
Could Machine Learning Better Predict Postoperative
C5 Palsy of Cervical Ossification of the Posterior

Longitudinal Ligament?
Soo Heon Kim, MD,* Sun Ho Lee, MD, PhD,† and Dong Ah Shin, MD, PhD*

Study Design: This was a retrospective cohort study.

Objective: The objective of this study was to investigate whether
machine learning (ML) can perform better than a conventional
logistic regression in predicting postoperative C5 palsy of cer-
vical ossification of the posterior longitudinal ligament (OPLL)
patients.

Summary of Background Data: C5 palsy is one of the most
common postoperative complications after surgical treatment of
OPLL, with an incidence rate of 1.4%–18.4%. ML has recently
been used to predict the outcomes of neurosurgery. To our
knowledge there has not been a study to predict postoperative C5
palsy of cervical OPLL patient with ML.

Methods: Four sampling methods were used for data balancing.
Six ML algorithms and conventional logistic regression were
used for model development. A total of 35 ML prediction model
and 5 conventional logistic prediction models were generated.
The performances of each model were compared with the area
under the curve (AUC). Patients who underwent surgery for
cervical OPLL at our institute from January 1998 to January
2012 were reviewed. Twenty-five variables of each patient were
used to make a prediction model.

Results: In total, 901 patients were included [651 male and 250
female, median age: 55 (49–63), mean±SD: 55.9 ± 9.802].
Twenty-six (2.8%) patients developed postoperative C5 palsy.
Age (P= 0.043), surgical method (P= 0.0112), involvement of
OPLL at C1–3 (P= 0.0359), and postoperative shoulder pain
(P≤ 0.001) were significantly associated with C5 palsy. Among
all ML models, a model using an adaptive reinforcement learn-
ing algorithm and downsampling showed the largest AUC (0.88;

95% confidence interval: 0.79–0.96), better than that of logistic
regression (0.69; 95% confidence interval: 0.43–0.94).

Conclusions: The ML algorithm seems to be superior to logistic
regression for predicting postoperative C5 palsy of OPLL patient
after surgery with respect to AUC. Age, surgical method, and
involvement of OPLL at C1–C3 were significantly associated
with C5 palsy. This study demonstrates that shoulder pain im-
mediately after surgery is closely associated with postoperative
C5 palsy of OPLL patient.
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Ossification of the posterior longitudinal ligament
(OPLL) is a disease caused by fibrosis, calcification,

and OPLL of the spine.1–3 It was once considered a unique
disorder in Asians, but it is now recognized as a disease
occurring in people of various ethnicities.4–7 While the
exact mechanism is unknown, its progression leads to a
narrowing of the spinal canal and compression of the
spinal cord, which eventually requires surgical decom-
pression. Surgical options include anterior corpectomy
with fusion, posterior laminectomy with fusion, and ex-
tensive laminoplasty. However, these are considered
technically demanding and associated with serious com-
plications. C5 palsy is one of the most common post-
operative complications after surgical treatment of
cervical OPLL.4,8–10

C5 palsy is a weakness of the deltoid or biceps
brachii by at least 1 grade in the manual muscle test
without deterioration of lower extremity function.11,12 It
occurs soon after surgery, which significantly reduces the
quality of life.13 Its incidence is not rare, ranging from
1.4% to 18.4%.9 However, the exact mechanism has not
been established, and a few hypotheses have been
proposed.14 Thus, to date, the treatment of C5 palsy relies
on uncertain hypotheses and experiences, not mechanism-
based methods. Therefore, the ability to predict C5 palsy
in advance will allow for better decision-making in the
type of surgery or earlier treatments for prevention.

Machine learning (ML) has recently been used
to predict the outcomes of neurosurgery.15–23 Because
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clinical data is often large, manual analysis requires a lot
of human resources. ML can be used to discover hidden
patterns by self-learning with a given algorithm to analyze
large-scale clinical data. The use of ML in medicine is
increasing owing to its ability to process large data and
transform the analysis into clinical insights, which ulti-
mately leads to better outcomes, lower costs, and higher
patient satisfaction.17,24 Furthermore, the use of ML has
been increasing in the field of spinal surgery.21–23,25–32

However, there have been no ML studies on postoperative
C5 palsy after surgical treatment of cervical OPLL
patients.

