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Abstract: Medullary thyroid carcinoma (MTC) is a well-known neuroendocrine carcinoma, derived
from C cells of the thyroid gland. Additionally, MTC is an uncommon aggressive carcinoma that
metastasizes to lymph nodes, bones, lungs and liver. For MTC, the 10-year general survival ratio of
patients with localized disease is about 95%, whereas that of patients with local phase disorder is
around 75%. Only 20% of patients with distant metastasis to lung at diagnosis survive 10 years, which
is notably lower than survival for well-differentiated thyroid carcinoma (WDTC). The management
of MTC with distant metastasis to lung could be re-surgery or chemotherapy. In this research, we
planned to assess the in vitro and in vivo combinational anticancer effect of a novel combination
of low-dose cisplatin and sorafenib in patient-derived MTC. The patient-derived MTC cell lines
YUMC-M1, M2, and M3 were isolated and treated with a combination of cisplatin and sorafenib or
either agent alone. Cisplatin and sorafenib acted in combination to forward tumor restraint compared
with each agent administered alone at a low dose. Therefore, a combination of cisplatin and sorafenib
could be a new therapeutic approach for MTC.

Keywords: patient-derived medullary thyroid carcinoma; cisplatin; sorafenib; cytochrome c; apoptosis

1. Introduction

Thyroid carcinoma (TC), which accounts for more than 90% of total endocrine carcino-
mas, is the most common endocrine malignancy, and its incidence has increased over the
last four decades [1]. TC is categorized into four main subtypes: papillary TC (PTC), follicu-
lar TC (FTC), medullary TC (MTC), and anaplastic TC (ATC) [2–4]. MTC progresses from C
cells in the thyroid gland and is more aggressive and less differentiated than PTC or FTC [5].
MTC occurring from parafollicular cells is less typical than WDTC, making up between 2 [6]
and 5% [7] of all thyroid malignancies. Among MTC patients, 13–15% experience distant
metastasis, and the 10-year survival ratio was generally 20% [8,9]. Contrasted with differ-
entiated thyroid carcinoma (DTC), where the iodine avidity of follicular cells makes even
metastatic DTC compliant to therapy, parafollicular cells do not converge to iodine. Control
options for recurrent or metastatic cases were re-surgery, radiotherapy and chemother-
apy [10]. In addition, MTC is less common but encompasses aggressive malignancies
with a short-term survival and frequent drug-resistance against anticancer drugs [11]. The
fibroblast growth factor receptor (FGFR) signaling pathway is substantially induced in
MTC, with the transforming growth factor β-mediated epithelial–mesenchymal transition
(EMT) contributing to poor prognosis [12–14]. MTC usually has a good prognosis and
positive response to therapy, whereas the presence of several metastatic MTC indicates
a poor prognosis through early metastasis and recurrence, and these results can lead to
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patient death. The mission to improve the survival ratio and quality of life of patients
with untreatable metastatic MTC has produced noteworthy studies on other therapies.
The progress of targeted therapy has brought about major benefits in the control of such
patients. Here, two drugs, cisplatin and sorafenib, have been approved for use in advanced
or metastatic MTC [15,16]. According to the report of the NCI (National Cancer Institute),
sorafenib is a multi-kinase inhibitor available for promoting apoptosis and suppressing
tumor cell proliferation. This is a therapy for a certain type of thyroid cancer that targets
inhibition of cancer cell growth and new blood vessels [17]. Furthermore, cisplatin is used
to treat several types of cancer and is usually involved as a cytotoxic drug, increasing
cancer cell death through injuring DNA and preventing DNA synthesis [18]. Although, the
advance of cisplatin- and sorafenib-resistance in metastatic MTC is a crucial factor behind
the breakdown of conventional cancer treatment.

In this study, we aimed to investigate whether aggressive MTC can be suppressed
via the induction of cytochrome c-mediated apoptosis in response to the combinational
anticancer treatment of cisplatin and sorafenib at a low dose compared to each agent
administered alone. These findings could be clinically noticeable for the growth of novel
combinatorial strategies effectively targeting highly malignant cells such as metastatic MTC.
In particular, based on these findings, we are investigating the fundamental mechanism of
anticancer drug resistance to forward the expansion of new pharmaceutical composition to
address this problem.

