considerations are often used in many studies related to spatial cluster detection.

Methods:  We conducted a simulation study to investigate which data type from complex survey data is more 
suitable for use by comparing the spatial cluster detection results of three approaches: (1) individual-level data, (2) 
weighted individual-level data, and (3) aggregated data.

Results:  The results of the spatial cluster detection varied depending on the data type. To compare the performance 
of spatial cluster detection, sensitivity and positive predictive value (PPV) were evaluated over 100 iterations. The aver-
age sensitivity was high for all three approaches, but the average PPV was higher when using aggregated data than 
when using individual-level data with or without sampling weights.

Conclusions:  Through the simulation study, we found that use of aggregate-level data is more appropriate than 
other types of data, when searching for spatial clusters using spatial scan statistics on population-based health survey 
data.
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Introduction
It is important to identify geographical disparities in 
health outcomes related to chronic diseases [1], physical 
activity [2], behavioral health [3], and mental health [4]. 
In particular, identifying locations with significantly high- 
or low-risk health outcomes would be useful for guiding 
targeted health programs and shaping health policies to 
reduce health disparities [5]. Health authorities often 
conduct health surveys of the general population; thus, it 

might help analyze the spatial cluster patterns using this 
data.

Among the various statistical methods for geographic 
cluster detection, the spatial scan statistic proposed 
by Kulldorff [6] has been widely used in various 
epidemiologic studies. This method calculates a 
likelihood ratio test statistic to compare the inside and 
outside of a scanning window. Areas in the scanning 
window, that maximized the test statistic, were identified 
as the most likely clusters. Monte Carlo hypothesis 
testing is typically used to obtain a p-value for testing 
the statistical significance of the most likely cluster. 
Spatial scan statistics have been developed for various 
probability models such as Poisson [6], Bernoulli [6], 
normal [7, 8], ordinal [9], and multinomial [10]. The 
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spatial scan statistic method, based on these models, is 
available through software SaTScan™ [11]. The method 
has been extended to a regression modeling approach 
with different regression coefficients for cluster detection 
[12–14].

Public health surveillance [15] is conducted to collect, 
analyze, and interpret health-related data for planning, 
implementing, and evaluating public health policies. 
As part of the public health surveillance, health-related 
data were collected from population-based surveys. 
The data obtained from these ongoing surveys can be 
used to understand trends in public health [16]. Such 
health surveys are often based on complex sampling 
[17] approaches, including several design features such 
as stratification, cluster sampling, and disproportionate 
sampling. Sample design features need to be incorporated 
into the estimation and analysis to generalize the results 
to the entire population. Therefore, to ensure that the 
estimation and analysis are generalizable to the entire 
population, it seems appropriate to consider sample 
designs and sampling weights when exploring the spatial 
cluster patterns with the spatial scan statistic.

Some studies have conducted geographic cluster 
detection analysis using spatial scan statistics on 
population-based health survey data. However, most of 
these studies utilized observed survey responses, without 
considering sample designs and sampling weights. 
Roberson et  al. [18] identified spatial clusters of high 
stroke prevalence using the spatial scan statistic under 
the discrete Poisson probability model for a population-
based health survey (Behavioral Risk Factor Surveillance 
System). They specified the number of stroke cases in 
each county, derived from the observed binary responses, 
as the case variable in the analysis. Kebede et  al. [19] 
conducted a study to identify spatial clusters of high 
health coverage among women aged 15‒49  years, using 
the Bernoulli-based spatial scan statistic on a population-
based health survey (Ethiopian Demographic and Health 
Survey). Similarly, they specified the number of health 
coverage cases observed for a binary response as the case 
variable in the analysis.

Two approaches are available for utilizing the survey 
responses observed with binary outcomes. One approach 
is to use individual-level data as is, observed with binary 
responses represented by 0 and 1. In this case, spatial 
cluster detection can be conducted using the Bernoulli-
based spatial scan statistics [6]. The other approach 
is to use aggregate-level data, which summarizes the 
individual-level data into regional-level rates for each 
location. The sampling design and weights can be 
considered when calculating the region-level rates. 
For this type of data, spatial cluster detection can be 
conducted using the weighted normal spatial scan 

statistic [8], which is used to identify clusters with high 
rates of regional measures (e.g., mortality rate and disease 
prevalence at the regional level) with a heterogeneous 
population.

