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Abstract: Doctors in primary hospitals can obtain the impression of lumbosacral radiculopathy with
a physical exam and need to acquire medical images, such as an expensive MRI, for diagnosis. Then,
doctors will perform a foraminal root block to the target root for pain control. However, there was
insufficient screening medical image examination for precise L5 and S1 lumbosacral radiculopathy,
which is most prevalent in the clinical field. Therefore, to perform differential screening of L5 and S1
lumbosacral radiculopathy, the authors applied digital infrared thermographic images (DITI) to the
machine learning (ML) algorithm, which is the bag of visual words method. DITI dataset included
data from the healthy population and radiculopathy patients with herniated lumbar discs (HLDs)
L4/5 and L5/S1. A total of 842 patients were enrolled and the dataset was split into a 7:3 ratio as
the training algorithm and test dataset to evaluate model performance. The average accuracy was
0.72 and 0.67, the average precision was 0.71 and 0.77, the average recall was 0.69 and 0.74, and the
F1 score was 0.70 and 0.75 for the training and test datasets. Application of the bag of visual words
algorithm to DITI classification will aid in the differential screening of lumbosacral radiculopathy
and increase the therapeutic effect of primary pain interventions with economical cost.

Keywords: bag of visual words; infrared thermography; lumbosacral radiculopathy; machine
learning

1. Introduction

In general, tests to diagnose lumbosacral radiculopathy include physical examination,
magnetic resonance imaging (MRI), and electromyography. However, radiculopathy cannot
be excluded from normal physical examination [1], and the diagnostic value of each of
these findings is insufficient [2]. MRI is more expensive than computed tomography (CT),
some researchers have insufficient MRI findings to diagnose radiculopathy [3], and many
asymptomatic subjects are misdiagnosed with herniated discs based on MRI findings [4].
Electromyography is a useful method to diagnose radiculopathy [5]. However, there is an
invasive aspect, which involves inserting a needle into the patient, thereby causing pain
during the examination. Otherwise, digital infrared thermographic imaging (DITI) showed
the functional changes of body temperatures noninvasively with economical cost and short
examination time.

In lumbar herniated discs, hypothermia is induced in the lesion area when compared
with the normal tissue because of the dysfunction of the autonomic nervous system [6].
DITI can objectively visualize changes in skin temperature in patients [7,8], especially
those undergoing radiculopathy [9]. DITI provides an accurate diagnosis by using a
thermodermatome to identify nerve roots; this helps clinicians in determining a treatment
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plan for lumbar discs [10]. Even though it uses thermatological characteristics, general
practitioners and nurses find it difficult to accurately read a DITI.

Research on artificial intelligence and deep learning is being conducted to improve
accuracy or to help diagnosis and treatment in various fields of medicine (radiology [11],
ultrasound [12], pathology [13], and others). In anesthesia, research is being conducted to
provide stable anesthesia through artificial intelligence and machine learning [14]. Artificial
intelligence supports the development of predictive models to estimate the risk of diabetes
and related complications, and it will help bring an element of personalized care in diabetes
management [15]. Recent studies have shown that deep learning becomes a very promising
adjunct in liver imaging tasks, which improves performance in detecting and evaluating
liver lesions, facilitating clinical treatment for liver ailments, and predicting liver treatment
response [16].

This study aimed to perform differential screening of L4-5 or L5-S1 discs, which
are high-frequency herniated lumbar discs (HLDs) [17,18], and patients from two to five
decades have a more than 90 percent chance of HLD occurring either at L4/5 or L5/S1
radiculopathy [19]. Because the dermatome is adjacent and it can be difficult to distinguish
it, the authors try to perform the analysis by applying machine learning such that commu-
nity medical personnel who are not spine specialists can help in conservative care, such as
foraminal block, for patients who were classified based on DITI without using expensive
equipment, such as MRI. Therefore, this machine learning algorithm helps clinicians accu-
rately determine the target of foraminal root block with the screening of HLD level. The
authors explored the infrared thermographic images of lumbosacral radiculopathy from a
multicenter database using machine-learning-based infrared thermographic software.