2. Materials and Methods
2.1. Study Design and Ethical Considerations

This study was a retrospective, single-center analysis of patients diagnosed with MTC
(between January 2003 and December 2019), as detailed in our previous study [19]. All
procedures involving patients were performed in accordance with the institutional ethical
standards, all applicable local/national regulations, and the guidelines of the 1964 Helsinki
Declaration and its later amendments. In accordance with the Bioethics and Safety Act of
Korea, formal written consent was not required for this type of retrospective, observational
analysis. The study protocol was approved by the Institutional Review Board (IRB) of
Severance Hospital, Yonsei University College of Medicine (IRB protocol: 3-2019-0281).
Cell samples were obtained from patients at the Severance Hospital, Yonsei University
College of Medicine, Seoul, Korea.

2.2. Patients

Patients who were diagnosed with MTC were pathologically confirmed either through
surgery or open/core needle biopsy. Patients were followed up for at least 1–5 years or
until death.

2.3. Patient Tissue Specimens and Clinical Course

Fresh tumor tissues were collected from patients with histologically and biochemical
proven MTC who were treated at the Severance Hospital, Yonsei University College of
Medicine, Seoul, Korea. Fresh tumors were collected throughout surgical excision of MTC
metastatic and primary sites.

YUMC-M1 was a 24-year-old woman with sporadic MTC (stage II). The patient
underwent bilateral total thyroidectomy with central compartment neck dissection and
bilateral modified radical neck dissection and has been followed up for 71 months without
recurrence or metastasis.

YUMC-M2 was a 19-year-old female MEN2B MTC (stage IVa) patient with RET-gene
mutation. The patient underwent bilateral total thyroidectomy with bilateral modified
radical neck dissection and later confirmed her pheochromocytoma and underwent left
adrenalectomy. The patient has no metastasis to other organs, but she has been followed
for 76 months without her serum calcitonin normalization.
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YUMC-M3 was a 57-year-old man with sporadic MTC with lung, mediastinal and
axillary lymph nodes metastases (stage IVc). The patient underwent bilateral total thy-
roidectomy with bilateral modified radical neck dissection, mediastinal dissection via
partial sternotomy and axillary lymph node dissection. Since then, metastasis to the axillary
lymph nodes, retropharyngeal space, and lung has progressed, and he was treated with a
tyrosine kinase inhibitor, vandetanib.

2.4. Tumor Cell Isolation and Primary Culture

The patient-derived cancer cells were obtained from fresh tumors of patients. YUMC-
M1, M2 and -M3 and -M1 were obtained from medullary thyroid cancer patients treated
at the Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. These
patients were diagnosed with medullary thyroid cancer through fine-needle biopsy be-
fore surgery and histologically confirmed after surgery. Specimens were maintained and
transferred to the laboratory. Fat and non-tumor parts were eliminated and washed using
1× Hank’s Balanced Salt Solution. Cell viability was evaluated with the trypan blue dye.
Isolated tumor cells were authenticated with short tandem repeat profiling, karyotyping,
and isoenzyme analysis. Mycoplasmal contamination was checked for with the Lookout
Mycoplasma PCR detection kit (Sigma-Aldrich, St. Louis, MO, USA; MP0035). Further
protocol details are as described in our previous article [19].

2.5. mRNA-Seq Data

We pre-processed the raw values from the sequencer to discard low attribute and
adapter sequences before analysis and revised the procedure reads to Homo sapiens
(GRCh37) using HISAT v2.1.0. The detailed protocol can be found in our previous
article [19].

2.6. Statistical Analysis of Gene Expression Level

The comparative abundances of genes were calculated as read counts through StringTie.
We carried out the statistical analysis to discover differentially expressed genes with evalu-
ations of expression for each gene in the samples. The detailed protocol can be found in
our previous article [19].

2.7. Hierarchical Clustering

Hierarchical clustering was carried out with complete connect and Euclidean distance
as a determination of resemblance to show the expression patterns of separately shown
transcripts, which are gratified with |fold change| ≥ 2 and separate t-test raw p < 0.05.
The whole data analysis was carried out with R 3.5.1 (Vienna, Austria) (www.r-project.org,
accessed on 1 October 2021).