It is unclear which model is appropriate for use 
when health survey data comes from a complex survey 
design. We can use individual-level or aggregated 
data at the regional level for spatial cluster detection 
of disease prevalence. The weighted frequency by the 
sampling weights can be used as binary data to properly 
consider the sampling design. First, we applied different 
approaches to the Korea Community Health Survey 
(KCHS), which is one of the several population-based 
health surveys in South Korea. We identified statistically 
significant spatial clusters with high rates of male diabetes 
diagnoses. Having found that the cluster detection results 
were very different depending on the type of data, we 
conducted a simulation study to examine which approach 
is more appropriate among the three approaches using 
sampled data from hypothetical population data. Several 
design features were taken into account when generating 
the simulation data to mimic real health survey data, such 
as stratification with different sampling proportions and 
post-stratification weights. We compared the accuracy 
of detected clusters in terms of sensitivity and positive 
predictive value.

The Korea Community Health Survey (KCHS) data
The KCHS has been conducted annually by the Korea 
Disease Control and Prevention Agency since 2008 to 
investigate both public health status and health behaviors 
at community health centers [20]. KCHS data were 
collected from an average of 900 adults per community 
health center (“si/gun/gu” or district level). The survey 
is based on a complex sample design. Survey data with 
sample weights can be provided upon request at https://​
chs.​kdca.​go.​kr/​chs.

We used the answers to diagnose diabetes as an out-
come from the 2018 KCHS to search for geographic 
clusters with high rates of diabetes prevalence. There 
were 250 administrative districts in South Korea in 2018, 
with the exception of two districts located on Jeju Island. 
Spatial cluster detection analysis was conducted on the 
(1) individual-level data, (2) weighted individual-level 
data, and (3) aggregated data. The Bernoulli-based and 
weighted normal spatial scan statistics were used for the 
first two and third data types, respectively. We used the 
circular scanning window shape and optimal maximum 
reported cluster size (MRCS) determined by the Gini 
coefficient [21], while the maximum scanning window 
size (MSWS) was fixed at 50%. The study participants 
were divided into male and female subgroups for analy-
sis. All analyses were conducted using the SaTScan™ 

https://chs.kdca.go.kr/chs
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software version 9.6. This study only shows the results 
for men. Figures  1 and 2 show cluster detection results 
for the three different approaches, with and without age 
adjustment. Only statistically significant clusters were 
reported at the significance level of 0.05. Tables 1 and 2 
include the number of identified high diabetes diagnosis 
rate spatial clusters at the optimal MRCS value.   

The detected clusters were very different, depending on 
the approach. These results motivated the present study. 
With or without age adjustment, the weighted normal 
model of the aggregated data found a single significant 
cluster in the northeast area of South Korea. When deal-
ing with the survey data, it is necessary to consider sam-
pling weights for proper inference. One may think that it 
would be more appropriate to use weighted data by sam-
pling weights rather than observed individual data. How-
ever, the Bernoulli model identified too many significant 
clusters in the weighted data, which could be due to the 
inflated sample size. Using the survey data, the detected 
clusters from the Bernoulli model were similar to those 
based on aggregated data to a certain degree. Only one 
significant cluster, whose location was similar to that of 
the cluster detected from the weighted normal model, 
was detected for the data with age adjustment. Without 
age adjustment, the most likely cluster was similar to that 
from the weighted normal model; however, another sig-
nificant cluster was also detected in the southwest area.

We expected to discover common geographic patterns 
regardless of the data type used from the survey data. 
However, the significant spatial clusters with high rates of 
diabetes diagnosis varied depending on the type of data. 
The patterns of spatial cluster detection results were sim-
ilar when using other health outcomes in the 2018 KCHS 
data. Thus, we aimed to assess which data type derived 
from binary survey responses is more appropriate for 
spatial cluster detection using the spatial scan statistic 
through a simulation study.

Simulation study
A simulation study was performed to investigate which 
type of data [individual-level data (frequency and 
weighted frequency) and aggregate-level data (crude rate 
estimates)] obtained from the complex sample survey is 
more appropriate for spatial cluster detection with the 
spatial scan statistic. First, we generated a hypotheti-
cal population dataset based on the administrative dis-
tricts in South Korea in 2018. The study area consisted 
of 250 districts. We then sampled 100 iterations from 
the hypothetical population dataset in a manner similar 
to the KCHS sampling procedure. Finally, we computed 
the weighted frequency (individual-level data) and crude 
rate estimates (aggregate-level data) for each sample 

Fig. 1  Significant spatial clusters detected with high diabetes 
diagnosis rates of male adults using the KCHS 2018 data. A 
Individual-level data (frequency). B Individual-level data (weighted 
frequency). C Aggregate-level data (crude rate)
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dataset using SAS software [22] version 9.4, based on 
the sample design and sampling weights. For each itera-
tion, we applied the Bernoulli-based spatial scan statistic 
[6] to two types of individual-level data and the weighted 
normal spatial scan statistic [8] to aggregate-level data 
derived from the simulated sample dataset. Age adjust-
ment was not considered in this simulation study. Similar 
to the KCHS analysis, we only identified statistically sig-
nificant clusters.

