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� Accurate hepatocellular carcinoma (HCC) risk pre-

diction is helpful in reducing mortality.
� Existing HCC risk scores usually include a few

known risk factors and preselected parameters.
� Machine learning allows for direct selection of

predictive parameters without subjective
preselection.

� HCC ridge score (HCC-RS) built from machine
learning modelling has higher accuracy than
existing HCC risk scores.

� HCC-RS may be incorporated into electronic med-
ical health systems to facilitate real-time update of
HCC risk.
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Novel machine learning models generated accurate
risk scores for hepatocellular carcinoma (HCC) in pa-
tients with chronic viral hepatitis. HCC ridge score was
consistently more accurate than existing HCC risk
scores. These models may be incorporated into elec-
tronic medical health systems to develop appropriate
cancer surveillance strategies and reduce cancer
death.
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Background & Aims: Accurate hepatocellular carcinoma (HCC) risk prediction facilitates appropriate surveillance strategy
and reduces cancer mortality. We aimed to derive and validate novel machine learning models to predict HCC in a territory-
wide cohort of patients with chronic viral hepatitis (CVH) using data from the Hospital Authority Data Collaboration Lab
(HADCL).
Methods: This was a territory-wide, retrospective, observational, cohort study of patients with CVH in Hong Kong in
2000–2018 identified from HADCL based on viral markers, diagnosis codes, and antiviral treatment for chronic hepatitis B
and/or C. The cohort was randomly split into training and validation cohorts in a 7:3 ratio. Five popular machine learning
methods, namely, logistic regression, ridge regression, AdaBoost, decision tree, and random forest, were performed and
compared to find the best prediction model.
Results: A total of 124,006 patients with CVH with complete data were included to build the models. In the training cohort
(n = 86,804; 6,821 HCC), ridge regression (area under the receiver operating characteristic curve [AUROC] 0.842), decision tree
(0.952), and random forest (0.992) performed the best. In the validation cohort (n = 37,202; 2,875 HCC), ridge regression
(AUROC 0.844) and random forest (0.837) maintained their accuracy, which was significantly higher than those of HCC risk
scores: CU-HCC (0.672), GAG-HCC (0.745), REACH-B (0.671), PAGE-B (0.748), and REAL-B (0.712) scores. The low cut-off (0.07)
of HCC ridge score (HCC-RS) achieved 90.0% sensitivity and 98.6% negative predictive value (NPV) in the validation cohort. The
high cut-off (0.15) of HCC-RS achieved high specificity (90.0%) and NPV (95.6%); 31.1% of patients remained indeterminate.
Conclusions: HCC-RS from the ridge regression machine learning model accurately predicted HCC in patients with CVH.
These machine learning models may be developed as built-in functional keys or calculators in electronic health systems to
reduce cancer mortality.
Lay summary: Novel machine learning models generated accurate risk scores for hepatocellular carcinoma (HCC) in patients
with chronic viral hepatitis. HCC ridge score was consistently more accurate than existing HCC risk scores. These models may
be incorporated into electronic medical health systems to develop appropriate cancer surveillance strategies and reduce
cancer death.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Chronic viral hepatitis (CVH) is the seventh leading cause of
mortality globally, responsible for 1.45 million deaths in 2013.
The consequences of chronic hepatitis B and C infection—
cirrhosis and liver cancer—account for 94% of deaths associated
with hepatitis.1,2 Hepatocellular carcinoma (HCC) is the second
most common cause of cancer death in the Asia-Pacific region.3

Approximately 78% of HCC cases are caused by CVH.4,5 The
World Health Organization (WHO) published the first global
health sector strategy on viral hepatitis in June 2016, setting the
goals to reduce CVH incidence and mortality by 90% and 65%,
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respectively, by 2030.6 Health ministries around the world have
planned various strategies and action plans working towards
such targets.

In Hong Kong, the Chief Executive’s 2017 Policy Address
instructed to set up the Steering Committee on Prevention and
Control of Viral Hepatitis to formulate strategies that effectively
prevent and control viral hepatitis.7 The Steering Committee
advises the Government on policies and cost-effective, targeted
strategies for prevention and control of viral hepatitis.8 The Hong
Kong Viral Hepatitis Action Plan 2020–2024 was published in
October 2020 to set out the strategic plan for reducing the
burden of CVH through effective prevention, treatment, and
control of viral hepatitis.9 Therefore, a comprehensive review of
the disease burden of CVH and accurate prediction of HCC would
provide pivotal data to the Government and the Steering Com-
mittee to guide strategies and action plans, ultimately to achieve
the goals set by WHO.

Although most HCC risk prediction models have been devel-
oped using traditional regression analysis,10 machine learning is
fast becoming a competitive alternative.11 Machine learning is a
comprehensive tool that has arisen in recent years for model
development, which allows direct selection of predicting pa-
rameters among all available parameters without subjective
preselection and maximises data use while minimising bias. In
this study, we aimed to develop novel clinical and laboratory
parameter-based prediction models using machine learning al-
gorithms to define the risk levels of HCC in patients with CVH.
These models can potentially be incorporated into computer-
based management systems to facilitate clinical assessment
and risk stratification of HCC in patients with CVH.
Patients and methods
Study design and data source
We performed a territory-wide, registry cohort study using data
from the Hospital Authority Data Collaboration Lab (HADCL),
Hong Kong. As announced in the Hong Kong Chief Executive’s
2017 Policy Address, the Hospital Authority (HA) is establishing a
Big Data Analytics Platform to support the formulation of
healthcare policies, facilitate biotechnological research, and help
improve clinical and healthcare services.12 HADCL was set up as a
new alternative channel for more flexible and interactive data
sharing in HA, providing a secured collaboration platform be-
tween HA and external parties for deeper data analysis within a
controlled environment and for conducting health data collab-
oration projects.12 HADCL has been open for applications by ac-
ademic institutions since October 2018 and was formally
launched in December 2019. The current study was 1 of the first
pilot projects. HADCL provides comprehensive yet anonymised
and de-identified data of clinical parameters, namely, de-
mographics, inpatient admissions, transfers and discharges,
outpatient appointments, diagnosis, procedures, medications,
laboratory tests and results, radiology examinations, clinical
notes and summaries, radiology reports, and radiology images
from all public hospitals and clinics in Hong Kong.13