2.8. Protein–Protein Interaction

Protein–protein interaction (PPI) was performed through the String database (https:
//string-db.org/, accessed on 20 October 2021) and visualized with Cytoscape 3.8.2 (https:
//cytoscape.org/, accessed on 20 October 2021). PPI was classified by a combination score
(combination scores ≥ 0.4 were associated with the threshold value) and connecting whole
genes counts (>3 counts).

2.9. Cell Culture

YUMC-M1, M2, and M3, MTC cell lines were obtained from patient specimens. These
cells were cultured in RPMI-1640 medium including 15% fetal bovine serum (FBS; authenti-
cated by short tandem repeat profiling/karyotyping/isoenzyme analysis). The detailed
protocol can be found in our previous article [19].

www.r-project.org
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
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2.10. Cell Viability Assay

Cell viability was estimated by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl
tetrazolium Bromide) assay. Tumor cells were cultured in 96-well plates at 7 × 103 cells per
well. These cells were cultured overnight to accomplish 70–80% confluency. The indicated
drugs were added to achieve final concentrations of 0–40 µM. The detailed protocol can be
found in our previous article [19].

2.11. Cell Cycle Analysis Using Flow Cytometry

Cells were treated with a combination of cisplatin and sorafenib or either agent alone
in RPMI-1640 medium containing 15% FBS for 40 h. The cells were then harvested by
trypsinization and fixed in 70% ethanol. Further protocol details can be found in our
previous article [19].

2.12. Immunofluorescence Analysis and Confocal Imaging

The level of cytochrome c was evaluated by the immunofluorescence staining assay.
The primary antibody for the assay was anti-cytochrome c (1:25; Abcam, Cambridge,
UK) incubated in 3% bovine serum albumin in PBS. Nuclei were stained with Hoechst
33342 (Life Technologies, Grand Island, NY, USA). Images for immunofluorescence were
acquired using a confocal microscope (LSM Meta 700; Zeiss, Oberkochen, Germany) and
were analyzed with Zeiss LSM Image Browser, version 4.2.0121.

2.13. Cellular Fractionation

Cellular fractionation was performed with the NEPER Nuclear and Cytoplasmic
Extraction kit (Thermo Scientific, 78833, Waltham, MA, USA) in conformity with the
manufacturer’s instructions.

2.14. Immunoblot Analysis

Primary antibodies against CHOP (C/EBP homologous protein, marker of ER stress)
purchased from Cell Signaling (Cell Signaling Technology, Danvers, MA, USA); Bcl-2,
cytochrome c, and histone H2B purchased from Abcam (Abcam, Cambridge, UK); and
caspase 3 and β-actin purchased from Santa Cruz (Santa Cruz Biotechnology, CA, USA)
were maintained overnight at 4 ◦C. Blots were developed with ECL reagents (Pierce) and
exposed using Kodak X-OMAT AR Film (Eastman Kodak, Rochester, NY, USA) for 3–5 min.

2.15. Human MTC Cell Xenograft

All experiments were approved by the Animal Experiment Committee of Yonsei
University. YUMC-M1, M2, and M3 patient-derived MTC cells (5.4 × 106 cells/mouse)
were cultured in vitro and then injected subcutaneously into the upper left flank region
of female NOD/Shi-scid, IL-2Rγ KOJic (NOG) mice. After 15 days, tumor-bearing mice
were grouped randomly (n = 10 per group) and treated with 5 mg/kg cisplatin (p.o.) alone,
80 mg/kg sorafenib (p.o.) alone, and 2.5 mg/kg cisplatin and 40 mg/kg sorafenib in
combination. Tumor size was measured every three days using calipers. The detailed
protocol can be found in our previous article [19]. Whole experiments were confirmed by
the Animal Experiment Committee of Yonsei University.

2.16. Statistical Analysis

For statistical analysis of patient information, categorical changes were indicated as
frequency and proportion, while summary statistics (median, range) were used to report
consecutive results. Survival curves were produced through the Kaplan–Meier method
established on the log-rank test. The detailed protocol can be found in our previous
article [19].