Here, we briefly review the sampling procedure of 
KCHS, which is based on a complex sample design that 
uses a two-stage stratified cluster sampling procedure. 
The surveyed population was stratified by the smallest 
administrative unit (“dong/eup/myeon”) and housing 
unit (general house/apartment), which were the first 
and second strata, respectively. In the first stage, a 
sample area (“tong/ban/ri”), as a primary sampling unit, 
was selected for each housing unit type within each 
administrative unit, based on the number of households 
through probability proportional to size sampling. In 
the second stage, households were selected through 
systematic sampling. The detailed sampling procedure is 
described in a brief report describing the survey [20].

Fig. 2  Significant spatial clusters detected with high diabetes 
diagnosis rates of male adults with age adjustment using the KCHS 
2018 data. A Individual-level data (frequency with age adjustment). 
B Individual-level data (weighted frequency with age adjustment). C 
Aggregate-level data (age standardized rate)

Table 1  The number of significant clusters detected with high 
diabetes diagnosis rates of male adults at optimized value of the 
MRCS when using different types of data from the KCHS 2018 
data (see Fig. 1)

Type of data MRCS Number of 
significant 
clusters

Individual-level data

 Frequency 20 3

 Weighted frequency 4 31

Aggregate-level data

 Crude rate 15 1

Table 2  The number of significant clusters detected with high 
diabetes diagnosis rates of male adults with age adjustment at 
optimized value of the MRCS when using different types of data 
from the KCHS 2018 data (see Fig. 2)

Type of data MRCS Number of 
significant 
clusters

Individual-level data

 Frequency 10 1

 Weighted frequency 2 53

Aggregate-level data

 Age-standardized rate 10 1
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Sensitivity and positive predictive value (PPV) were 
used to evaluate the accuracy of the simulation results. 
Sensitivity was defined as the number of districts 
included in significant clusters among districts belong-
ing to the true cluster. PPV was defined as the number of 
districts belonging to the true cluster among the districts 
included in significant clusters. The average and standard 
deviation of sensitivity and PPV over 100 iterations are 
presented. This simulation study was performed using 
R software [23] version 4.0.2 with the rsatscan pack-
age [24] to iteratively run the SaTScan™ software in R 
environment.

Population data generation

•	 (Step1) It was assumed that the population was 
stratified by age group (20‒34  years, 35‒49  years, 
50‒64 years and over 65 years) and sex. Stratification 
by age group and sex was denoted by j ( j = 1 for 
20‒34 years of male, 2 for 35‒49 years of male, 3 for 
50‒64  years of male, 4 for 65+ years of male, 5 for 
20‒34  years of female, 6 for 35‒49  years of female, 
7 for 50‒64  years of female, and 8 for 65+ years of 
female).

•	 (Step2) We defined two true cluster models with 
different sizes and shapes using a geographical map 
of South Korea for 2018. The two true cluster models 
are shown in Fig. 3. The true cluster in Model (A) was 
composed of 18 districts located in the northeast, 
including the coastal areas. We assumed two true 
clusters in Model (B), one cluster identical to Model 
(A) and another composed of 12 districts located in 
the central region. The prevalence rate was set to 0.3 
for each district belonging to the true clusters and 0.2 
for each district not belonging to the true clusters.

•	 (Step3) For each district, we generated binary 
outcomes for individuals from a binomial 
distribution with the actual population of South 
Korea in 2018 and the prevalence rate defined in 
Step2. Binary outcomes were generated from the 
binomial distribution B

(

Nkj , pkj
)

 , where Nkj and pkj 
denote the actual population and prevalence rate, 
respectively, for jth stratification of kth district.

Sample data generation

•	 (Step1) We defined the sample size for each district 
( nk ) between 900 and 920.

•	 (Step2) The sample size ( nkj ) for each stratification of 
each district was drawn from a multinomial distribu-
tion, with the sample size ( nk ) defined in Step1 and 
the sampling proportion ( qkj ). The assumed sampling 

proportions are listed in Table 3. In sampling propor-
tion scenario (1), simple random sampling (SRS) was 
assumed, which means that qkj was calculated using 
Nkj/Nk . In sampling proportion scenario (2), we used 
the actual proportion of the 2018 KCHS by age group 
and sex as the sampling proportion. In sampling 
proportion scenario (3), we set a higher sampling 
proportion of 35‒49  years and 50‒64  years while 
setting a lower sampling proportion of 20‒34  years 
and over 65  years for both males and females. This 

Fig. 3  The true simulated cluster models among the 250 districts of 
South Korea. True cluster model (A). True cluster model (B)
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indicates that the sampling proportion in Scenario 
(3) was more dispersed than actual proportion of the 
2018 KCHS [i.e. the sampling proportion scenario 
(2)]. Through this scenario, we considered a situation 
where certain groups of the population were more 
or less likely to be sampled than others, which could 
cause sampling bias.