Patients
We included all patients with CVH, that is, chronic hepatitis B
(CHB) and chronic hepatitis C (CHC), from 1 January 2000 to 31
December 2018. CHB was defined as positive HBsAg for at least 6
months; and/or by the International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis
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codes; and/or by use of antiviral treatment for CHB. CHC was
defined as positive antibody to HCV (anti-HCV), and/or as
detectable HCV RNA and/or HCV genotype, and/or by ICD-9-CM
diagnosis codes, and/or by use of antiviral treatment for CHC
(Tables S1 and S2).

Patients with missing date of birth or baseline date; coin-
fected with HDV based on ICD-9-CM diagnosis codes, viral and/
or serological markers; and/or coinfected with HIV based on ICD-
9-CM diagnosis codes were excluded (Table S1). Patients were
followed up until death, diagnosis of HCC or hepatic events, last
follow-up date (31 December 2018), or 15 years of follow-up,
whichever came first. The study protocol was approved by the
Joint Chinese University of Hong Kong–New Territories East
Cluster Clinical Research Ethics Committee.
Data collection
Data were retrieved from HADCL from May 2019 to August 2020.
Baseline date was defined as the date of first diagnosis of CHB or
CHC by viral markers, ICD-9-CM codes, or antiviral drugs,
whichever came first. Demographic data including sex and date
of birth were captured. At baseline, liver biochemistries, and
haematological and virological parameters were collected.
Thereafter, serial liver biochemistries as well as viral markers
(HBsAg, HBeAg, HBV DNA, and HCV RNA) were collected until the
last follow-up date (Table S3). Data on other relevant diagnoses,
procedures, concomitant drugs, and laboratory parameters were
also retrieved.

Antiviral treatment for CHB included oral nucleos(t)ide ana-
logues (NAs), such as entecavir, tenofovir disoproxil fumarate,
tenofovir alafenamide, adefovir dipivoxil, lamivudine and telbi-
vudine, and (pegylated)-interferon for any duration. Antiviral
treatment for CHC included (pegylated)-interferon with or
without ribavirin, direct-acting antivirals (DAAs) such as asu-
naprevir, daclatasvir, dasabuvir/ombitasvir/paritaprevir, elbasvir/
grazoprevir, glecaprevir/pibrentasvir, sofosbuvir, sofosbuvir/
ledipasvir, sofosbuvir/velpatasvir, and sofosbuvir/velpatasvir/
voxilaprevir for any duration (Table S2). The medication use was
defined as those prescribed and dispensed for at least 4 weeks
during the study period, identified by drug codes used in HA
internally. The severity of liver fibrosis was assessed with serum
formulae, namely, aspartate aminotransferase (AST)-to-platelet
ratio index (APRI), Forns index, and Fibrosis-4 (FIB-4) in sub-
groups of patients with complete data for these formulae
(Table S4).14 Advanced liver fibrosis was defined as APRI >−2, FIB-4
>−3.25, or Forns index >−8.4.

15
Definitions of events
The primary event was HCC, identified based on diagnosis codes
(155.0 [hepatocellular carcinoma] and 155.2 [carcinoma of the
liver]) or procedure codes for HCC treatment according to ICD-9-
CM codes retrieved from the Clinical Data Analysis and Reporting
System (CDARS). Secondary events were hepatic events, defined
based on ICD-9-CM codes of ascites, spontaneous bacterial
peritonitis, variceal bleeding, hepatorenal syndrome, hepatic
encephalopathy, liver transplantation, and/or liver-related mor-
tality (Table S1). Liver cirrhosis was identified using ICD-9-CM
diagnosis codes for cirrhosis and hepatic events at or before
baseline (Table S1). The use of single ICD-9-CM codes for diag-
nosis was found to be 99% accurate when referenced to clinical,
laboratory, imaging, and endoscopy results from electronic
medical records.16
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Statistical analysis
Data were analysed using SPSS version 25.0 (SPSS, Inc., Chicago,
IL, USA), SAS (9.4; SAS Institute Inc., Cary, NC, USA), and R soft-
ware (3.5.1; R Foundation for Statistical Computing, Vienna,
Austria). Continuous variables were expressed in mean ± SD or
median (IQR), as appropriate, whereas categorical variables were
presented as n (%). Qualitative and quantitative differences be-
tween subgroups were analysed using Chi-square or Fisher’s
exact tests for categorical parameters, and Student’s t test or the
Mann–Whitney U test for continuous parameters, as appropriate.
Qualitative and quantitative differences between ordinal sub-
groups were analysed using the Chi-square test for linear trend
or Fisher’s exact tests for categorical parameters and one-way
ANOVA or the Kruskal–Wallis test for continuous parameters,
as appropriate. Cumulative incidences of primary and secondary
endpoints with adjustment of competing death were estimated
with 95% CI. Hazard ratios and adjusted hazard ratios (aHRs)
with 95% CI were estimated with Fine–Gray proportional sub-
distribution hazards regression with adjustment of competing
death.17