2. Materials and Methods
2.1. Dataset and IRBs

A total of 1282 patients who performed one-level discectomy from 2006 to 2020 were
retrospectively reviewed by specially trained spine surgeons, and 842 patients were enrolled
in this study. The use of patient data retrospectively for research purposes was approved,
and informed consent was waived by the Institutional Review Board at the National
Health Insurance Service Ilsan Hospital (IRB no.: 2021-07-030). The dataset (National
Reference Standard Korean Thermal Data Center at the National Health Insurance Service
Ilsan Hospital and Gangnam Severance Hospital) of patients who underwent one-level
discectomy was applied to develop and to externally validate a machine-learning-based
classification tool for thermographic images.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were: (1) patients who were diagnosed with one of the various
lumbar diseases, including lumbar disc herniation, at Ilsan Hospital from 2 March 2000
to 30 June 2021, and underwent DITI of the lower extremity; (2) those with at least one
of the following radiologic criteria preoperatively: diagnosed with HLD based on CT or
MRI images; and (3) those who findings were cross verified by a radiology specialist. The
included patients were divided into two groups according to the presence or absence of
HLD and whether or not they were classified as multiclass L4, L5, S1, or not.

The exclusion criteria were: (1) patients with diseases that can affect the skin tem-
perature of the lower extremities, such as diabetes, peripheral arterial occlusive disease,
and other endocrinology diseases; (2) those who underwent previous cervical or lumbar
surgery; and (3) those who had HLD L4/5 or L5/S1 with massive downward or upward
migration with different-level radiculopathy.

2.3. Clinical Data Collection, Labeling, Preprocessing, and Bag of Words Machine-Learning-Based
Classification Modeling

Each center retrospectively collected the clinical data, including information on diag-
nosis using DITI. DITI included lower extremity sequences, such as leg anterior, posterior,



Healthcare 2022, 10, 1094 3 of 8

and feet. The authors labeled the data HLD L4/5 patients undergoing DITI anterior, feet,
and posterior as 1, 2, and 3 sequentially, respectively, and HLD L5/S1 patients undergoing
DITI anterior, feet, and posterior were labeled 4, 5, and 6, respectively (Figure 1). The
authors split the DITI dataset into a 7:3 ratio as the training algorithm and test dataset
to evaluate model performance. In general, before training using machine learning, a
pre-processing process that makes an image required for the input process is mandatory,
and it is a very important process because the result of the output data after machine
learning varies depending on the data used for modeling. In this study, the DITI data were
standardized by removing the mean and scaling to unit variance with a python toolbox
(sklearn. preprocessing. StandardScaler). For applying the bag of words technique for
image classification, Matlab (The Math Works, Inc., MATLAB, version R2022a, Natick, MA,
USA) Computer Vision Toolbox™ functions for image category classification by creating
a bag of visual words were used. This process produces a histogram of visual word oc-
currences representing the image. These histograms are applied to train a labeled image
classifier. The steps are feature extraction, which selects feature point locations using the
grid method, and extracting speeded up robust features from the selected feature point
locations, k-means clustering (initial guess of 6,928,800 points and 500 centroid), codebook
generation, and learning and recognition (making the feature vector and support vector
machine (radial basis function kernel) classify an image set) [20]. As a computer environ-
ment for machine learning, an algorithm for classifying lumbar disc herniation at L4/5
and L5/S1 was evaluated using Python and Matlab. The central processing unit was AMD
Ryzen 7 PRO 4750G, the graphics processing unit (GPU) was NVIDIA’s Geforce RTX 3090
24 GB, and 64 GB of RAM was used.
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Figure 1. Representative DITI example and labeled sequences. HLD L4/5 patients undergoing
DITI anterior (A), feet (B), and posterior (C) were labeled 1, 2, and 3 sequentially, respectively, and
HLD L5/S1 patients undergoing DITI anterior (D), feet (E), and posterior (F) were labeled 4, 5,
and 6, respectively.

