
metabolites

H

OH

OH

Article

The Liability Threshold Model for Predicting the Risk of
Cardiovascular Disease in Patients with Type 2 Diabetes:
A Multi-Cohort Study of Korean Adults

Eun Pyo Hong 1,2,3 , Seong Gu Heo 4 and Ji Wan Park 5,*

����������
�������

Citation: Hong, E.P.; Heo, S.G.; Park,

J.W. The Liability Threshold Model

for Predicting the Risk of

Cardiovascular Disease in Patients

with Type 2 Diabetes: A Multi-Cohort

Study of Korean Adults. Metabolites

2021, 11, 6. https://dx.doi.org/

10.3390/metabo11010006

Received: 31 October 2020

Accepted: 22 December 2020

Published: 24 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital,
Boston, MA 02114, USA; ehong5@mgh.harvard.edu

2 Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
3 Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard,

Cambridge, MA 02142, USA
4 Yonsei Cancer Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; lukehur1@yuhs.ac
5 Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon,

Gangwon-do 24252, Korea
* Correspondence: jwpark@hallym.ac.kr

Abstract: Personalized risk prediction for diabetic cardiovascular disease (DCVD) is at the core
of precision medicine in type 2 diabetes (T2D). We first identified three marker sets consisting of
15, 47, and 231 tagging single nucleotide polymorphisms (tSNPs) associated with DCVD using
a linear mixed model in 2378 T2D patients obtained from four population-based Korean cohorts.
Using the genetic variants with even modest effects on phenotypic variance, we observed improved
risk stratification accuracy beyond traditional risk factors (AUC, 0.63 to 0.97). With a cutoff point
of 0.21, the discrete genetic liability threshold model consisting of 231 SNPs (GLT231) correctly
classified 87.7% of 2378 T2D patients as high or low risk of DCVD. For the same set of SNP markers,
the GLT and polygenic risk score (PRS) models showed similar predictive performance, and we
observed consistency between the GLT and PRS models in that the model based on a larger number
of SNP markers showed much-improved predictability. In silico gene expression analysis, additional
information was provided on the functional role of the genes identified in this study. In particular,
HDAC4, CDKN2B, CELSR2, and MRAS appear to be major hubs in the functional gene network
for DCVD. The proposed risk prediction approach based on the liability threshold model may help
identify T2D patients at high CVD risk in East Asian populations with further external validations.

Keywords: diabetic cardiovascular disease; functional gene network; genetic risk prediction; liability
threshold model; polygenic risk score; population-based cohort study

1. Introduction

Type 2 diabetes (T2D) keeps steadily increasing in prevalence in developed countries,
and thus its complications, such as cardiovascular and renal diseases, constitute the leading
cause of disease burden worldwide. The mortality rate in T2D patients with cardiovascular
disease (CVD) is two to four times higher than in those with T2D only. In the United States,
the majority of elderly patients with T2D die from heart disease (68%) and stroke (15%),
even when their glucose levels are well controlled. CVD encompasses a broad spectrum of
subphenotypes affecting the heart and blood vessels, including coronary artery disease
(CAD), cerebrovascular disease (CVA), and peripheral arterial disease (PAD) [1]. The
prevalence of diabetes among Korean adults aged 30 years or more increased from 12.4%
in 2011 to 14.4% in 2016, and the highest prevalence estimate was seen in older adults aged
65 and over (i.e., 29.8%) [2]. Likewise, the prevalence of macrovascular complications in
T2D patients estimated in 2011, such as CAD (10.3%), CVA (6.7%), and PAD (0.19%), is
expected to increase further as the T2D prevalence increases in South Korea [3].
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During the last decade, genome-wide association studies (GWAS) based on the “com-
mon disease common variant hypothesis” have successfully identified approximately
153 variants mapping to more than 120 T2D loci, including PPARG, KCNJ11, and TCF7L2,
in multiethnic populations [4]. Although there is some overlap in susceptibility genes,
previous studies have reported differences in genetic factors associated with CVD risk be-
tween diabetic and nondiabetic individuals. Multiple genes, such as CDKN2A/2B, HNF1A,
PCSK9, CELSR2-PSRC1-SORT1, and PHACTR1, have been suggested to be associated with
diabetic cardiovascular disease (DCVD) [5]. However, only one single-nucleotide polymor-
phism (SNP) of the GLUL gene, rs10911021, passed a threshold of genome-wide statistical
significance for coronary heart disease (CHD) in non-Hispanic Caucasian patients with
T2D (OR = 1.36, p = 2 × 10−8), and such a significant association was not observed in
nondiabetic individuals [6].

To date, numerous statistical methods have been proposed to dissect the genetic
architecture of complex traits. In particular, the use of a linear mixed model (LMM) in
GWAS improves the statistical power to detect genetic associations by removing redundant
SNPs [7]. Polygenic risk scoring (PRS) improves disease risk predictability by estimating
the cumulative effect of multiple susceptibility variants [8]. However, a complex model
that combines conventional risk factors, such as hypertension, obesity, and smoking, with
a polygenic model may further enhance the predictive power for CVD risk in diabetic
patients [9]. Another useful method for disease prediction, the liability threshold (LT)
model, also called a probit model, gave the highest predictive accuracy compared to both
the Risch risk model and the logit model using the same dataset. Here, liability refers
to an individual’s innate tendency to develop a disease determined by the combinatory
effects of genetic and environmental factors on the disease incidence [10]. While recent
meta-analyses of GWAS have discovered many new T2D loci by increasing sample size,
large-scale sequencing studies, contrary to expectations, have identified very few rare
variants despite having sufficient statistical power [11].

The development of reliable prediction models for complex diseases, such as DCVD,
is of the utmost importance in the era of precision medicine. To the best of our knowledge,
risk prediction based on a multifactorial liability threshold model (MLT) that combines the
effects of multiple genes and conventional nongenetic factors has not been applied to DCVD
yet. In this study, we initially constructed genetic LT models with three different sets of
DCVD-associated variants using data obtained from four Korean population-based cohort
studies. Subsequently, we compared the discriminatory performance of three polygenic LT
models for cardiovascular risk stratification in diabetic patients with the corresponding PRS
models. In addition, we evaluated the degree of improvement in predictive performance
for DCVD risk classification by adding genetic risk information to a phenotype-based
risk model.