The cohort was randomly split into training and validation
cohorts in a 7:3 ratio. An additional external validation was also
performed in an independent cohort of Korean patients. Five
popular machine learning methods, namely, logistic regression,
ridge regression, AdaBoost, decision tree, and random forest,
were performed and compared to find the best prediction
model.18 These machine learning algorithms were chosen as
these supervised machine learning models are desirable for
ensembling, that is, combining the predictions of multiple
machine learning models to produce an accurate prediction.18

Logistic regression is 1 of the binary classifiers widely used in
various medical applications. Ridge regression is applicable in
scenarios where independent variables are highly correlated.
AdaBoost is a meta-algorithm used in conjunction with many
other types of learning algorithms to improve performance.
All patients with chronic viral
hepatitis available in Hong Kong
healthcare system in 2000-2018

N = 266,017

All CHB/CHC patients
included in final analysis

n = 148,377

2000-2004
n = 25,662

CHB = 19,060
CHC = 5,362

CHB+CHC = 1,240

2005-2009
n = 34,905

CHB = 29,809
CHC = 3,694

CHB+CHC = 1,402

2010-2013
n = 41,474

CHB = 37,011
CHC = 3,279

CHB+CHC = 1,18

117,640 sub

Fig 1. Selection of patients with CHB in the final analysis. CHB, chronic hepat
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Decision tree trains a tree-like classifier in which each node
depends on a variable as an easily interpretable classification
model. Random forest ensembles multiple decision trees,
which increases the generalisation accuracy.18 These machine
learning methods have been used to identify patients with
NAFLD in the general population11 and patients with peptic
ulcer bleeding.19 The machine learning models were built first
by including all 46 available parameters, followed by a group of
most predictive parameters via supervised feature selection
with filter methods. These techniques look at the intrinsic
properties of features and use statistical techniques to evaluate
the relationship between a predictor and the target variable.
The subset of best ranked parameters was then used for model
training. We employed the default hyperparameters in the
Scikit-learn Python package (Table S5) and did not perform any
fine tuning. Machine learning models were trained using
training dataset and tested using evaluation (test) dataset. The
evaluation dataset was the test dataset. A detailed description
of what was exactly used, and how to formulate these trees, is
provided in Table S5. For the implementation, we employed the
popular Scikit-learn machine learning package. The default
parameters of each model were used, as listed in Table S5. The
accuracy of the models was assessed by the area under the
receiver operating characteristic curve (AUROC). Dual cut-offs
were selected to achieve 90% sensitivity and 90% specificity to
rule out and rule in patients with HCC, while maximising the
corresponding specificity and sensitivity, respectively. The
model with the highest AUROC in the validation cohort was
treated as the most predictive model. This model was also
compared with common HCC risk scores, namely, CU-HCC
score, GAG-HCC score, REACH-B score, PAGE-B score, and
REAL-B score.10 All statistical tests were 2-sided. Statistical
significance was taken as a 2-sided p value of <0.05. Values of p
for pairwise comparisons were adjusted using Bonferroni
correction.
4

2014-2017
n = 46,336

CHB = 41,010
CHC = 4,476

CHB+CHC = 850

•  93,951 with missing baseline date
•  1,611 age <18
•  136 hepatitis DE
•  12,751 acute hepatitis
•  9,141 other hepatitis
•  42 baseline year not in year 2000-2018

jects excluded

itis B; CHC, chronic hepatitis C.

3vol. 4 j 100441



Table 1. Baseline clinical characteristics of patients with CHV first diagnosed at different periods from 2000 to 2018.

Chronic hepatitis B (N = 126,890) Chronic hepatitis C (N = 16,811)

Period 2000–2004 2005–2009 2010–2013 2014–2018 2000–2004 2005–2009 2010–2013 2014–2018

No. of patients n = 19,060 n = 29,809 n = 37,011 n = 41,010 p value n = 5,362 n = 3,694 n = 3,279 n = 4,476 p value