This study aims to investigate whether ML can
perform better than conventional logistic regression in
predicting postoperative C5 palsy after surgical treatment
of cervical OPLL patients.

METHODS

Patient Demographics
A retrospective analysis was performed in patients

who underwent surgery for cervical OPLL at our institute
from January 1998 to January 2012. The Human Research
Protection Center of our university waived off the need for
institutional review board approval. The patients were en-
rolled according to the following criteria: (1) age 18 years
and above, (2) symptomatic cervical OPLL, (3) imaging
evidence of cervical OPLL, and (4) follow-up for at least
12 months. We excluded nonsurgical cases and patients
with spinal cord injury, neoplastic disease, active infection,
congenital disorder, or inflammatory disease. Patients who
underwent occipitocervical or cervicothoracic fusion were
also excluded.

Baseline Data
A total of 25 variables were examined. The variables

were divided into demographic, clinical, radiologic, oper-
ation, and postoperative variables. The demographic
variables included age, sex, and previous spine surgery.
The clinical variables included posterior neck pain, rad-
icular arm pain, tingling sensation, numbness, weakness,
myelopathy, and Japanese Orthopedic Association (JOA)
scores. The radiologic variables included number of in-
volved levels, involved segments (C1–C3, C4–C5, and C6–
C7), and cervical OPLL types (continuous, segmental,
mixed, and circumscribed). The operative variables in-
cluded surgical methods (open-door laminoplasty, French-
door laminoplasty, posterior fusion, anterior fusion, and
combined fusion) and postoperative shoulder pain that
was newly developed within 24 hours after surgery. The
primary outcome measure was postoperative C5 palsy,
which was defined as a weakness of the deltoid or biceps
brachii by at least 1 grade in the manual muscle test
without deterioration of lower extremity function. Patients
who did not develop C5 palsy were defined as a
control group.

Data Processing
To balance the small size of the C5 palsy group with

that of the control group, the following 4 resampling
methods were used: upsampling, downsampling, synthetic
minority oversampling technique, and random over-
sampling examples (ROSE). A total of 5 datasets includ-
ing the original dataset, were created for the development
of each model.

Model Development
Two types of models were developed. Model 1 in-

cluded all variables. In model 2, postoperative shoulder
pain was excluded. In other words, model 1 implies peri-
operative prediction, which forecast C5 palsy after ob-
serving whether the patient develop postoperative
shoulder pain. In contrast, model 2 implies preoperative
prediction, which presume C5 palsy before the surgery.
Therefore, the importance of postoperative shoulder pain
in predicting C5 palsy could be derived from comparison
between models 1 and 2.

To reduce overfitting, models were developed using
5-fold cross-validation, which randomly allocated each
dataset as either a training set (80%) or validation set
(20%).17 The results were averaged, and the SDs were
calculated.

We used 6 ML algorithms—decision tree, random
forest, artificial neural network (ANN), gradient boosting
machine (GBM), adaptive reinforcement learning (ADA),
and support vector machine using radial kernel (SVM).
We also performed logistic regression to compare it with
the ML algorithms. Each algorithm was applied to pre-
pared 5 datasets (original dataset+4 sampled dataset). As
a result, 30 ML models and 5 logistic regression models
were developed for each model 1 and 2. At last, 35 types
of model 1 and 35 types of model 2 were prepared for
performance analysis.

Statistical Analysis
The performances of the ML algorithms and logistic

regression were compared using a receiver operating
characteristic curve, the area under the curve (AUC),
sensitivity, specificity, predictive values, and 95% con-
fidence interval (CI). The performance of the best model
was displayed in a confusion matrix. A P-value <0.05 was
considered statistically significant. The χ2 test and Fisher
exact test were used to identify significant differences be-
tween categorical variables. The Wilcoxon rank-sum test
was used to compare the median of continuous variables
between groups. RStudio (R Foundation for Statistical
Computing, Vienna, Austria) was used for data process-
ing, model creation, and statistical analysis.