2. Results
2.1. Nongenetic Risk Factors for DCVD

Of the 21 nongenetic variables tested in this study, age was the most significant risk
factor for DCVD (Table 1). Compared to T2D patients under the age of 50, the risk of
developing CVD increased significantly in the 50s and 60s (OR = 2.28 and 3.75, p = 0.007
and 5.1×10−6, respectively) (Table S1). The mean serum creatinine level in the DCVD
patient group (1.01 mg/dL) was significantly higher than that of the T2D control group (0.91
mg/dL) (OR = 2.62, p = 5.3 × 10−5). The effect of systolic blood pressure (SBP) on DCVD
(OR = 1.01, p = 0.032) turned out to be statistically insignificant in multivariate analysis,
whether treated as a continuous variable or as a categorical variable. In addition, past
alcohol and tobacco consumption (OR = 1.96 and 1.43, p = 0.005 and 0.062, respectively),
higher income (OR = 0.69, p = 0.027), total cholesterol (TC), triglycerides (TG), and gamma-
glutamyl transpeptidase (GGT) were associated with DCVD risk in univariate analysis.
However, only three variables, age (OR = 1.06, p = 6.5 × 10−6), BMI (OR = 1.09, p = 0.005),
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and blood creatinine level (OR = 2.02, p = 0.028), remained in the multivariate logistic
regression (MLR) model after backward stepwise elimination.

Table 1. Risk of cardiovascular disease in Korean patients with type 2 diabetes according to environmental and clinical
characteristics.

DCVD T2D Only Logistic Regression †

Characteristics * (N = 168) (N = 2210) OR (95% CI) p

Men, N (%) 91 (54.2) 1159 (52.4) 1.07 (0.78–1.47) 0.666
Age, years (%) 61.1 ± 0.5 56.9 ± 0.2 1.07 (1.05–1.09) 3.2 × 10−9 ‡

Income, N (%)
<1 million won 82 (48.8) 908 (41.1) Reference
1 million won ≤ 69 (41.1) 1110 (50.2) 0.69 (0.49–0.96) 0.027
Education, N (%)

<High school 108 (64.3) 1444 (65.3) Reference
High school ≤ 58 (34.5) 752 (34.0) 1.03 (0.74–1.44) 0.856

Smoking status, N (%)
Nonsmoker 93 (55.4) 1255 (56.8) Reference

Current smoker 30 (17.9) 510 (23.1) 0.79 (0.52–1.21) 0.286
Ex-smoker 45 (26.8) 426 (19.3) 1.43 (0.98–2.07) 0.062

Drinking status, N (%)
Nondrinker 75 (44.6) 1042 (47.2) Reference

Current drinker 65 (38.7) 973 (44.0) 0.93 (0.66–1.31) 0.670
Ex-drinker 26 (15.5) 184 (8.3) 1.96 (1.22–3.15) 0.005

Family history, N (%)
T2D, yes 112 (66.7) 1367 (61.9) 0.96 (0.66–1.39) 0.824

DCVD, yes 13 (11.7) 82 (5.5) 1.22 (0.66–2.25) 0.530
BMI, kg/m2 25.9 ± 0.3 25.2 ± 0.1 1.06 (1.01–1.12) 0.012 ‡

SBP, mm Hg 131.1 ± 1.5 127.9 ± 0.4 1.01 (1.00–1.02) 0.032
DBP, mm Hg 80.8 ± 0.9 79.8 ± 0.2 1.01 (0.99–1.02) 0.256
TC, mg/dL 192.9 ± 3.3 201.1 ± 0.9 0.995 (0.992–0.999) 0.018
TG, mg/dL 176.0 ± 7.5 199.7 ± 3.2 0.998 (0.997–0.999) 0.042
GGT, IU/L 38.4 ± 2.5 57.8 ± 2.7 0.996 (0.992–1.000) 0.027
AST, IU/L 29.8 ± 1.3 32.2 ± 0.6 0.995 (0.985–1.004) 0.246
ALT, IU/L 30.9 ± 1.5 33.7 ± 0.8 0.996 (0.988–1.003) 0.263

Creatinine, mg/dL 1.01 ± 0.03 0.91 ± 0.01 2.62 (1.64–4.19) 5.3 × 10−5 ‡

CRP, mg/L 2.73 ± 0.49 2.57 ± 0.10 1.01 (0.98–1.04) 0.689
FPG, mg/dL 124.7 ± 3.3 137.0 ± 1.2 0.99 (0.99–1.00) 0.004

2 h PG, mg/dL 200.3 ± 10.7 240.9 ± 3.0 0.99 (0.99–1.00) 0.001
Hemoglobin A1c 7.09 ± 1.49 7.44 ± 1.74 0.87 (0.74–1.03) 0.101

ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; DBP,
diastolic blood pressure; DCVD, diabetic cardiovascular disease; FPG, fasting plasma glucose; GGT, gamma-glutamyl transpeptidase; OR,
odds ratio; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; T2D, type 2 diabetes mellitus; 2 h PG, 2-h plasma glucose
after 75 g oral glucose tolerance test. * Data are shown as the number of subjects (percentage) for categorical variables and mean ± standard
deviation for continuous variables. The mean values of 2 h PG and hemoglobin A1c were estimated from the KARE data. † ORs, 95% CIs,
and p-values were estimated by comparing 168 DCVD cases to 2210 T2D controls selected from the initial surveys of four cohort studies
using univariate logistic regression analysis. ‡ The variables remained statistically significant at p < 0.05 after backward stepwise selection
in the multivariate logistic regression model.

2.2. Genetic Risk Factors for DCVD

In the current LMM analysis, after adjusting for age, sex, BMI, and creatinine level, two
SNPs, rs4538911 (LOC392180-MCPH1, 8p23.2) and rs9982069 (PPIAL3-SLC6A6P, 21q21.1),
showed the most significant associations with DCVD (p = 5.0 × 10−7 and 9.1 × 10−7,
respectively) (Table 2). The regional association plots showed additional SNPs that were
not in high LD (r2 < 0.8) but yielded suggestive associations with DCVD (p < 0.05) in the
vicinity of those SNPs (Figure S1).
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Table 2. Results of linear mixed model analysis of 47 candidate SNPs for diabetic cardiovascular disease.