Male sex (n, %) 12,175 (63.88) 18,746 (62.89) 22,425 (60.59) 24,521 (59.79) <0.001 3,343 (62.3) 2,616 (70.8) 2,268 (69.2) 3,089 (69.0) <0.001
Age (years) 48.33 (15.49) 51.31 (14.43) 54.00 (14.17) 58.12 (14.24) <0.001 51.4 (17.4) 54.7 (15.6) 56.5 (15.5) 57.0 (14.7) <0.001
Platelet (×109/L)* 200.38 (99.19) 211.88 (90.63) 211.09 (83.18) 214.67 (96.33) <0.001 209.0 (105.9) 211.2 (104.3) 210.9 (98.3) 218.7 (100.0) <0.001
Prothrombin time (s)* 12.68 (3.67) 12.01 (3.20) 12.06 (7.49) 12.47 (3.36) <0.001 12.4 (3.7) 12.3 (5.4) 12.6 (7.7) 12.5 (3.6) 0.341
Albumin (g/L)* 38.26 (6.57) 40.21 (6.09) 40.27 (5.88) 39.40 (6.20) 0.034 36.2 (6.6) 36.9 (6.7) 37.7 (6.5) 38.1 (6.2) <0.001
Total bilirubin (lmol/L)* 11.30 (8.00–17.46) 12.00 (8.00–17.00) 11.60 (8.00–16.00) 11.00 (8.00–16.00) <0.001 10.0 (7.00–16.0) 11.4 (8.00–17.0) 11.0 (8.00–16.0) 11.0 (8.00–16.0) <0.001
ALT (IU/L)* 38.00 (23.00–71.00) 33.00 (21.00–59.00) 31.00 (20.00–51.00) 28.00 (18.00–48.00) <0.001 33.00 (18.00–67.00) 38.00 (21.00–71.00) 36.00 (21.00–65.00) 36.90 (22.00–65.90) <0.001
AST (IU/L)* 40.00 (26.00–71.00) 32.00 (23.00–50.00) 30.00 (22.00–46.00) 29.00 (21.00–46.00) <0.001 42.00 (25.00–72.00) 42.00 (27.00–71.00) 40.00 (26.00–67.20) 39.00 (26.00–65.00) 0.187
APRI 1.90 (6.28) 1.02 (3.45) 0.93 (2.64) 1.10 (6.12) <0.001 1.5 (5.3) 1.3 (2.7) 1.2 (2.0) 1.2 (4.0) 0.057
Forns index 6.05 (2.70) 5.83 (2.34) 5.95 (2.21) 6.32 (2.34) <0.001 7.3 (2.4) 7.1 (2.4) 7.0 (2.5) 6.6 (2.3) <0.001
FIB-4 0.75 (1.98) 0.55 (1.93) 0.62 (2.05) 0.84 (4.53) <0.001 0.6 (1.3) 0.7 (1.7) 0.8 (1.7) 0.8 (4.3) 0.085
AFP (lmol/L)* 4.40 (3.–10.00) 3.59 (2.–6.69) 3.02 (2.–5.35) 3.01 (2.–5.15) <0.001 6.2 (3.–15.1) 5.3 (3.–13.0) 4.5 (3.–9.0) 4.1 (3.–7.6) <0.001
Positive HBeAg (n, %)† 647 (35.63) 1,949 (29.19) 2,953 (22.75) 2,236 (18.25) <0.001
Missing (%) 17,244 (90.47) 23,131 (77.60) 24,031 (64.93) 28,756 (70.12)
HBV DNA (IU/L)* 5.26 (1.13) 1.60 (2.49) 0.50 (1.20) 0.15 (0.49) <0.001
Missing (%) 18,970 (99.53) 29,751 (99.81) 36,605 (98.90) 39,910 (97.32)
Advanced liver disease

APRI >−2 552 (19.59) 1,017 (9.87) 948 (7.92) 1,307 (8.99) <0.001 174 (16.2) 172 (13.7) 168 (14.6) 131 (9.6) <0.001
FIB-4 >−3.25 98 (3.48) 176 (1.71) 246 (2.05) 447 (3.08) <0.001 21 (2.0) 40 (3.2) 44 (3.8) 39 (2.9) 0.071
Forns index >−8.4 163 (22.42) 609 (14.82) 725 (13.63) 1,211 (16.58) <0.001 50 (35.0) 101 (27.9) 114 (29.1) 99 (18.6) <0.001

Comorbidities‡ (n, %)
Diabetes mellitus 2,856 (14.98) 5,326 (17.87) 7,985 (21.57) 11,244 (27.42) <0.001 926 (17.3) 739 (20.0) 687 (21.0) 983 (22.0) <0.001
Hypertension 4,180 (21.93) 9,566 (32.09) 14,000 (37.83) 18,744 (45.71) <0.001 1,240 (23.1) 1,320 (35.7) 1,248 (38.1) 1,776 (39.7) <0.001
Cardiovascular disease 2,667 (13.99) 4,600 (15.43) 7,468 (20.18) 10,020 (24.43) <0.001 922 (17.2) 811 (22.0) 795 (24.2) 1,081 (24.2) <0.001
Malignancy <0.001

Colorectal cancer 147 (0.77) 473 (1.59) 661 (1.79) 1,082 (2.64) <0.001 26 (0.5) 28 (0.8) 22 (0.7) 35 (0.8) 0.24
Lung cancers 149 (0.78) 469 (1.57) 635 (1.72) 1,101 (2.68) <0.001 28 (0.5) 45 (1.2) 58 (1.8) 52 (1.2) <0.001
Urinary/renal malignancies 36 (0.19) 99 (0.33) 141 (0.38) 209 (0.51) <0.001 10 (0.2) 16 (0.4) 12 (0.4) 16 (0.4) 0.18
Cervical cancer (female only) 12 (0.06) 66 (0.22) 66 (0.18) 134 (0.33) <0.001 3 (01) 5 (0.1) 0 (0.0) 8 (0.2) n.a.
Breast cancer 141 (0.74) 504 (1.69) 595 (1.61) 897 (2.19) <0.001 9 (0.2) 10 (0.3) 12 (0.4) 19 (0.4) 0.101
Lymphoma 199 (1.04) 310 (1.04) 618 (1.67) 1,583 (3.86) <0.001 8 (0.1) 19 (0.5) 12 (0.4) 12 (0.3) 0.017

Chronic kidney disease 475 (2.49) 550 (1.85) 812 (2.19) 1,149 (2.80) <0.001 199 (3.7) 139 (3.8) 84 (2.6) 113 (2.5) 0.001

Descriptive statistics were calculated after subtraction of missing data from denominator. Total bilirubin, ALT, AST, alpha-foetoprotein, APRI, and FIB-4 are expressed in median (IQR), whereas other continuous variables are expressed in mean ±
SD. Statistical tests involved: chi-square test, Fisher’s exact test, Student’s t test, Mann-Whitney test, one-way ANOVA, Kruskal-Wallis.
AFP, alpha-fetoprotein; ALT, alanine aminotransferase APRI, aspartate aminotransferase-to-platelet ratio index; AST, aspartate aminotransferase; CHV, chronic viral hepatitis; FIB-4, Fibrosis-4; ICD-9, International Classification of Diseases, Ninth
Revision.
* Data were log-transformed before missing value imputation was performed. Values of p were also calculated based on log-transformed values.
† Percentages were computed based on non-missing values.
‡ Comorbidities were all defined based on ICD-9 diagnosis codes.
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Table 2. Cox regression model for the factors associated with various clinical outcomes in patients with complete data for at least 1 of the serum fibrosis formulae.