3. Results

A total of 842 patients participated in this study; 534 patients were categorized as HLD
L4/5 and 308 as L5/S1. Patient characteristics, including sex and age, are shown in Table 1.
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A slightly higher proportion of patients were aged over 50 years. Male patients were more
predominant than female patients among those aged under 50 years, and female patients
were more predominant than male patients among those aged over 50 years.

Table 1. Age and sex distribution of DITI data.

HLD L4/5 HLD L5/S1

Age Group Male Female Male Female

0–19 2 1 2 0
20–29 18 15 17 10
30–39 33 30 30 26
40–49 55 43 19 27
50–59 49 57 24 28
60–69 62 68 31 45

70 46 55 28 21
HLD, herniated lumbar disc; DITI, digital infrared thermographic image.

For differential screening of HLD L4/5 and HLD L5/S1, the bag of visual words
algorithm was applied to DITI. Extracting 6,928,800 features from DITI kept 80% of the
strongest features from each category. Image category 6 has the least number of strongest
features (n = 847,024). Using the strongest features from each of the other image categories,
k-means clustering was performed to create a 500-word visual vocabulary (Figure 2).
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Figure 2. Visual word occurrence of each label. HLD L4/5 patients undergoing DITI anterior (A), feet
(B), and posterior (C) and HLD L5/S1 patients undergoing DITI anterior (D), feet (E), posterior (F).
Visual word index and frequencies showed characteristics of each image using the bag of visual word
image classification algorithm.

Training an image category classifier for six categories and the model performance of
the machine learning algorithm were evaluated as a confusion matrix of the training and
test sets. Model performance for HLD L4/5 patients undergoing DITI anterior, feet, and
posterior, and for HLD L5/S1 patients undergoing DITI anterior, feet, and posterior was as
follows: precision: 0.47, 0.80, 0.48, 0.68, 1, and 0.85, respectively; recall: 0.54, 0.97, 0.59, 0.78,
0.81, and 0.44 (training dataset), respectively; precision: 0.62, 0.76, 0.57, 0.75, 0.98, and 0.93,
respectively; and recall: 0.74, 0.99, 0.66, 0.72, 0.76, and 0.57 (test dataset), respectively. The
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average accuracy was 0.72 and 0.67, the average precision was 0.71 and 0.77, the average
recall was 0.69 and 0.74, and the F1 score was 0.70 and 0.75 for the training and test datasets,
respectively (Figure 3).
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Figure 3. Confusion matrix of the training data set (A) and test data set (B). The average accuracy of
the training set (A) is 0.72, and that of the test set (B) is 0.68. The corresponding average precision is
0.71 and 0.77, respectively, the average recall is 0.69 and 0.74, respectively, and the F1 score is 0.70
and 0.75, respectively.

4. Discussion

This study showed that the average accuracy of the machine learning for the training
and test data sets was 0.72 and 0.68, respectively. The corresponding average precision was
0.71 and 0.77, respectively, and the average recall was 0.69 and 0.74, respectively.

Many people experience lumbar herniated discs [21,22]. Physical examination, MRI,
and electromyography are approaches commonly used to diagnose this disease. However,
there are limitations to diagnosis through physical examination [2]; MRI also has limited
diagnostic performance and is more expensive than CT [3]. Electromyography is also
limited in terms of its invasiveness, causing pain to patients. Hence, the authors used DITI
as an alternative diagnostic approach. To the best of our knowledge, this is the first study
to apply machine learning to DITI for performing differential screening and classifying L5
radiculopathy and S1 radiculopathy.