Gene Chr SNP Function N/R LMM †

RAF (Ca/Co) OR p

15 previously reported SNPs (p < 0.05) ‡

LOC107986441 (KCNN2) * 5q22.2 rs4621553 intron A/G 0.09/0.05 1.05 0.002
MRAS * 3q22.3 rs9818870 3’ UTR C/T 0.03/0.01 1.08 0.011

CELSR2, PSRC1 * 1p13.3 rs599839 500bp~3′ UTR A/G 0.09/0.06 1.04 0.015
IBTK * 6q14.1 rs16893526 intergenic G/A 0.15/0.11 1.03 0.017

ZFHX3 * 16q22.3 rs879324 intron A/G 0.67/0.62 1.02 0.022
CDKN2B * 9p21.3 rs1333042 intron A/G 0.71/0.65 1.02 0.025
MREGP1 12p11.21 rs11610422 intergenic A/G 0.07/0.05 1.04 0.027

LOC100288146 4q24 rs17035270 intron C/T 0.99/0.04 1.04 0.028
SPSB4 * 3q23 rs16851055 intron (ncRNA) G/A 0.23/0.18 1.02 0.036

ILRUN (C6orf106) * 6p21.31 rs2814993 intron G/A 0.03/0.01 1.07 0.037
MTAP * 9p21.3 rs7865618 intron G/A 0.90/0.86 1.02 0.037
PCNXL3 11q13.1 rs12801636 intron A/G 0.56/0.49 1.02 0.038
HDAC4 * 2q37.3 rs6706785 intergenic G/T 0.32/0.27 1.02 0.040

TFCP2L1 * 2q14.2 rs17006292 intron C/A 0.04/0.03 1.05 0.043
MYL2* 12q24.11 rs3782889 intron G/A 0.88/0.83 1.02 0.046

32 SNPs associated with DCVD (p < 10−4)
MCPH1 * 8p23.2 rs4538911 intergenic C/G 0.13/0.06 1.08 5.0 × 10−7

LOC100505973 21q21.1 rs9982069 intergenic G/A 0.49/0.38 1.04 9.1 × 10−7

CDH11 * 16q21 rs17465734 intergenic T/A 0.05/0.01 1.14 8.0 × 10−6

CD82 * 11p11.2 rs7946015 intergenic A/T 0.26/0.17 1.04 8.2 × 10−6

FAM19A5 (TAFA5) * 22q13.31 rs5768165 intergenic G/T 0.11/0.05 1.07 1.3 × 10−5

rs2338258 intergenic T/C 0.13/0.07 1.06 3.6 × 10−5

rs5768143 intergenic C/T 0.13/0.07 1.05 9.1 × 10−5

MGC45800 4q34.3 rs17072597 intron C/T 0.22/0.14 1.05 1.5 × 10−5

KCNE4 * 2q36.1 rs16864293 intergenic T/A 0.09/0.04 1.08 1.6 × 10−5

SLC9A3 * 5p15.33 rs1053226 intron C/T 0.05/0.02 1.11 1.8 × 10−5

SP3 * 2q31.1 rs41326844 intergenic T/C 0.47/0.36 1.03 2.5 × 10−5

AHRR * 5p15.33 rs6555242 intron T/G 0.07/0.03 1.09 3.1 × 10−5

VAPA * 18p11.22 rs16956185 intergenic G/A 0.15/0.08 1.06 3.2 × 10−5

ZWINT *, MIR3924 10q21.1 rs1503908 intergenic A/G 0.19/0.12 1.05 3.9 × 10−5

NOX4 * 11q14.3 rs319025 intron T/C 0.67/0.56 1.03 4.1 × 10−5

SPOCK1 * 5q31.2 rs6893667 intergenic C/T 0.06/0.02 1.10 4.2 × 10−5

C14orf64 (LINCO1550) 14q32.2 rs877455 intergenic G/A 0.10/0.05 1.07 4.8 × 10−5

LDLRAD3 * 11p13 rs1001715 intron G/A 0.44/0.33 1.03 4.9 × 10−5

rs12276510 intron G/A 0.43/0.33 1.03 5.5 × 10−5

ST18 * 8q11.23 rs2450153 intergenic G/A 0.63/0.52 1.03 5.3 × 10−5

rs3843918 intergenic T/C 0.46/0.44 1.03 7.0 × 10−5

CYP2B6 * 19q13.2 rs1872125 intron T/C 0.24/0.16 1.04 5.7 × 10−5

FGF9 * 13q12.11 rs9506827 intergenic T/C 0.29/0.20 1.04 5.9 × 10−5

MIRN656 14q32.31 rs8016145 intergenic G/A 0.09/0.04 1.08 6.4 × 10−5

DLG2 * 11q14.1 rs349083 intron G/A 0.47/0.36 1.03 6.5 × 10−5

LOC646700 9p21.1 rs10968749 intergenic A/G 0.19/0.12 1.04 7.4 × 10−5

METTL21EP, SLC10A2 * 13q33.1 rs9586032 intergenic G/A 0.23/0.15 1.04 7.4 × 10−5

PPIAL3 21q21.1 rs2825256 intergenic T/A 0.67/0.55 1.03 7.4 × 10−5

HMP19 * 5q35.2 rs2913472 intergenic A/C 0.05/0.02 1.11 7.9 × 10−5

ALK * 2p23.2 rs4575680 intron G/C 0.08/0.04 1.07 9.0 × 10−5

MIR1261 11q14.3 rs10501726 intergenic A/T 0.08/0.04 1.08 9.5 × 10−5

NRP1 * 10p11.22 rs767164 intergenic T/A 0.30/0.21 1.04 9.8 × 10−5

bp, base pair; Ca/Co, cases/controls; Chr., chromosome; LMM, linear mixed model; ncRNA, noncoding RNA; N/R, non-risk/risk allele;
OR, odds ratio; RAF, risk allele frequency; SNP, single nucleotide polymorphism; UTR, untranslated region. * Genes linked to more than
one Gene Ontology term. † The risk allele frequencies were estimated for cases (left) and controls (right). ORs and p-values were estimated
in linear mixed models after adjusting for age, sex, body mass index, and serum creatinine level. ‡ 15 previously reported SNPs that were
replicated in the current LMM analysis (p < 0.05).
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Among the 169 genotyped tSNPs that were also previously reported to be associated
with CVD and/or DCVD (r2 < 0.8), 15 tSNPs yielded replicated associations with CVD in
Korean T2D patients (0.001 < p < 0.05) (Table 2). The detailed LMM analysis results for
32 SNPs (p < 1 × 10−4) and 216 SNPs (p < 1 × 10−3) are provided in Table 2 and Table S2,
respectively.