Biomedicines 2022, 10, 1901 5 of 14

3. Results
3.1. Patient Disease Characteristics

From January 2003 to December 2019, 143 patients were operated on for medullary
thyroid cancer at Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Patient demographics and disease characteristics are presented in Figure 1A. The mean
age of the patients was 48.9 years, and 62.2% of patients were females. The primary tumor
diameter was 1.6 ± 1.5 cm, and tumor multiplicity was found in 26.6% of total patients.
Positive nodal status was observed in 43.3% of patients, and RET mutation was confirmed
in 25% patients. Median preoperative serum calcitonin and carcinoembryonic antigen levels
were 151.5 pg/dL (range: 1.5–8030.0 pg/dL) and 10.0 ng/mL (range: 0.8–642.7 ng/mL), re-
spectively. Serum calcitonin normalization (upper normal limit of 10 pg/mL) was found in
67.1% patients with MTC. Persistent and recurrent lesions were identified in 49 patients; of
these patients, 32 underwent surgery, 3 received external radiation therapy, and 7 received
chemotherapy. Of the patients who received chemotherapy, four received vandetanib, one
received sorafenib and adriamycin, one received cabozantinib, and one received epirubicin
and carboplatin. The median overall survival for 143 patients with MTC was 72.4 months
(range: 4.2–215.5 months; Figure 1A). The patient survival rate was 90.7% at 5 years and
79.7% at 10 years after detection of TC (Figure 1B).
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Figure 1. Information about patients treated for MTC in Severance Hospital: (A) patient charac-
teristics and clinical features, and (B) overall survival rate of patients with MTC. MTC, medullary
thyroid carcinoma.

3.2. Features of Patient-Derived MTC Cell Lines

Varied MTC cell lines were isolated from the patient specimens (Figure 2A); YUMC-
M1, M2, and M3 (first, second, and third isolated patient-derived MTC) were isolated from
patients with MTC treated at the Severance Hospital, Yonsei University College of Medicine,
Seoul, Korea. YUMC-M1, M2, and M3 were more aggressive than FTC, and metastasis
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was confirmed in these patients (Figure 2A). mRNA sequencing based on transcriptome
analysis to identify a series of diversely expressed genes revealed that YUMC-M1, M2,
and M3 cells were associated with a significant growth of the FGFR signaling pathway
and EMT markers (ZEB (Zinc finger E-box-binding homeobox), SNAIL (Zinc finger protein
SNAI1), and TWIST (twist family bHLH transcription factor)) were compared with YUMC-F1
(first isolated patient-derived FTC), as shown in Figure 2B. In MTC, the most remarkably
raised genes were FGF (Fibroblast growth factor), FGFR, ZEB, SNAIL, and TWIST (twist family
bHLH transcription factor) (Figure 2B). Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analysis demonstrated the FGFR signaling pathway and EMT interaction
(Figure 2C).
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subtypes of MTC cell lines. (B) Hierarchical clustering of annotated genes revealing distinct gene
expression. Gene expression profiles of patient–derived MTC cells. (C) KEGG pathways connecting
to the identified proteins reported in STRING database and connecting to MTC are highlighted (color
coded included in the figure). Protein–protein interactions were regenerated based on both known
and predicted interactions in MTC with STRING analysis. MTC, medullary thyroid carcinoma;
KEGG, Kyoto Encyclopedia of Genes and Genomes.

Taken together, the findings regarding MTC can be of outstanding value to therapeutic
trials and the administration of patients with aggressive TC.
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3.3. Combination of Cisplatin and Sorafenib Was More Efficacious Than Either Agent Alone

For evaluation of the combinational anticancer efficacy of cisplatin and sorafenib on
patient-derived MTC cells, we investigated the proliferation of YUMC-M1, M2, and M3
cells in either agent combined or alone. Cell viability was restrained more efficaciously with
a combination of cisplatin and sorafenib than with either agent alone in a dose-dependent
manner (Figure 3A). Notably, the co-treatment had a lower half-maximal inhibitory con-
centration (IC50) than that with cisplatin or sorafenib treatment alone in YUMC-M1, M2,
and M3 cells (Figure 3B). These results showed that co-treatment may offer a new clinical
approach for targeting aggressive MTC with low doses of existing anticancer drugs.
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Figure 3. Combinational anticancer effects of cisplatin and sorafenib in patient-derived MTC YUMC-
M1, M2, and M3 cells compared to the effects of each agent alone. (A) Cell viability with cisplatin and
sorafenib combined or each agent alone. All experiments were repeated at least thrice. Data represent
mean ± standard deviation. * p < 0.05 and ** p < 0.01 versus control. (B) IC50 values for the combina-
tion of cisplatin and sorafenib in patient-derived MTC, YUMC-M1, M2, and M3 cells. Each data point
signifies the mean of three independent MTT assays, performed in triplicate. SEM, standard error of
the mean; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; IC50, half-maximal
inhibitory concentration. The asterisk indicates lowest half-maximal inhibitory concentration.
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3.4. Cisplatin and Sorafenib Co-Treatment Increased Nuclear Translocation-Mediated Apoptosis in
YUMC-M1, M2, and M3 Cells