Parameters

Chronic hepatitis B Chronic hepatitis C

Univariate Multivariable Univariate Multivariable

HR 95% CI p value aHR 95% CI p value HR 95% CI p value aHR 95% CI p value

HCC

Male sex 2.68 (2.49–2.89) <0.001 2.23 (1.98–2.50) <0.001 0.98 (0.82–1.17) 0.819 1.70 (1.54–1.87) <0.001
Age (years) 1.02 (1.01–1.02) <0.001 1.02 (1.02–1.03) <0.001 1.03 (1.03–1.04) <0.001 1.04 (1.04–1.05) <0.001
Albumin (g/L) 0.95 (0.95–0.96) <0.001 0.98 (0.97–0.98) <0.001 0.99 (0.98–1.00) 0.117 0.95 (0.95–0.96) <0.001
ALT (>ULN) 2.59 (2.44–2.75) <0.001 1.77 (1.61–1.94) <0.001 2.83 (2.37–3.38) <0.001 0.89 (0.82–0.98) 0.015
Positive HBeAg 1.42 (1.28–1.57) <0.001 1.46 (1.31–1.62) <0.001 – – – – – –

Antiviral treatment 1.79 (1.69–1.90) <0.001 1.68 (1.53–1.84) <0.001 0.05 (0.01–0.18) <0.001 1.79 (1.51–2.11) <0.001
Advanced liver fibrosis 3.22 (3.02–3.42) <0.001 1.41 (1.25–1.58) <0.001 2.90 (2.45–3.43) <0.001 1.34 (1.19–1.50) <0.001

Hepatic events (non-HCC)

Male sex 1.57 (1.48–1.67) <0.001 1.32 (1.20–1.46) <0.001 0.76 (0.66–0.87) <0.001 0.87 (0.76–1.01) 0.067
Age (years) 1.02 (1.02–1.02) <0.001 1.01 (1.01–1.02) <0.001 1.02 (1.01–1.02) <0.001 1.00 (1.00–1.01) 0.066
Albumin (g/L) 0.92 (0.92–0.92) <0.001 0.95 (0.94–0.95) <0.001 0.95 (0.94–0.96) <0.001 0.96 (0.95–0.97) <0.001
ALT (>ULN) 1.94 (1.83–2.04) <0.001 1.28 (1.18–1.40) <0.001 2.12 (1.85–2.44) <0.001 1.50 (1.30–1.74) <0.001
Positive HBeAg 1.17 (1.06–1.29) 0.002 1.17 (1.06–1.30) 0.002 – – – – – –

Antiviral treatment 1.18 (1.11–1.25) <0.001 1.01 (0.93–1.11) 0.758 0.04 (0.01–0.13) <0.001 0.06 (0.02–0.19) <0.001
Advanced liver fibrosis 4.34 (4.10–4.59) <0.001 1.25 (1.13–1.40) <0.001 4.01 (3.51–4.59) <0.001 1.56 (1.32–1.85) <0.001

Death

Male sex 1.47 (1.42–1.53) <0.001 1.54 (1.43–1.66) <0.001 1.22 (1.11–1.33) <0.001 1.70 (1.54–1.87) <0.001
Age (years) 1.05 (1.05–1.05) <0.001 1.04 (1.04–1.04) <0.001 1.04 (1.04–1.05) <0.001 1.04 (1.04–1.05) <0.001
Albumin (g/L) 0.91 (0.91–0.91) <0.001 0.93 (0.93–0.94) <0.001 0.94 (0.94–0.95) <0.001 0.95 (0.95–0.96) <0.001
ALT (>ULN) 1.01 (0.97–1.05) 0.693 0.93 (0.87–1.00) 0.037 0.90 (0.82–0.97) 0.011 0.89 (0.82–0.98) 0.015
Positive HBeAg 0.76 (0.70–0.83) <0.001 0.92 (0.85–1.01) 0.069 – – – – – –

Antiviral treatment 3.00 (2.89–3.12) <0.001 2.32 (2.17–2.48) <0.001 1.22 (1.04–1.43) 0.017 1.79 (1.51–2.11) <0.001
Advanced liver fibrosis 2.45 (2.35–2.56) <0.001 1.41 (1.29–1.53) <0.001 1.80 (1.63–1.98) <0.001 1.34 (1.19–1.50) <0.001

aHR, adjusted hazard ratio; ALT, alanine aminotransferase; HCC, hepatocellular carcinoma; HR, hazard ratio; ULN, upper limit of normal.
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Table 3. Parameters used to develop the machine learning models.

Parameters All
(N = 46)

Selected mode 1
(n = 36)

Selected mode 2
(n = 20)

Male sex U U U

Age U U U

Platelet U U U

Albumin U U U

Total bilirubin U U U

ALT U U U

AST U

Alpha-foetoprotein U

International normalized ratio U

Creatinine U

Gamma glutamyl transferase U

Total cholesterol U

HbA1c U

Fasting glucose U

HBV DNA U

Positive HBeAg U

Cirrhosis U U U

Cardiovascular disease U U

Colorectal cancer U U

Lung cancers U U

Urinary/renal malignancies U U

Cervical cancer U U

Breast cancer U U

Lymphoma U U

Chronic kidney disease U U U

Osteopenia U U

Osteoporosis U U

Diabetes mellitus U U U

Hypertension U U U

Anticoagulants U U

ACEI/ARB U U U

Antiplatelet agents U U U

Beta blockers U U U

Histamine-2 receptor antagonist U U

Insulin U U U

Immunosuppressant U U

Loop diuretics U U

Metformin U U U

NSAID U U

Other lipid-lowering agents U U U

Other oral hypoglycaemic agents U U U

Proton pump inhibitor U U U

Potassium sparing diuretics U U

Statins U U U

Sulphonylurea U U U

Thiazides U U

ACEI, angiotensin-converting-enzyme inhibitor; ALT, alanine aminotransferase; ARB, angiotensin receptor blocker; AST, aspartate aminotransferase; CTP, Child–Turcotte–Pugh;
HbA1c, haemoglobin A1c.