2.3. Gene Function Prediction

After filtering out 14 genes that did not appear in the DAVID database from 200 genes
harboring 231 SNPs, we identified 92 significantly enriched GO terms associated with
118 genes (p < 0.05 and FDR < 0.1, data not shown). The most enriched GO term,
GO:0007399~nervous system development, was associated with 45 genes, including
HDAC4, FGF9, and EPHA5 (p = 8.2 × 10−8, FDR = 1.5 × 10−4). Five genes, EPHB2, EPHA3,
EPHA5, EFNA5, and SLIT3, were significantly enriched in axon guidance in the KEGG
pathway, essential for neuronal network formation (hsa04360, p = 0.03, data not shown).

Of the 41 genes harboring 47 SNPs, four genes did not appear in DAVID. We identified
10 GO terms significantly enriched in 19 genes, and three of which, HDAC4, NOX4, and
NRP1, were shown to play an important role in smooth muscle cell migration (GO:0014911,
p = 0.001, FDR = 0.02) (Table 3).

Table 3. Gene Ontology functional enrichment analyses of 31 differentially expressed genes in diabetic cardiovascular
disease.

Biological Function * Gene, N p † FDR, % † Gene Set

GO:0014911~positive regulation of
smooth muscle cell migration 3 0.0012 2.0 NOX4, HDAC4, NRP1

GO:0048731~system development 16 0.0014 2.3
NOX4, NRP1, MYL2, FGF9, MRAS, TFCP2L1,
SPOCK1, CELSR2, ALK, APCDD1, HDAC4,

CDKN2B, SP3, MCPH1, ZFHX3, DLG2
GO:0061061~muscle structure

development 6 0.0026 4.2 NOX4, HDAC4, MYL2, FGF9, MRAS, ZFHX3

GO:0048513~animal organ
development 13 0.0027 4.3

NOX4, NRP1, MYL2, FGF9, MRAS, TFCP2L1,
CELSR2, APCDD1, HDAC4, CDKN2B, SP3,

MCPH1, ZFHX3
GO:0007517~muscle organ

development 5 0.0030 4.8 HDAC4, MYL2, FGF9, MRAS, ZFHX3

GO:0014910~regulation of smooth
muscle cell migration 3 0.0035 5.6 NOX4, HDAC4, NRP1

GO:0014909~smooth muscle cell
migration 3 0.0040 6.4 NOX4, HDAC4, NRP1

GO:0048523~negative regulation
of cellular process 15 0.0048 7.5

NOX4, NRP1, MYL2, FGF9, TFCP2L1,
SPOCK1, APCDD1, HDAC4, AHRR, CDKN2B,

SP3, ZWINT, MCPH1, ZFHX3, DLG2

GO:0007275~multicellular
organism development 16 0.0055 8.7

NOX4, NRP1, MYL2, FGF9, MRAS, TFCP2L1,
SPOCK1, CELSR2, ALK, APCDD1, HDAC4,

CDKN2B, SP3, MCPH1, ZFHX3, DLG2
GO:0014812~muscle cell migration 3 0.0055 8.7 NOX4, HDAC4, NRP1

FDR, false discovery rate; GO, gene ontology * Categories of GO terms. † Fisher’s exact p-values and FDRs for each GO term were estimated
using the DAVID tool.

Three other genes, MYL2, FGF9, and MRAS, were shown to be involved in the KEGG
pathway hsa04810~regulation of actin cytoskeleton (p = 0.042, Figure S2). In particular,
genes such as HDAC4, CDKN2B, CELSR2, and MRAS are major hubs in both functional
networks for 31 and 170 genes that harbor 47 (p < 1× 10−4) and 231 SNP sets (p < 1× 10−3),
respectively (Figure 1 and Figure S3).
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Figure 1. Protein–protein interaction network of 31 candidate genes for diabetic cardiovascular
disease: Light-green line indicates the presence of co-publications found through text mining; light
purple, evidence of homology; purple line, experimental evidence of coexpression; black line,
evidence of mRNA coexpression (confidence score of STRING, 0.25).

2.4. DCVD Risk Prediction
2.4.1. Genetic Risk Prediction

The disease-free mortality of Koreans aged 40 to 69 was higher in men than in women
(19.5 vs. 7.3 per 10,000 people). However, the incidence rate (IR) of DCVD in T2D patients
was higher in women than in men (15.67 vs. 13.47 per 1000 person-years) (Table S3). A
model consisting of 15 previous SNPs that also showed nominally significant associa-
tions (p < 0.05) in this Korean study did not achieve sufficient predictability for DCVD
(AUC, 53.7%). On the other hand, by adding SNPs that were less significantly associated
with DCVD, the genetic liability threshold (GLT) model showed significantly improved
predictability than the model using a more stringent p-value threshold for SNP selection
(AUCs: 73.2% and 99.2% for GLT47 and GLT231, respectively). As the number of SNPs
included in the model increased, the mean difference (MD) in liability to DCVD between
cases and controls increased (MDs: 0.006, 0.044, and 0.216 for GLT15, GLT47, and GLT231,
respectively). For every 1-point increase in normalized genetic liability on a scale of 0 to
10, the risk of developing DCVD also increased accordingly (ORs: 1.05, 1.54, and 14.13 for
GLT15, GLT47, and GLT231, respectively) (Table 4).