RESULTS

Patient Demographics
A total of 901 OPLL patients were treated with

surgery. Among them, 26 (2.8%) patients developed post-
operative C5 palsy. The patients’ baseline characteristics
are shown in Table 1. Age, surgical method, involvement
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of OPLL at C1–C3, surgical methods, and presence of
postoperative shoulder pain were significantly associated
with C5 palsy. Patients in the C5 palsy group were on an
average 5 years older than those in the control group
(59.58± 9.03 vs. 55.75± 9.81 y, P= 0.043). Involvement of
OPLL at C1–C3 was observed about 1.5 times more in the
C5 palsy group than in the control group (52.23% vs.
73.08%, P= 0.0359). C5 palsy was significantly associated

with surgical methods (P= 0.0112). Among surgical
methods, C5 palsy were more frequent in the posterior
approach. In posterior approach, regardless of specific
method, incidence of postoperative C5 palsy were about 2
times higher than anterior approach [open-door lam-
inoplasty, right: 15.38% (palsy group) vs. 8.57% (control
group); open-door laminoplasty, left: 15.38% vs. 9.37%;
French-door laminoplasty: 3.85% vs. 1.71%; laminectomy
with fusion: 7.69% vs. 4.11%; anterior cervical discectomy
and fusion or anterior cervical corpectomy and fusion:
57.69% vs. 54.63%]. No patient with a combined approach
developed C5 palsy. Postoperative shoulder pain was ob-
served about 3 times more in the C5 palsy group than in
the control group (53.9% vs. 18.6%, P< 0.001).

Performance of Prediction Models
The overall performance of model 1, based on the

AUC, ranged from 0.88 (95% CI: 0.79–0.96) for a com-
bination of ADA algorithm and downsampling to 0.38
(95% CI: 0.34–0.41) for a combination of ROSE sampling
and ADA or GBM algorithms (Table 2). Among the ML
models, the ADA algorithm using downsampling showed
the largest AUC (0.88; 95% CI: 0.79–0.96), which was
larger than that of the best logistic regression model (0.69;
95% CI: 0.43–0.94) (Fig. 1). The overall performance of
model 2, based on the AUC, ranged from 0.81 (95% CI:
0.68–0.94) for a combination of downsampling and ADA
algorithm to 0.38 (95% CI, 0.34–0.41) for the combination
of ROSE sampling and GBM algorithm or upsampling
and random forest algorithm. Among the ML models, the
ADA algorithm using downsampling showed the largest
AUC (0.81; 95% CI, 0.68–0.94), which was larger than
that of the best logistic regression model (0.55; 95% CI:
0.33–0.78).

Model Validation
In the best ML model 1 (ADA algorithm with

downsampling), of the 5 cases of C5 palsy in the test set, 1
was incorrectly predicted. The accuracy and error rate
were 94.3% and 5.7%, respectively. The sensitivity, speci-
ficity, positive predictive value, and negative predictive
value were 80%, 83.53%, 12.5%, and 99.3%, respectively.
The effect of exclusion of postoperative shoulder pain was
studied using the best ML model 2 (ADA algorithm with
downsampling). Of the 5 cases of C5 palsy in the test set, it
incorrectly predicted 3 patients. The accuracy and error
rate were 89.1% and 10.9%, respectively. The sensitivity,
specificity, positive predictive value, and negative pre-
dictive value were 40%, 90.6%, 11.1%, and 98.1%, re-
spectively. The exclusion of postoperative shoulder pain
resulted in a deterioration of performance, except speci-
ficity (Table 3).