Table 4. AUROC and the 95% CI of the machine learning models in training and validation cohorts to HCC.

Machine learning model

Training cohort*
(N = 86,804, HCC = 6,821)

Validation cohort†

(N = 37,202, HCC = 2,875)

20 selected
parameters

36 selected
parameters All parameters

20 selected
parameters

36 selected
parameters All parameters

Logistic regression 0.814 ± 0.006 0.829 ± 0.006 0.825 ± 0.006 0.818 ± 0.009 0.832 ± 0.009 0.829 ± 0.009
Ridge regression‡ 0.817 ± 0.005 0.839 ± 0.005 0.842 ± 0.005 0.821 ± 0.009 0.840 ± 0.009 0.844 ± 0.009
AdaBoost 0.822 ± 0.006 0.828 ± 0.006 0.828 ± 0.006 0.824 ± 0.009 0.833 ± 0.009 0.832 ± 0.009
Decision tree§ 0.877 ± 0.005 0.884 ± 0.005 0.800 ± 0.005 0.802 ± 0.010 0.819 ± 0.010 0.818 ± 0.010
Random forest‡,§ 0.987 ± 0.003 0.991 ± 0.003 0.992 ± 0.003 0.807 ± 0.010 0.821 ± 0.010 0.821 ± 0.010

AUROC, area under the receiver operating characteristic curve; HCC, hepatocellular carcinoma.
* AUROC of the 5 machine learning algorithms were overall difference in the training cohort, p <0.05.
† AUROC of the 5 machine learning algorithms were overall difference in the validation cohort, p <0.05.
‡ AUROC higher than decision tree in the validation cohort, p <0.05.
§ AUROC higher than logistic regression and AdaBoost in both cohorts, p <0.05.
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Results
Demographic characteristics
We identified 266,017 patients with viral hepatitis; 117,640 pa-
tients were excluded according to inclusion and exclusion
criteria (Fig. 1). In total, 148,377 patients with CVH (126,890
patients with CHB, 16,811 patients with CHC, and 4,676 patients
with both CHB and CHC; Fig. 1) were included in the final
analysis. The cohorts were predominantly male, and most pa-
tients had compensated liver disease. The prevalence of key
comorbidities generally increased over time (Table 1).
Antiviral treatment
More than 40% of patients with CHB had received antiviral
treatment by 2018. The increase in the cumulative treatment
uptake first became obvious from 2005–2009 to 2010–2013
(from 12.05% to 17.76%), and then it dramatically increased in
2014–2018 (from 17.76% to 40.64%) (Table S6). The majority
(51,191/51,572; 99.3%) of these patients received NAs as antiviral
treatment; whereas only 981/51,572 patients (1.9%) received
conventional or pegylated interferon as antiviral treatment.
More than 30% of patients with CHC had received antiviral
treatment by 2018. The majority (5,219/5,660; 92.2%) of these
patients received conventional or pegylated interferon and
ribavirin as antiviral treatment, whereas only 441/5,660 patients
(7.8%) received DAAs as antiviral treatment as these only became
available in Hong Kong in late 2013.

Among 44,193 patients with CHB with complete data for APRI,
Forns, and/or FIB-4 indices, 5,849 patients (13.2%) had advanced
liver fibrosis (Table S7). There appeared to be a trend for
decreasing prevalence of advanced liver fibrosis, as evidenced by
any of these 3 indices (from 21.8% in 2000–2004 to 13.6% in
2014–2018), by APRI >−2 over the years (from 19.6% in 2000–2004
to 9.0% in 2014–2018), and by Forns index >−8.4 (from 22.4% in
2000–2004 to 16.6% in 2014–2018). Only small proportions of
patients (1.7–3.5%) were defined to have advanced liver fibrosis
by FIB-4 >−3.25; hence, an obvious trend was demonstrated.
Treatment indication according to alanine aminotransferase
(ALT) above 2 times the upper limit of normal (ULN) also
decreased over time, from 25.0% in 2000–2004 to 12.6% in
2014–2018.

Among 5,249 patients with CHC with complete data for APRI,
Forns, and/or FIB-4 indices, 903 (17.2%) patients had advanced
liver fibrosis (Table S7). There was also a trend for decreasing
prevalence of advanced liver fibrosis as evidenced by any of these
3 indices (from 18.6% in 2000–2004 to 10.2% in 2014–2018), by
APRI >−2 over the years (from 16.3% in 2000-2004 to 9.6% in
2014–2018), and by Forns index >−8.4 (from 35.0% in 2000–2004
to 18.6% in 2014–2018). Again, only small proportions of patients
were defined to have advanced liver fibrosis by FIB-4 >−3.25
(2.0–3.8%).
Predictors of HCC, hepatic events, and death
By univariate and multivariable analyses, all well-established
risk factors for HCC (namely, male sex, advanced age, hypo-
albuminaemia, raised ALT, positive HBeAg, advanced liver
fibrosis) were identified in patients with CHB (Table 2). The aHR
was 1.41 (95% CI 1.25–1.58, p <0.001) for advanced liver fibrosis.
Antiviral treatment was found to be a risk factor, which was
likely explained by prescription bias whereby patients at higher
risk of HCC (viz, cirrhosis and more active hepatitis) would have
received antiviral therapy. Similar risk factors for hepatic events
7vol. 4 j 100441
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and death were identified, with aHRs for advanced liver fibrosis
of 1.25 (95% CI 1.25–1.58, p <0.001) and 1.41 (95% CI 1.29–1.53, p
<0.001), respectively (Table 2).