When comparing the GLT and PRS model performance to predict DCVD risk in
T2D patients, PRS47 performed better than GLT47 (∆AUC = 11%); however, there was no
significant difference between the two methods when predicting genetic risk based on a
set of 15 or 231 SNP markers. In particular, we observed consistency between two risk
measurements in that the model based on a larger number of SNP markers showed much-
improved predictability (AUCs: 99.21% and 99.18% for GLT231 and PRS231, respectively)
(Table 4). When we assigned each participant a percentile based on the GLT231 or PRS231
value, all DCVD patients have liability or risk scores above the 90th percentile in the risk
distribution (Figure S4).
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Table 4. Comparison of predictive performance between genetic liability threshold model and polygenic risk score model
for predicting diabetic cardiovascular disease in T2D patients.

Model Ca/Co, N * Ca/Co, Mean (Range) † OR (95% CI) ‡ p-Value AUC

Nongenetic
nGLT 167/2195 0.24 (0.06–0.40)/0.20 (0.06–0.40) 1.23 (1.15–1.32) 4.8 × 10−9 0.63 (0.59–0.67)
nGRS 167/2195 2.32 (0.00–4.25)/1.78 (0.00–4.41) 1.21 (1.13–1.29) 8.9 × 10−9 0.64 (0.60–0.68)

Genetic
GLT15 164/2172 0.15 (0.11–0.23)/0.15 (0.10–0.26) 1.05 (0.99–1.10) 0.089 0.54 (0.49–0.58)
GLT47 163/2076 0.25 (0.14–0.42)/0.20 (0.12–0.39) 1.54 (1.41–1.68) 7.3 × 10−22 0.73 (0.70- 0.77)
GLT231 114/1558 0.38 (0.21–0.66)/0.16 (0.06–0.45) 14.13 (9.08–21.97) 7.4 × 10−32 0.99 (0.99–0.99)

L: < 0.21 0 (0.0)/1911 (86.5) Reference NA 0.93 (0.93–0.94)
H: 0.21 ≤ 168 (100.0)/299 (13.5) NA NA 100/86.8/87.7 §

PRS15 164/2172 0.27 (0.16–0.42)/0.26 (0.12–0.48) 1.16 (1.02–1.30) 0.019 0.55 (0.50–0.60)
PRS47 163/2076 0.93 (0.51–1.50)/0.69 (0.29–1.31) 2.72 (2.38–3.10) 3.0 × 10−49 0.84 (0.81–0.87)
PRS231 114/1558 5.40 (4.57–6.82)/4.19 (3.28–5.81) 18.41 (11.17–30.35) 3.2 × 10−30 0.99 (0.99–0.99)

L: < 4.57 0 (0.0)/ 1369 (62.0) Reference NA 0.81 (0.80–0.82)
H: 4.57 ≤ 168 (100.0)/ 841 (38.1) NA NA 100/61.9/64.6 §

Multifactorial
MLT47 162/2062 0.23 (0.06–0.38)/0.17 (0.04–0.38) 1.84 (1.65–2.04) 1.9 × 10−29 0.76 (0.72–0.80)
MLT231 113/1552 0.41 (0.08–0.72)/0.15 (0.02–0.51) 7.79 (5.67–10.68) 4.9 × 10−37 0.97 (0.95–0.99)
MRS47 162/2062 3.26 (0.68–5.43)/2.47 (0.37–5.40) 1.39 (1.28–1.51) 2.5 × 10−15 0.71 (0.67–0.76)
MRS231 113/1552 7.71 (4.57–9.99)/5.92 (3.48–8.74) 2.98 (2.48–3.58) 3.0 × 10−31 0.86 (0.82–0.89)

AUC, area under the receiver operating characteristic curve; Ca/Co, Case/Control; CI, confidence interval; DCVD, diabetic cardiovascular
disease; GLT, genetic liability threshold model; MLT, multifactorial liability threshold model; MRS, multifactorial risk score model; N,
number; nGLT, nongenetic liability threshold model; nGRS, nongenetic risk score model; OR, odds ratio; PRS, polygenic risk score. * The
number of cases and controls for each PRS model was the same as the GLT model based on the same number of SNPs. † Mean and range of
liability or risk score groups using three sets of single nucleotide polymorphism markers (i.e., 15, 47, and 231 SNPs) for each of the case
and control groups. For the discrete GLT231 and PRS231 models, the numbers and percentages of cases and controls were shown. ‡ ORs,
95% CIs, and p-values were estimated using logistic regression analysis for every 1-point increase in the standardized values of liability
and polygenic risk score, respectively. § The AUCs of three liability threshold models were computed with a family history of DCVD.
Sensitivity/Specificity/Percentage of persons correctly classified for DCVD status based on each categorical model.

We further evaluated the predictive ability of discrete models to identify T2D patients
at high CVD risk and found that GLT231 outperformed PRS231. Using a cutoff point of 0.21
or greater, the GLT231 model correctly classified 87.7% of 2378 individuals as high or low
risk for DCVD with high sensitivity and specificity of 100% and 86.8%, respectively. Since
there were no DCVD cases in the low-risk group, we could not estimate the ORs in the
discrete GLT and PRS models (Table 4). When we stratified the liability and genetic risk
scores into four risk quartiles and compared the highest (Q4) to the lowest quartile (Q1),
the OR of each was large, possibly due to the small number of cases in the first quartile
(OR = 20.2 and p = 6.3× 10−9 for GLT47; OR = 30.5 and p = 1.2× 10−13 for PRS47) (Table S4).