•	 (Step3) We randomly sampled nkj from the 
hypothetical population dataset for each stratification 
of each district.

•	 (Step4) The sampling weight ( wkj ) of a sampled 
individual for district k and stratification j was 
calculated as the inverse of the probability that this 
sampled individual was to be selected. The sampling 
weight was expressed as follows:

The sampling weight ( wkj ) was then adjusted using a 
post-stratification weight. The post-stratification weight 
was calculated as the ratio of the actual population from 
the 2018 Korean census to the sum of the sampling 
weights by age group and sex for each district. As 
assumed in the population data generation, we used 
stratification by age group and sex divided into eight 
stratifications. The post-stratification weight was 
calculated as follows:

Finally, the final sampling weight ( wfinal
kj  ) was calculated 

as follows.

The sampling procedure of the simulation study was 
conducted according to that described by Vandendijck 
et al. [25].

wkj =
Nkj

nk × qkj
.

w
post-stratification
kj =

Nkj

nkj × wkj
=

Nkj

N̂kj

.

w
final
kj = wkj × w

post-stratification
kj .

Results of simulation study
The simulation results were obtained for each 
combination of the true cluster model and sampling 
proportion scenario (two true cluster models and 
three sampling proportion scenarios). The average and 
standard deviation of sensitivity and PPV are presented 
in Table 4.

The simulation results showed a similar tendency for 
the average and standard deviation of sensitivity and 
PPV in all scenarios. The average sensitivity was generally 
high in all scenarios, regardless of use of the three types 
of data, while the average PPV was the highest in all 
scenarios when using the summary measure (crude rate 
estimates) at the aggregate-level data. Although the 
difference was not large, the average sensitivity for the 
aggregated data was the highest in four of six scenarios. 
Interestingly, the average PPV was very low when using 
the weighted frequency compared with the frequency and 
crude rate estimates. We found that a very large number 
of clusters were identified throughout the entire study 
area when using the weighted frequency, as seen in the 
real data analysis of the KCHS 2018. Also, when using the 
aggregate-level data, the standard deviation of sensitivity 
and PPV was relatively low across all scenarios, which 
implies that we can obtain more consistent and stable 
results than when using the other approaches. Using 
the aggregated data from the complex survey seemed to 
reflect the true spatial cluster patterns better than using 
other types of data.

Discussion
In this study, we examined which approach is more 
appropriate for spatial cluster detection, using data 
from a population-based health survey. We found 
that the detected geographic cluster patterns of high 
disease prevalence varied depending on the type of 
data, when analyzing the KCHS data. To investigate 
which data type is more appropriate for spatial cluster 
detection using spatial scan statistics, we conducted 

Table 3  Three different sampling proportions 
({

qkj
})

 used in the simulation

SRS simple random sampling

Sampling proportion 
scenarios

Sex Age groups

20‒34 years 35‒49 years 50‒64 years Over 65 years

(1) Male SRS SRS SRS SRS

Female SRS SRS SRS SRS

(2) Male 0.07 0.11 0.14 0.13

Female 0.08 0.12 0.16 0.19

(3) Male 0.03 0.15 0.18 0.09

Female 0.04 0.16 0.20 0.15
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a simulation study. Our findings through the simula-
tion study revealed that the use of area-level summary 
measure estimates is better at detecting spatial clusters 
with spatial scan statistics under various scenarios. In 
all scenarios, although the average sensitivity was simi-
larly high regardless of the use of the three types of 
data, the average PPV was the highest when using the 
area-level rate estimates. Therefore, it seems that it is 
more appropriate to use summary measure estimates 
(aggregate-level data), which takes the sample design 
and sampling weights into account, for geographical 
cluster detection with the spatial scan statistic than the 
other types of data.

One limitation of this study is that we partially 
implemented the sampling procedure of KCHS in 
the simulation study. KCHS is based on a two-stage 
stratified cluster sampling procedure; however, we could 
not consider the cluster sampling features to simplify 
the simulation process. Nevertheless, this simplified 
sampling procedure appears to yield meaningful results 
because the sampling weights are available in the sample 
data sampled from the hypothetical population data.

Conclusion
Based on our findings from the simulation study, it seems 
that it is more appropriate to use aggregate-level data 
(the rate estimates) among the three types of data from 
the population-based health survey, when exploring 
spatial cluster detection with the spatial scan statistic. 
It is expected that more simulation studies will need to 
be performed by considering other sampling features, 
such as cluster sampling, to obtain more comprehensive 
results.
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