Significance of Variable
The average weighted sum of improvement in error

by each variable during model training was calculated.
The variable showing the largest improvement of in error
were given 100% importance, and the importance of other
variables were represented as relative values.33 In best ML

TABLE 1. Demographics of Patients in the C5 Palsy and
Control Groups

n (%)

Characteristic
Nonpalsy
(N= 875)

Palsy
(N= 26) P

Age [median (range)] 55 (49–62) 60 (53–66) 0.043
Sex
Male 630 21
Female 245 5 0.325

Duration [median (range)] 6 (3–24) 13 (11–15) 0.082
Previous cervical disease 36 (4.11) 0 0.6199
Previous lumbar disease 49 (5.6) 1 (3.85) 1
Posterior neck pain 469 (53.91) 14 (53.85) 0.995
Right arm pain 453 (52.07) 13 (50) 0.8352
Left arm pain 465 (53.51) 14 (53.85) 0.973
Tingling sensation 618 (71.12) 20 (76.92) 0.519
Numbness 447 (51.5) 11 (42.31) 0.3556
Weakness 473 (54.43) 17 (65.38) 0.2688
Myelopathy 581 (67.09) 20 (76.92) 0.292
Preoperative JOA score [median (range)]
Total 12 (11–15) 13 (11–15) 0.680
I 2 (2–4) 2 (2–4) 0.320
II 3 (2–4) 3 (3–4) 0.686
III_A 1 (1–2) 2 (1–2) 0.185
III_B 1 (1–2) 2 (1–2) 0.185
III_C 2 (1–2) 2 (1–2) 0.226
IV 3 (2–3) 3 (2–3) 0.605

No. involved level 4 (3–5) 4 (3–5) 0.183
OPLL type
Continuous 75 (8.68) 1 (3.85) 0.4852
Segmental 374 (43.39) 9 (34.62)
Mixed 268 (31.02) 9 (34.62)
Circumscribed 147 (17.01) 7 (26.92)

OPLL involvement
at C1, C2, C3

457 (52.23) 19 (73.08) 0.0359

OPLL involvement
at C4, C5

848 (96.91) 25 (96.15) 0.5651

OPLL involvement
at C6, C7

754 (86.17) 21 (80.77) 0.3937

Operation method 0.0112
Laminoplasty—right

open door
75 (8.57) 4 (15.38)

Laminoplasty—left
open door

82 (9.37) 4 (15.38))

Laminoplasty—French
door

15 (1.71) 1 (3.85)

LMSF 36 (4.11) 2 (7.69)
ACDF or ACCF 478 (54.63) 15 (57.69)
Anterior and posterior

combined
189 (21.6) 0 (0.00)

Postoperative shoulder
pain

163 (18.63) 14 (53.85) < 0.0001

Significant P <0.05 values are in bold.
ACCF indicates anterior cervical corpectomy and fusion; ACDF, anterior

cervical discectomy and fusion; JOA, Japanese Orthopedic Association; LMSF,
lateral mass screw fixation and fusion; OPLL, ossification of the posterior longi-
tudinal ligament.
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model 1 (ADA algorithm with downsampling), the sig-
nificant variables included postoperative shoulder pain
(100.0%), surgical methods (95.0%), JOA score (72.7%),
myelopathy (68.5%), and weakness (66.9%). In best ML
model 2 (ADA algorithm with downsampling), the sig-
nificant variables included surgical methods (100.0%),
JOA score (76.5%), myelopathy (72.1%), weakness
(70.5%), and age (62.6%) (Fig. 2).

DISCUSSION
In this study, we showed that ML algorithms seems

to be superior to logistic regression for predicting
postoperative C5 palsy in terms of AUC. Our result was
consistent with previous studies which argued the superi-
ority of ML in spine surgery. Merali et al28 reported that a
ML model using the random forest method was able to
predict the surgical outcome of degenerative cervical
myelopathy with an AUC of 0.7. Arvind et al25 reported
that a ML model using the ANN method was able to
predict postoperative complications of anterior cervical
discectomy and fusion with an AUC of 0.518–0.979. Kim
et al27 reported that a ML model using the ANN method
was able to predict postoperative complications of poste-
rior lumbar fusion with an AUC of 0.567–0.710. Based on
these studies, ML algorithms are promising tools for
predicting surgical outcome and complications.