Using univariate and multivariable analyses, we identified all
well-established risk factors for HCC (viz, male sex, advanced age,
hypoalbuminaemia, and advanced liver fibrosis) in patients with
CHC (Table 2). The aHR was 1.34 (95% CI 1.19–1.50, p <0.001) for
advanced liver fibrosis. Antiviral treatment was again found to be
a risk factor, which was likely because this had been preferen-
tially offered to patients with more advanced liver disease.
Elevated ALT was an independent risk factor for hepatic events
but not for HCC and death. Similar risk factors for hepatic events
and death were identified, with aHRs for advanced liver fibrosis
of 1.56 (95% CI 1.32–1.85, p <0.001) and 1.34 (95% CI 1.19–1.50, p
<0.001), respectively (Table 2).

Machine learning models to predict HCC
A cohort of 124,006 patients was included to build the models,
by including all 46 available parameters, with 36 or 20 selected
parameters with best predictive power (Table 3). Baseline data of
these parameters were used in these models. In the training
cohort (n = 86,804; 6,821 HCC), random forest, decision tree, and
ridge regression performed the best with all parameters (AUROC
= 0.992 ± 0.001, 0.800 ± 0.004, and 0.842 ± 0.006, respectively),
with 36 selected parameters (AUROC = 0.991 ± 0.002, 0.884 ±
0.004, and 0.839 ± 0.006, respectively) or with 20 selected pa-
rameters (AUROC = 0.987±0.003, 0.877±0.005, and 0.817±0.005,
respectively). In the validation cohort (n = 37,202; 2,875 HCC),
ridge regression had consistently high accuracy with all param-
eters (0.844 ± 0.009), with 36 selected parameters (0.840 ±
0.009) and with 20 selected parameters (0.821 ± 0.009) (Table 4).
Table 5 summarises the sensitivity, specificity, positive predictive
values (PPVs), and negative predictive values (NPVs) of these
models in the training and validation cohorts. The dual cut-off
approach was applicable in more than 60% of patients in most
models; the applicability was particularly high with random
forest (96.6%) in the training cohort, but not in the validation
cohort (59.5%). We have developed Windows software applica-
tions for these models, which are available via https://drive.
google.com/drive/folders/1Nb0rKpYakiHzcYnRUNmUfNPhDWd1
rHHz?usp=sharing.

HCC ridge score
As the ridge regression model achieved consistently good per-
formances in the training and validation cohorts with all or
selected parameters, HCC ridge score (HCC-RS) was formed for
further comparisons. Different cut-offs of HCC-RS were tested,
and these are summarised in Table S8. In order to achieve high
sensitivity (>−90%), the low cut-off was set below 0.1, and that for
high specificity (>−90%) was set between 0.1 and 0.2.

Performance of HCC-RS vs. common HCC risk scores
The AUROC was 0.672, 0.745, 0.671, 0.748, and 0.712 for CU-HCC
score, GAG-HCC score, REACH-B score, PAGE-B score, and REAL-B
score, respectively (Table 6). Using dual cut-offs, the low cut-off
of REAL-B score (<4) had the highest sensitivity (96.0%) but was
applicable only to a relatively small proportion of patients
(17.6%); the high cut-off of REACH-B score (>−14) had the highest
specificity (98.9%) but was applicable only to a minor proportion
of patients (1.5%). HCC-RS performed better than these common
HCC risk scores in terms of larger AUROC (0.840), high
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applicability, and the small proportion of patients falling into the
grey zone (30.7%).

External validation
External validation was performed with an independent cohort
of 4,462 Korean patients, with 1,072 patients developing HCC.
The accuracy of 4 of the 5 machine learning algorithms with 20
selected parameters remained satisfactory and comparable with
those in the training cohort; the AUROC of logistic regression,
ridge regression, AdaBoost, and random forest was above 0.80,
whereas that of decision tree (0.799) was less satisfactory
(Table S9). Table S10 summarises the sensitivity, specificity, PPV
and NPV of these models in the external validation cohort. Dual
cut-offs approach was applicable in more than 62% of patients in
most models.
Discussion
This was the first territory-wide cohort study using the HADCL
platform, which facilitated the inclusion of the majority of pa-
tients with CVH under the care of the public healthcare system in
Hong Kong. We demonstrated that machine learning models by
ridge regression and random forest were accurate to predict HCC
in patients with CVH. These models may be developed as built-in
functional keys or calculators in electronic health systems to
facilitate hepatitis elimination.

Electronic health records (EHRs) are universally adopted in
nearly all hospitals around the world; EHRs are rapidly growing
in terms of number of patients, and quantity and variety of data.
EHRs provide robust and comprehensive demographic and lab-
oratory data in thousands to millions of patients. Unfortunately,
clinical observations and anthropometric measurements might
be missing in some EHRs, especially in regions where manual
entries of data are not available.12 One recent example of
applying machine learning in hepatology was with the non-
alcoholic fatty liver disease (NAFLD) ridge score, which was
developed based on 5 laboratory parameters and 1 comorbid-
ity.11 The beauty of this NAFLD ridge score was its excellent NPV
of 96% to exclude NAFLD.