2.4.2. Multifactorial Risk Prediction

We observed a much higher performance of risk stratification for CVD in T2D pa-
tients in the genetic models than in the nongenetic model (AUCs: 0.63 for nGLT vs.
0.99 for GLT231), whereas the GLT model, which includes a family history of DCVD,
slightly improved the predictive performance (e.g., ∆AUC = 2% for GLT231). By adding
four nongenetic risk factors, the predictability of the 47 SNP-based genetic models im-
proved (∆AUC = 4%), whereas the predictability of the 231 SNP-model slightly decreased
(∆AUC = −2%) (Figure 2). Specifically, the combined effect of the four nongenetic factors
was weaker than that of the susceptibility SNPs (ORs: 1.23 for nGLT vs. 1.54 and 14.13 for
GLT47 and GLT231, respectively), and these results were similar to those of the PRS models
(ORs: 1.21 for nGRS vs. 2.72 and 18.41 for PRS47 and PRS231, respectively) (Table 4). As in
the continuous model, the predictability for an individual’s DCVD risk increased in the
quartile liability-based model by integrating nongenetic factors and 47 SNP information
(∆AUC = 2%). Contrary to expectations, the predictive performance of the PRS model was
higher than that of the multifactorial model (∆AUC = −11%) (Table S4).
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Figure 2. Comparison of the area under the ROC curves (AUCs) of three liability threshold (LT) models, nongenetic
(nGLT), genetic (GLT), and multifactorial (MLT) models: (A) Bar graph with standard error bars for comparing AUC
values of LT models with or without DCVD family history (grey-filled bars and transparent bars, respectively) (B,C). AUC
statistics estimated for genetic (solid green lines), nongenetic (blue dashed lines), and multifactorial liability threshold (red
tight-dotted lines) models, including a family history of DCVD for the 47- and 231-SNP sets, respectively.

We observed similar predictive performance in each of the four cohorts, although the
case-control data from the Health2 Study showed the highest AUC values (Table S5). In
10-fold cross-validation, we also demonstrated consistency in the predictive performance
of the models (Table S6). Since net reclassification improvement (NRI) has become a
widely used measure to assess the predictive performance of risk models, we estimated
the degree of improvement in continuous NRI achieved by adding genetic information to
the nongenetic risk model. By adding 47 SNPs to the nGLT model, the enhanced model
correctly assigned 12% of DCVD patients to higher predicted risk (event NRI, NRIe) and
32% of the control group to lower risk (non-event NRI, NRIne). The overall NRI, calculated
as the sum of NRIe and NRIne, was as large as 0.441, but the continuous NRI of the risk
score-based model was greater than that of the liability-based model (NRI = 1.017 for
PRS47). Compared to the adding effect of 47 SNP information in DCVD prediction, adding
231 SNP information improved the nongenetic model significantly (NRIs: 1.824 and 1.837
for GLT231 and PRS231, respectively) (Table S7).

3. Discussion

We validated the impact of traditional CVD risk factors, such as age, obesity, elevated
blood pressure, cigarette smoking, and alcohol drinking, on the development of DCVD in
Korean T2D patients [12]. Interestingly, a significant association between elevated serum
creatinine, a clinical marker of renal dysfunction, and DCVD was observed in the case-
control study, while the association with hypertension became more significant through
the 10-year follow-up (data not shown). These results are consistent with the previous
findings that diabetic nephropathy rarely occurred in patients with diabetes duration
less than ten years and that diabetic patients with CVD complications were more likely
to take antihypertensive drugs than those with T2D alone [13,14]. In this study, serum
lipid or GGT levels were lower in the DCVD patient group than in the control group.
Previous studies have reported that elevated GGT and CRP levels increased the risks of
dyslipidemia, metabolic syndrome, and CVD, yet their prognostic values of CVD events
in T2D patients remain controversial [15,16]. As reported in a general population-based
cohort study, increased CVD risk due to low education and wealth levels has also been
observed in Korean T2D patients [17].

In this LMM-based genetic association study, four SNPs, rs4538911, rs7946015,
rs17465734, and rs9982069, did not achieve a genome-wide threshold of p < 5 × 10−8

but exhibited suggestive associations with DCVD risk (5 × 10−7 < p < 1 × 10−5). The SNP,
rs10911021, located near the GLUL gene (1q25), which had been associated with CHD in
Caucasian T2D patients, revealed no significant association in this East Asian study [6,18].
On the other hand, we found significant associations between DCVD and 15 reported SNPs
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located in or near CVD candidate genes, including CELSR2-PSRC1, CDKN2B, TFCP2L1,
HDAC4, MRAS, SPSB4, KCNN2, MYL2, and ZFHX3 (0.001 < p < 0.05) [5,19]. Whereas
the minor G allele of rs599839, located 500 bp from the 3′-untranslated region (UTR) of
the PSRC1 gene (1p13.3), is a well-replicated variant in various subtypes of CVD and
an intronic SNP, rs12801636, of the PCNXL3 gene (11q13.1), is a validated SNP for lipid
levels [20,21], others have not been implicated yet as trait-associated SNPs. However, the
genes harboring intronic SNPs, ALK (rs4575680), EPHA3 (rs1512909), and TULP4, also
known as TUSP (rs341137), have been implicated in CVD-related traits, such as blood
pressure, arterial fibrillation, and systemic sclerosis [22–24]. Genes near the intergenic SNPs
identified in Korean patients with DCVD, especially the nearest gene to rs1401939 (2q22.1),
LINC01853, a long intergenic noncoding RNA gene (lncRNA), was recently reported to
be associated with coronary artery calcified atherosclerotic plaque in African-American
T2D patients. Moreover, a nearby gene, LRP1B, a member of the LDL receptor gene family,
has previously been implicated in CHD and heart failure [25]. The ZWINT gene neighbor-
ing rs1503908 has also been reported to be related to cardiac hypertrophy; however, the
intergenic SNPs such as rs6750818, rs1154846, and rs9586032, have never been implicated
in DCVD-related traits [26]. In silico functional analysis provides additional evidence
to support the role of these genes in DCVD pathogenesis, particularly in the migration
and proliferation of smooth muscle cells that occur after vascular damage. In particular,
network analysis highlighted the hub genes in the PPI network, such as CDKN2B, HDAC4,
CELS2, and MYL2.

Predicting individual disease risk is at the core of precision medicine to prevent
disease progression in susceptible individuals through early intervention and lifestyle
management. The GRS model, which combines a small number of susceptibility SNPs
identified by GWAS, has been replaced by the PRS model that incorporates the effects of a
larger number of SNPs passing a less stringent association p-value threshold to improve
statistical power [27]. The PRS method has shown the potential to improve risk stratification
accuracy beyond traditional risk factors [28]. According to a European study, the AUC of
each GRS model for CHD prediction consisting of five SNPs, seven clinical predictors, or
both GRS plus clinical predictors were 0.577, 0.699, and 0.715, respectively [19]. In a large-
scale study of CAD risk prediction in T2D patients, adding a weighted GRS comprised of
204 CAD candidate SNPs to a model of 13 clinical predictors such as age, sex, history of
CAD, smoking habits, and SBP lead to an 8% improvement in risk classification. However,
the AUCs of the models did not appear to be good enough to distinguish high- and low-risk
individuals (i.e., genetic 0.567, clinical 0.675, combined 0.681), and all participants were of
European ancestry [29]. Recently, the issue of limited generalizability of European derived
PRS has been raised, and the importance of developing PRS specific to non-European
populations is emphasized [30,31].