This study revealed that age was significantly associated
with C5 palsy; patients in the C5 palsy group were older than
those in the control group. Nassr et al34 investigated risk fac-
tors of C5 palsy after various cervical spine surgery and found
that age was significantly associated with C5 palsy in anterior
cervical corpectomy. Nori et al35 reported that among patients
who received cervical laminectomy or laminoplasty, patients in
the C5 palsy group were significantly older than those in the
nonpalsy group (70.4±7.2 vs. 62.7±10.8 y). In both anterior
and posterior approach, older age was a risk factor of post-
operative C5 palsy, and it is similar with the results of
our study.

Our study showed that involvement of OPLL at C1–C3
was significantly associated with C5 palsy, which was sur-
prising because we hypothesized that involvement of OPLL at
C4–C5 would be associated with C5 palsy. However, a pre-
vious study reported a similar finding; Minoda et al36 reported
that only anterior cord compression at C3 was significantly
associated with postoperative C5 palsy after French-door
laminoplasty. Although the exact mechanism of C5 palsy is
still unknown, several hypotheses have been proposed. The
suggested mechanisms include direct injury to the nerve root,
traction injury by extradural tethering, spinal cord dysfunction,
and reperfusion injury after spinal cord ischemia.37–40 The
association between cervical levels and C5 palsy requires

FIGURE 1. Comparison of area under curve of the conven-
tional logistic regression model with the best machine learning
models that were generated for models 1 and 2.

TABLE 2. Comparison of Area Under the Curve Values Between Machine Learning and Logistic Regression Models

Sampling
Method

Logistic
Regression

Decision
Tree

Random
Forest ANN SVM

Gradient Boosting
Machine

Adaptive
Reinforcement

Learning

Model 1
Original 0.69 (0.43–0.94) 0.50 0.71 (0.47–0.94) 0.66 (0.36–0.95) 0.61 (0.30–0.91) 0.77 (0.63–0.91) 0.71 (0.51–0.92)
Down 0.58 (0.32–0.84) 0.76 (0.64–0.89) 0.71 (0.49–0.93) 0.75 (0.62–0.89) 0.47 (0.30–0.65) — 0.88 (0.79–0.96)
Up 0.62 (0.38–0.87) 0.53 (0.51–0.55) 0.51 (0.18–0.84) 0.46 (0.19–0.73) 0.64 (0.34–0.93) 0.63 (0.41–0.86) 0.71 (0.51–0.91)
SMOTE 0.67 (0.43–0.91) 0.64 (0.30–0.99) 0.80 (0.69–0.91) 0.64 (0.33–0.95) 0.64 (0.43–0.85) 0.74 (0.54–0.95) 0.81 (0.70–0.93)
ROSE 0.59 (0.37–0.82) 0.40 (0.37–0.43) 0.40 (0.37–0.43) 0.66 (0.43–0.89) 0.72 (0.43–1.000) 0.38 (0.34–0.41) 0.38 (0.34–0.41)

Model 2
Original 0.40 (0.20–0.59) 0.50 0.60 (0.57–0.63) 0.57 (0.54–0.60) 0.48 (0.17–0.78) 0.65 (0.42–0.88) 0.61 (0.38–0.85)
Down 0.55 (0.33–0.78) 0.76 (0.64–0.89) 0.66 (0.34–0.99) 0.61 (0.37–0.85) 0.50 (0.34–0.66) — 0.81 (0.68–0.94)
Up 0.47 (0.27–0.66) 0.54 (0.52–0.56) 0.38 (0.14–0.61) 0.47 (0.23–0.71) 0.57 (0.29–0.86) 0.59 (0.38–0.80) 0.60 (0.40–0.79)
SMOTE 0.51 (0.33–0.69) 0.54 (0.30–0.78) 0.60 (0.41–0.80) 0.59 (0.39–0.80) 0.52 (0.34–0.70) 0.70 (0.51–0.88) 0.62 (0.47–0.76)
ROSE 0.53 (0.35–0.71) 0.400 (0.37–0.43) 0.40 (0.37–0.43) 0.52 (0.52–0.79) 0.57 (0.25–0.90) 0.38 (0.34–0.41) 0.465 (0.45–0.48)

ANN indicates artificial neural network; Down, downsampling; Original, original data (no sampling); ROSE, random oversampling examples; SMOTE, synthetic
minority oversampling technique; SVM, support vector machine; Up, upsampling.
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further anatomic and physiological studies. According to our
result, when dealing with high proximal level (C1–C3) OPLL,
spine surgeon should have in mind that the risk of
postoperative C5 palsy is higher than other cervical level.