Next, we investigated the mechanism of the combinational anticancer effects of the
co-treatment with cisplatin and sorafenib in YUMC-M1, M2, and M3 cells. We analyzed
the expression levels of endoplasmic reticulum (ER) stress markers (C/EBP homologous
protein (CHOP)) and apoptotic signaling pathway markers (B-cell lymphoma 2 (Bcl-2) and
cleaved caspase 3) in YUMC-M1, M2, and M3 cells using flow cytometry, immunoblot-
ting (whole-cell lysate or cellular fractionation), and immunofluorescence analyses. The
combination of cisplatin and sorafenib at low doses significantly induced the sub-G0/G1
population, resulting in the induction of ER stress-mediated apoptosis (Figure 4A–C, right
panel) in YUMC-M1, M2, and M3 cells compared with either agent alone (Figure 4A–C, left
panel) and a strong inhibition of YUMC-M1, M2, and M3 cells. Immunoblot analysis of the
protein expression levels indicated that the co-treatment with cisplatin and sorafenib led
to a marked induction of CHOP and cleaved caspase 3 levels, which are active apoptosis
markers associated with ER stress, whereas compared with either agent alone, the co-
treatment at low doses resulted in a decrease in Bcl-2 level, which is a positive regulator of
anti-apoptosis. Immunofluorescence analysis showed that cytochrome c was translocated
to the nucleus, suggesting that the co-treatment with cisplatin and sorafenib increased
apoptosis via a cytochrome c-dependent pathway (Figure 4D). Immunoblot analysis after
cellular fractionation confirmed that cytochrome c was translocated to the nucleus after
the co-treatment or treatment with either agent alone (Figure 4E). To sum up, these results
showed that apoptosis was most caused by co-treatment with cisplatin and sorafenib
through caspase- and cytochrome c-dependent pathways in patient-derived MTC cell lines.
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Figure 4. Apoptosis analysis by quantitation of DNA content with propidium iodide and immunoblot
analysis. (A–C) Flow cytometry (left panel) and immunoblot analysis (right panel) of YUMC-M1, M2,
and M3 cells. Cells were exposed to the indicated inhibitors, harvested, and stained with propidium
iodide before analysis by flow cytometry and FlowJo version 8, Ashland, Dickinson and Company;
2021. Immunoblot analysis of the markers of endoplasmic reticulum stress, apoptosis, and anti-
apoptosis in patient-derived MTC cell lines, YUMC-M1, M2, and M3. (D,E) Cisplatin and sorafenib
highly induced nuclear translocation of cytochrome c-mediated apoptosis in patient-derived MTC
cell lines, YUMC-M1, M2, and M3. (D) Immunofluorescence examined at 40× magnification; scale
bar: 20 µm; and (E) subcellular fractionation analysis. Cytochrome c was most translocated and
accumulated in the nucleus in the cisplatin and sorafenib co-treatment group.

3.5. Cisplatin and Sorafenib Co-Treatment Remarkably Restrained Tumor Growth in Mouse
Xenograft Model with Patient-Derived MTC Cell Lines

To assessment the combinational in vivo anticancer effectiveness of the co-treatment
with cisplatin and sorafenib, we developed a mouse xenograft model with YUMC-M1, M2,
and M3 patient-derived MTC cell lines (Figure 5). We discovered that cisplatin or sorafenib
alone could restrain tumor growth, but compared with either agent alone, the co-treatment
clearly increased tumor shrinkage at low doses (Figure 5A,D,G). Appreciably, YUMC-M3
was not markedly impacted by cisplatin or sorafenib alone. Moreover, mice in the cisplatin
and sorafenib co-treatment group had significantly smaller excised tumor weight than that
of mice administered with cisplatin or sorafenib alone (Figure 5B,E,H). There was no proof
of systematic toxicity and death in any group. The body weight of mice did not remarkably
differ among all groups (Figure 5C,F,I).
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and sorafenib had no significant effect on mouse body weight. * p < 0.05 and ** p < 0.01, compared
with control.