Machine learning is not a stranger in the field of HCC but is
more commonly applied to predicting clinical outcomes and
prognosis.20 Machine learning enables the processing of
nonlinear data, identification of novel patterns between vari-
ables and outcomes, and inclusion of many different variables.20

Some early applications of machine learning in patients with
HCC included combinations of salivary metabolites derived from
machine learning models for early detection of HCC.21 Despite
these advantages, machine learning is neither standardised nor
available for clinical practice.

Our current study demonstrates a novel application of ma-
chine learning in a much wider population of patients with CVH,
which affects more than 300 million people worldwide. Similar
to the NAFLD ridge score we built,11 we included common clin-
ical and laboratory parameters readily available from patients.
This substantially increased the utility and applicability of the
machine learning models. We once again found that ridge
regression had consistently high accuracy, as was found with the
NAFLD ridge score. Ridge regression is a technique for analysing
multiple regression data that suffer frommulticollinearity; when
multicollinearity occurs, least squares estimates are unbiased,
but their variances are large and, as such, may deviate far from
the true value.18 Hence, ridge regression is particularly suitable
JHEP Reports 2022
for machine learning models in clinical medicine, as many pa-
rameters included in the models are closely related and multi-
collinearity commonly occurs.10

The current machine learning models can be further opti-
mised to account for changes in the epidemiology of patients
with CVH, namely, increasing age and comorbidities22 and
increasing antiviral treatment uptake, which modifies the natu-
ral history and reduces HCC risk.23 Furthermore, recent studies
suggest that tenofovir may further reduce HCC risk in patients
with CHB.24,25 DAAs are also increasingly used in patients with
CHC.26 With increasing and changing use of these antiviral
therapies, the machine learning models should be continuously
optimised. A common approach is hyperparameter optimisation,
which would be tuned by an exhaustive cross-validation grid
search, with an independent cohort size of 30% of the entire
cohort, as in our study.27 Longitudinal, serial data may further
increase the accuracy of risk prediction; however, prediction
with irregular medical time series is challenging because the
intervals between consecutive records vary significantly over
time. Existing methods often handle this problem by generating
regular time series from irregular medical records without
considering the uncertainty in the generated data induced by the
varying intervals. Thus, a novel Uncertainty-Aware Convolutional
Recurrent Neural Network is proposed by our group, which in-
troduces the uncertainty information in the generated data to
boost risk prediction, potentially increasing the accuracy of these
machine-learning methods.28

The strength of our study includes the large sample size, as
our study is by far the largest real-life cohort study, with close to
150,000 patients with CVH in total. The HADCL dataset contains
robust demographic data, diagnosis coding system and death
information, and complete serial laboratory parameters and drug
information, which facilitated the analysis of the impact of
comorbidities, use of medications, and clinical events. Data from
real-life cohorts represent a wider spectrum of patients than do
those from randomised controlled trials, in which patients with
multiple comorbidities are often excluded. Findings from real-
life cohorts are thus more readily applicable to routine clinical
practice. Nonetheless, our study also had a few limitations. First,
missing data and irregular intervals of laboratory measurement
may lead to biases, as in other registry studies, although these
biases can be partially compensated by our large cohort size. In
particular, some laboratory assays, namely, serum HBV DNA,
varied across different institutions, operators, and time periods.
Fortunately, all public virology laboratories in Hong Kong adop-
ted very similar assays; for example, Roche COBAS® AmpliPrep/
COBAS® TaqMan® HBV Test v2.0 (Roche Diagnostics, Basel,
Switzerland) is used for measuring serum HBV DNA. Also, the
detection limit and technology of HBV DNA has changed signif-
icantly, particularly in a few landmark years: 2003, when the
detection limit was lowered to 2,000 IU/ml, and 2010–2011,
when the detection limit was further lowered to 10–20 IU/ml.
We compared the accuracy of the machine learning methods in
2000–2010 and 2011–2018, and their accuracies were compa-
rable (Tables S11–S13). Second, we might have missed some
comorbidities of milder severity because of missed coding, such
as hypertension, diabetes mellitus, cardiovascular disease, and
early-stage chronic kidney disease. Coinfections with HCV and
HDV were not 100% excluded as their antibodies were checked in
only 4,359 (3.2%) and 69 (0.1%) of 135,395 patients, respectively,
but these coinfections were uncommon (0.5 and <0.1%, respec-
tively) in Hong Kong.22 This negative bias would result in under-
9vol. 4 j 100441
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reporting of the prevalence of these comorbidities. Third,
ascertainment bias may affect the reliability of the study because
of the inaccurate entry of HCC in the HADCL dataset; however,
the use of single ICD-9-CM codes in CDARS for the diagnosis of
key events such as HCC was previously validated to be 99% ac-
curate when referenced to clinical, laboratory, imaging, and
endoscopy results from electronic medical records.16 Fourth, the
exact time of CVH diagnosis could be earlier than we identified
as some laboratory results for viral markers came from private
laboratories before patients entered the public healthcare sys-
tem; diagnosis coding was also not mandatory before 2008. Last,
other unmeasured or uncaptured factors might have confounded
the results. We do not have information on HBV and HCV
JHEP Reports 2022
genotypes. Previous studies have shown that the majority of
patients with CHB in Hong Kong have either genotype B or C
HBV, and genotype C HBV is associated with an increased risk of
HCC29; genotypes 1 and 6 HCV are found in more than 80% of
patients with CHC in Hong Kong.30

In conclusion, this novel HCC-RS from ridge regression ma-
chine learning model accurately predicted HCC in patients with
CVH. These machine learning models may be developed as built-
in functional keys or calculators in electronic health systems to
reduce cancer mortality. Prospective studies and randomised
trials comparing machine learning model-guided HCC surveil-
lance with routine clinical practice for the early diagnosis of HCC
in patients with CVH are warranted.
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