In this study, postoperative shoulder pain was sig-
nificantly associated with C5 palsy. In contrast to Nassr et al34

who included increased postoperative pain in C5 dermatome
in their definition of C5 palsy, postoperative shoulder pain

preceded deltoid weakness in OPLL patients who were treated
with surgery in our study. Hashimoto et al41 report a similar
finding that among 17 patients who developed C5 palsy after
anterior cervical discectomy and fusion, 16 patient presented
posterior neck and shoulder pain before muscle weakness.
According to our result, postoperative shoulder pain seems to
represent the beginning stages of a developing C5 palsy. This
result can be applied clinically. We recommend preventively
administering a steroid to patients who have new shoulder pain
immediately after surgery even if C5 palsy is not yet evident
because postoperative shoulder pain predict the development
of a full-blown palsy. Dombrowski et al42 reported that peri-
operative dexamethasone administration at the initial incision
and every 8 hours for 24 hours postoperatively helped to sig-
nificantly reduce cases of C5 palsy compared with the group
without perioperative dexamethasone administration (3.6% vs.
9.5%). They suggested perioperative inflammation as potential
pathogenesis of C5 palsy in addition to direct nerve injury.34

Combination of their result that steroid was effective in pre-
venting postoperative C5 palsy and our result that post-
operative shoulder pain is a signal forecasting possible C5
palsy produce a practice that might be helpful in a clinical
setting. Therefore, we recommend preventively administering
steroids to patients who have shoulder pain immediately after
surgery, even if C5 palsy is not yet evident.

To summarize, spine surgeon facing the operation of
OPLL patients could weigh up the risk of C5 palsy according
to our study. OPLL Patients with older age, high proximal
index level (C1–C3), and who is a candidate for posterior
approach should be warned before surgery that they may
develop C5 palsy after surgery. Surgeons may use known
preventive measures including C4/C5 foraminotomy43–45 or
intraoperative intravenous steroid.42 In addition, if shoulder
pain develops newly after surgery, we may look carefully
whether the patient does not develop C5 palsy.

Our study has some limitations. First, only age, surgical
method, involvement of OPLL at C1–C3, and postoperative
shoulder pain were significantly associated with C5 palsy.
However, we included other variables that were not sig-
nificantly associated with C5 palsy in developing the prediction
model. Second, C5 palsy group was so smaller compared with
the control group (n=26, 2.8%). Although we used sampling
methods, data imbalance is not completely solved. Therefore,
there is a high likelihood for overfitting in model development
due to inclusion of >20 variables, along with so fewer number
of C5 palsy group. The multicenter study could recruit more
C5 palsy patient and improve the inherent error from small
sample size. Third, there was no independent testing set for
model validation. Although, we conducted cross-validation in
model development, the performance of these models in a
nontraining cohort is unknown. Fourth, we used only AUC as
criteria for model comparison. However, calibration and de-
cision curve analysis is other critical metric for the prediction
model. Our study is not free from criticism.

CONCLUSIONS
The ML algorithm seems to be superior to logistic

regression for predicting postoperative C5 palsy of OPLL

FIGURE 2. Importance of variables in best models of model 1
(A) and model 2 (B). JOA indicates Japanese Orthopedic
Association; OPLL, ossification of the posterior longitudinal
ligament.

TABLE 3. Validation of Best Machine Learning Model
Actual C5 Palsy (+) Actual C5 Palsy (−)

Predicted C5 palsy (+) 4 28
Predicted C5 palsy (−) 1 142
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patient after surgery with respect to AUC. Age, surgical
methods, and involvement of OPLL at C1–C3 were sig-
nificantly associated with C5 palsy. This study demonstrates
that shoulder pain immediately after surgery is closely as-
sociated with postoperative C5 palsy of OPLL patient.
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