Taken together, the combination of cisplatin and sorafenib indicated potent anticancer
effects in an aggressive patient-derived MTC cell xenograft model.

4. Discussion

The survival ratio of thyroid carcinoma is well-known as being the best among general
endocrine-mediated malignancies [20], and its onset rate is consistently growing world-
wide, as well as specifically in the Korea [20–23]. Thyroid carcinoma is poised to become the
fourth leading carcinoma worldwide [22]. For the past 20 years, the global age-standardized
incident ratio of thyroid carcinoma has raised by roughly 25% [22,24,25]. This worldwide
expansion has been ascribed to, e.g., raised factors, early disclosure of cancer, induced
environmental hazard elements, and iodine degrees [22]. MTC is known to be an uncom-
mon endocrine carcinoma that occurs in thyroid parafollicular C cells [26,27]. In particular,
various investigations have shown that advanced or metastatic MTC has demonstrated
refractory to almost medical therapies [28,29]. Metastasis of the MTC was via blood and lym-
phatic vessels, which had more aggressive clinical behavior than DTC. Rearranged during
Transfection (RET) gene mutation is known as a central molecular change in MTC [30–32].
In germline RET mutation, MTC is classified under three different phenotypes: familial
MTC, and multiple endocrine neoplasia types 2A and 2B (MEN2) [33,34]. Moreover, so-
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matic RET mutation stands as the major molecular change in almost all cases [35–37]. In
surgical cases, patients could choose whole thyroidectomy with prophylactic or remedial
pivotal section lymph node resection [38]. However, unfortunately, in the case of large
metastasis, especially in those with remarkably induced tumor growth, extra remedies
were required. Moreover, systemic treatment of advanced or metastatic MTC is limited at
present to administration of a tyrosine kinase inhibitor (TKI) [39–42]. Here, we report the
combinational anticancer efficacy of cisplatin and sorafenib at a low dose compared with
each treatment agent alone in patient-derived advanced MTC. Cytochrome c release from
mitochondria is a critical event for apoptotic death [43,44]. Distinctly, cytochrome c release
was significantly induced in the caspase-dependent apoptosis signaling pathway [45,46].
We indicted that release of cytochrome c from mitochondria most significantly increased
apoptosis, and progressively amassed in the nucleus as proven by both immunofluores-
cence and cellular fractionation after medication of cisplatin and sorafenib at a low dose.
Clinically aggressive MTCs lead to poor prognosis [47], considered as refractory carcinoma
subtypes owing to their aggressive behavior [48]. Accordingly, there is an imminent need
to investigate new clinical approaches for the remedy of aggressive MTCs.

In this research, we showed a prospective new therapy scheme for advanced MTC
(Figure 6). Of course, our proposal might be the tip of the iceberg to numerous clinical
approaches for therapy of advanced MTC. In particular, the study of patient-derived MTC
was difficult and limited. Nevertheless, if these challenges continue to pile up, there could
be a breakthrough for a clinical solution of advanced MTC. Clinically, these findings convey
critical implications for the progress of novel combinatorial strategies that target selective
drug-resistant cancer cells.
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5. Conclusions

According to the guidelines of the National Cancer Institute, cisplatin and sorafenib
are already well-known anticancer drugs. Although, in conventional cancer therapy, there
is no definite solution for treatment of recurrent or metastasis by refractory MTC. In these
research findings, the combinational anticancer consequences of the cisplatin and sorafenib
were more capable at low doses of each agent alone against patient-derived metastatic
MTC. These results could be practical in the design of prospective therapeutic trials and aid
the expansion of valuable therapies for patients with refractory MTC. However, research on
patient-derived refractory cancer cells is challenging and limited. However, these challenges
could be cause to a breakthrough in, and clinical solution to, refractory cancer therapy.
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