In previous reports, research on infrared thermography has been actively conducted in
other diseases. DITI can objectively visualize changes in skin temperature in patients, when
it is performed with the validated method [23,24]. On the other hand, Vreugdenburg et al.,
reported that DITI is not yet validated in breast examination, although DITI is still being
studied [25], and Mambou et al., reported that DITI can be applicable for breast can-
cer detection using a deep learning model [26]. Magalhaes et al., showed that infrared
thermography can also be used for skin cancer screening and monitoring of skin lesions
after treatment. However, early-stage melanoma identification is still not achievable [27].
Adam et al., showed that in diabetes patients, diabetic foot disease is an important com-
plication that causes disability and reduces quality of life. Therefore, early detection is
important for effective treatment, and various techniques based on infrared thermography
will aid in diagnosis; computer-aided diagnosis can also be useful [28]. Park et al., reported
that in carpal tunnel syndrome (CTS), DITI uses a different approach depending on the
disease duration and severity and may play a complementary role in understanding and
evaluating CTS [29]. DITI is also used in sports medicine. Al-Nakhli et al., reported that
exercise-induced muscle damage or delayed-onset muscle soreness occurs in athletes who
experience pain due to unexpected exercise without prolonged physical activity or who
exercise beyond their training limits. It is one of the most common forms of sports injuries.
They reported that measurement ambiguity can be resolved with infrared thermogra-
phy [7]. Infrared thermography was also applied on the spine area. Zhang et al., showed
the correlation of back pain with changes in the thermatome [8]. Cho et al., performed
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statistical analysis and showed that the sensitivity to clinical symptoms was 88.6% and the
accuracy of surgical findings was 86.4% in patients with multiple disc lesions, which is of
particular clinical value in diagnosing recurrent disc lesions [30]. Ryu et al., used DITI for
neurilemmoma of the deep peroneal nerve for the compression test [31].

In Figure 3, the accuracy of the DITI anterior and posterior HLD L4/5 is mainly
deteriorated in the process of image discrimination of the developed algorithm. Perhaps
this is because the left and right sides are not added as labels. Park et al., reported that the
other confusing factors are that DITI shows hyperthermia sometimes on the side of the
lesion rather than the thermal pattern of the extremities on the side of the lesion shows
hypothermia compared with the opposite, usually when in the acute phase, trauma, and
severe pain [32]. Considering those points, if it is applied to the feet of HLD L4/5 and L5/S1
patients, the patient’s history, such as symptom duration, and pain scale, the accuracy will
be better. That is, when distinguishing between HLD L4/5 and L5/S1 based on machine
learning, it may be technically useful to first determine the DITI of the feet. It would be
more accurate if the accuracy was evaluated with two labels on the feet of HLD L4/5 and
L5/S1 patients. Considering the real-world DITI acquisition condition, the authors believe
that it was meaningful to test the performance of the bag of visual words by performing a
multi-classification experiment. As a research topic in the next study, if the related DITI
data of one disease label are reduced to two labels using a recurrent neural network and is
sequential in an anterior–posterior–feet manner, then the accuracy may further improve.

In this study, there were two limitations. First, the data set is not large enough to
train the machine learning model with six labels. Because this study is multi-class machine
learning classification, more data will be needed for better accuracy with representatives.
Second, balanced accuracy is not so high (approximately 70%) for clinical application.
Despite the limitations, the national standard DITI data center has the largest DITI cohort,
and now the authors have attempted to label more data with a trained labeler and spine
specialist. This study aimed to focus on screening and supporting community-based
healthcare, not on specialized diagnosis. Therefore, it would be valuable to obtain those
results for a supporting aspect.

Considering screening purpose, authors can analyze the medical cost comparison in
the follow-up study. Although the price is slightly different for each hospital, MRI in the
lumbar region is about 500 $ and DITI is about 100 $ in the Korean medical field. Authors
will further compare the mathematical expenses between MRI and DITI for lumbosacral
radiculopathy screening using national healthcare service data.

5. Conclusions

In conclusion, the bag of visual words as a machine learning method needs to be im-
proved with the amount of data to overcome the ambiguity of DITI followed by individual
time-periodic sympathetic variations and increase the therapeutic effect of primary pain
interventions with economical cost. In the future, the authors can improve the accuracy of
a multi-class classification and perform the medical cost analysis.
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