In the current study, we constructed non-logit probit models, also called liability
threshold models, to predict DCVD risk by combining effects of a set of 47- or 231-tSNPs
selected according to the level of statistical significance and observed much-improved
model performance in GLT231 compared to GLT47 (i.e., AUC, 0.99 vs. 0.73). By including
231 tSNPs and family history information, the predictability of the nongenetic model
comprising age, sex, BMI, and blood creatinine level greatly improved in AUC from
0.63 to 0.97; however, the predictability of the genetic model was higher than that of the
multifactorial model (∆AUC = 2%). We found similar prediction estimates for DCVD
risk in each of the four cohorts and validated the performance of these models in 10-
fold cross-validation. These results were consistent with observations from discrete- and
quantile-based analyses. Besides, we observed consistency between the two risk measures,
liability- and risk score-based models, in that the model based on a larger number of SNP
markers showed much-improved predictability (AUCs: 99.21% and 99.18% for GLT231 and
PRS231, respectively).

Previous studies have raised concerns about the interpretation of the clinical signifi-
cance of a small change in AUC and the tendency of NRI to make uninformative markers
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appear predictive [32,33]. Although we analyzed 2378 T2D patients obtained from the
four largest population-based cohorts in Korea, 168 DCVD cases may not be enough to
develop a risk model specific to CVD subtypes such as CAD. Moreover, the high AUC and
NRI statistics observed in the GLT231 and PRS231 models might represent an overfitting
issue that often occurs when analyzing a large number of SNP markers in a relatively small
number of samples. However, CAD itself consists of heterogeneous subtypes, and the
shared genetic factors may underlie the pervasive pleiotropy among CVD subtypes [34].
Furthermore, the lack of statistical significance does not necessarily preclude the presence
of an association of a risk factor with the disease. Additional efforts are necessary to
implement a risk prediction model in clinical practice, such as developing a set of genetic
markers with excellent DCVD risk classification performance, improving the predictive
performance of risk models, and validating the promising model in independent datasets.

4. Materials and Methods
4.1. Study Populations

To explore potential risk factors for DCVD, we first identified 2378 T2D patients
from 16,147 participants with comparable genetic and clinical data collected from the
initial surveys of four population-based Korean cohort studies established by the Center
for Genome Science at the Korean National Institute of Health: the Korea Association
Resource Study (KARE), Health Examinees (HEXA) Study, Korean Healthy Twin Study
(HT), and Health2 Study. Based on the International Diabetes Federation guidelines (https:
//www.idf.org/), T2D cases were defined as fasting plasma glucose (FPG) ≥ 126 mg/dL,
2-h plasma glucose after 75 g oral glucose tolerance test (2 h OGTT) ≥ 200 mg/dL or with
a medical history of T2D.

We identified 168 T2D patients with a medical history of myocardial infarction (MI),
CAD, congestive heart failure (CHF), PAD, or CVA (mean age 61.1 ± 0.5 years) and 2210
T2D patients without any history of CVD (mean age 56.9 ± 0.2 years) at the baseline
survey conducted from 2001 to 2002. All participants provided written informed consent,
and details of each cohort are described elsewhere [35–38]. This study also obtained
Institutional Review Board approval of Hallym University (HIRB-2014-109).

4.2. Genotyping and Quality Controls

Genomic DNA derived from the peripheral blood of participants was genotyped
using Genome-wide Human SNP array 5.0 in the KARE study and SNP array 6.0 in the
other three cohort studies (Affymetrix Inc., Santa Clara, CA, USA). We found 352,228,
516,610, 606,876, and 627,659 SNPs that passed the quality control filters (i.e., genotyping
call rate ≥ 95%, minor allele frequency ≥ 1%, and Hardy-Weinberg equilibrium p-value
≥ 1 × 10−6) in the KARE, HEXA, Twin-family, and Health2 studies, respectively [35–38].
We computed linkage disequilibrium (LD), represented as r2, between SNP pairs using
Haploview software [39]. To fill in both missing genotypes and untyped markers, we
imputed genotypes at an additional > 4.4 million SNP loci using the East Asian reference
panel of the 1000 Genomes Project with IMPUTE2 [40].

4.3. Statistical Analysis
4.3.1. Association of Conventional Risk Factors with the Development of DCVD

To identify nongenetic risk factors associated with DCVD, we initially conducted
univariate logistic regression analyses to estimate odds ratios (ORs) and 95% confidence
intervals (CIs) for age, sex, family history of T2D or DCVD, four environmental, and
thirteen clinical variables by comparing 168 DCVD patients with 2210 T2D patients at
baseline. We then selected a set of informative covariates by a backward elimination
procedure (Table 1). All analyses were performed using STATA software package v.11.2
(Stata Corp., College Station, TX, USA).

https:// www.idf.org/
https:// www.idf.org/
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4.3.2. Genetic Association Analysis of DCVD Based on Generalized Linear Mixed Model

We initially performed genome-wide GLMM analysis under an additive genetic model
after adjusting for age, sex, BMI, and creatinine level using 210,830 autosomal tagging
SNPs (tSNPs) after removing redundant SNPs (r2 > 0.8) in 168 DCVD cases and 2210 T2D
controls as implemented in Genome-wide Complex Trait Analysis (GCTA) v1.24 [41]. We
generated Manhattan plots using the R package ‘qqman’ (https://cran.r-project.org/web/
packages/qqman) and further explored the ±500-kb regions adjacent to the significant
SNPs using a web-based program, LocusZoom v1.3 (http://locuszoom.org/).

We also identified the SNPs associated with CVD or DCVD by searching for review
articles in PubMed and web databases, such as GWAS Catalog (https://www.ebi.ac.uk/
gwas/) and HuGe Navigator (https://phgkb.cdc.gov/HuGENavigator/home.do), until
6 September 2018. For 231 SNPs, including 216 SNPs identified here at p < 1 × 10−3 plus
15 reported SNPs replicated at p < 0.05 in the present study, we conducted GLMM analyses
using STATA after adjusting for the four covariates shown above.

4.3.3. Gene Functional Enrichment, Pathway, and Network Analyses

We analyzed the enrichment of gene ontology (GO) terms and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways to group the candidate SNPs into functionally
annotated gene sets using the web application of the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.8 [42]. Biological functions with a false discovery
rate (FDR) < 10% were considered to be strongly enriched in the annotation categories.
Furthermore, we displayed the protein–protein interaction (PPI) network for the selected
gene list using STRING v11 [43].

4.3.4. Risk Prediction of DCVD in T2D Patients Using
Incidence-Based Liability Threshold Models

The lifetime risk (i.e., incidence-based risk) of developing DCVD in an individual with
T2D was estimated based on the measured liabilities, age- and sex-specific incidence rates
(IRs), and disease-free mortalities obtained from the Korean Statistical Information System
(KOSIS, www.kosis.kr) (Table S3).

The liability to DCVD was estimated based on the prevalence, additive relative risk
(RR), heritability (h2), and family history of DCVD using the method proposed by So
et al. (2011) [44] We applied the CVD prevalence among Korean adults with T2D (17%)
and h2 of 0.5 [3,45]. Genetic and nongenetic factors were categorized into 0, 1, or 2, and
measurable liability for each individual was estimated from the equation L = ∑i βixi +

∑j β jxj + e, where xi and xj denote the risk allele count at the ith susceptibility locus and
the risk score of the jth nongenetic variable, respectively. The residual, e, represents the
liability contributed by the unknown risk factors. The detailed procedure is described
elsewhere [44,46]. Based on the individual lifetime risk to DCVD, we constructed genetic,
nongenetic, and multifactorial LT models (i.e., GLT, nGLT, and MLT) for 47- and 231-SNP
sets selected at p < 10−4 and p < 10−3, respectively. We further examined the predictive
performance of discrete (L—low risk, H – high risk) and quartile models (Q1—lowest
risk, Q2—low risk, Q3—high risk, Q4—highest risk) for DCVD risk prediction. We also
compared the predictability of each risk model on DCVD observed in each of the four
cohort studies and validated them using 10-fold cross-validation.

Polygenic Risk Scores

To compare the predictive performance for the DCVD risk with the GLT models,
the PRS for each of the three SNP set, PRS15, PRS47, and PRS231, were constructed based

on the formula, PRS =
m
∑

i=1
(logORi × xi), where xi denotes the risk allele count at the

ith susceptibility locus [34]. Two measures of risk, GLT and PRS, each with values in
different ranges, were converted into a common scale of 0–10 using a formula for min-max
normalization, XN =

(
X−Xmin
Xrange

)
× 10, where XN is the normalized values, X is the original

https://cran.r-project.org/web/packages/qqman
https://cran.r-project.org/web/packages/qqman
http://locuszoom.org/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://phgkb.cdc.gov/HuGENavigator/home.do
www.kosis.kr
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values, Xmin is the minimum value on the original scale, and Xrange is the difference between
the maximum score and the minimum score on the original scale [47]. We compared
the predictability of the GLT models with the PRS models based on the interpretation
of the AUC and continuous NRI using the STATA commands, ‘reccomp’ and ‘incrisk’,
respectively [48]. All analyses were conducted using two statistical software packages,
Stata and R.

5. Conclusions

We validated the impact of traditional CVD risk factors such as age, obesity, elevated
blood pressure, cigarette smoking, and alcohol drinking on the development of DCVD in
Korean T2D patients. We also replicated significant associations with DCVD for 15 pre-
viously reported SNPs located in or near CVD candidate genes. In silico gene expression
analysis lent further support to the functional roles of these genes in DCVD pathogenesis,
particularly in the migration and proliferation of smooth muscle cells that occur after
vascular damage, and highlighted the hub genes in the PPI network, such as CDKN2B,
HDAC4, CELS2, and MYL2. For the same set of SNP markers, the GLT and PRS models
showed similar predictive performance. Using the genetic variants that have even modest
effects on phenotypic variance, it is possible to improve risk stratification accuracy beyond
traditional risk factors. In conclusion, the polygenic LT model developed in an ethnically
homogenous Korean population may help identify T2D patients at high risk of CVD in
East Asians genetically similar to Koreans.
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9/11/1/6/s1, Figure S1: Regional association plots for regions containing each of two SNPs, rs4538911
(LOC392180-MCPH1, 8p23.2) and rs9982069 (PPIAL3-SLC6A6P, 21q21.1), Figure S2: Schematic
diagram of the regulation of actin cytoskeleton pathway (KEGG pathway, hsa04810), Figure S3:
Protein-protein interaction network of 170 candidate genes for diabetic cardiovascular disease,
Figure S4: The frequencies of cases and controls and their risks of DCVD by risk percentiles for
genetic (GLT), nongenetic (nGLT), and multifactorial liability threshold (MLT) models of 168 DCVD
cases and 2210 T2D controls, Table S1: Logistic regression analysis for association between diabetic
cardiovascular disease and five nongenetic factors transformed into categorical variables, Table S2:
Results of the linear mixed model analysis of 231 candidate SNPs for diabetic cardiovascular disease,
Table S3: Incidence rates of cardiovascular disease in patients with type 2 diabetes and disease-
free mortality rates in Korea, Table S4: Association results of risk prediction models for diabetic
cardiovascular disease after stratification into risk quartiles in the case-control study, Table S5:
Predictability of genetic and nongenetic liability threshold models on diabetic cardiovascular disease
in KARE, HEXA, Health2, and Twin-family Studies, Table S6: Predictability of genetic and nongenetic
liability threshold models on diabetic cardiovascular disease after 10-fold cross validation test,
Table S7: Reclassification improvement achieved by adding genetic markers to the multifactorial
models for diabetic cardiovascular disease.
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