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Abstract

Elevated blood lipid levels are heritable risk factors of cardiovascular disease with varying 

prevalence worldwide due to differing dietary patterns and medication use1. Despite advances in 

prevention and treatment, particularly through the lowering of low-density lipoprotein cholesterol 

levels2, heart disease remains the leading cause of death worldwide3. Genome-wide association 

studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well 

as new drug targets, for cardiovascular disease. However, most previous GWAS4–23 have been 

conducted in European ancestry populations and may have missed genetic variants contributing 

to lipid level variation in other ancestry groups due to differences in allele frequencies, effect 
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sizes, and linkage-disequilibrium (LD) patterns24. Here we conduct a multi-ancestry genome-wide 

genetic discovery meta-analysis of lipid levels in ~1.65 million individuals, including 350,000 

of non-European ancestries. We quantify the gain in studying non-European ancestries and 

provide evidence to support expanding recruitment into new ancestries even with relatively smaller 

sample sizes. We find that increasing diversity rather than studying additional European ancestry 

individuals results in substantial improvements in fine-mapping functional variants and portability 

of polygenic prediction (evaluated in N~295,000 from 6 ancestries), with modest gains in the 

number of discovered loci and ancestry-specific variants. As GWAS expands its emphasis beyond 

identifying genes and fundamental biology towards using genetic variants for preventive and 

precision medicine25, we anticipate that increased participant diversity will lead to more accurate 

and equitable26 application of polygenic scores in clinical practice.

The Global Lipids Genetics Consortium aggregated GWAS results from 1,654,960 

individuals from 201 primary studies representing five genetic ancestry groups: Admixed 

African or African (AdmAFR, N=99.4k, 6.0% of sample), East Asian (EAS, N=146.5k, 

8.9%), European (EUR, N=1.32m, 79.8%), Hispanic (HIS, N=48.1k, 2.9%), and South 

Asian (SAS, N=41.0k, 2.5%) (Table 1, Supplementary Table 1, Supplementary Figure 

1). We performed GWAS for five blood lipid traits: low-density lipoprotein cholesterol 

(LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), total cholesterol 

(TC), and non-high-density lipoprotein cholesterol (nonHDL-C). Of the 91 million variants 

imputed from the Haplotype Reference Consortium or 1000 Genomes Phase 3 that 

successfully passed variant-level QC, 52 million variants were present in at least two cohorts 

and had sufficient minor allele counts (> 30 in the meta-analysis) to be evaluated as a 

potential index variant.

Ancestry-specific genetic discovery

We first quantified the number of genome-wide significant loci identified in at least 

one of the five ancestry-specific meta-analyses. We found 773 lipid-associated genomic 

regions containing 1,765 distinct index variants that reached genome-wide significance 

(p-value < 5x10−8, ±500 kb, Supplementary Tables 2–3, Supplementary Figures 2–3) for 

at least one ancestry group and lipid trait. Of these regions, 237 were novel based on 

the most-significant index variant in each region being >500 kb from variants previously 

reported as associated with any of the five lipid traits4–23,27. Of these loci, 76% were 

identified only in the European ancestry-specific analyses (N~1.3m, 80% of sample). 

Of the non-European ancestries, the African ancestry GWAS (N~99k, primarily African 

American) identified more ancestry-specific loci (15 unique to AdmAFR) than any other 

non-European ancestry group (six loci unique to EAS, six to HIS, one to SAS). The 

difference is likely attributable to allele frequencies being most different between African 

and European ancestry populations (Figure 1a–d) and to African populations having greater 

genetic diversity28.

Trans-ancestry genetic discovery

We next performed trans-ancestry meta-analyses using the meta-regression approach 

implemented in MR-MEGA30 to account for heterogeneity in variant effect sizes on lipids 

Graham et al. Page 2

Nature. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between ancestry groups. A total of 1,750 index variants at 923 loci (±500 kb regions) 

reached genome-wide significance for at least one lipid trait. These included 168 regions 

not identified by ancestry-specific analysis, 120 (71%) of which were novel (Supplementary 

Tables 4–5, Supplementary Figure 4, Extended Data Figure 1). Almost all (98%) index 

variants from the ancestry-specific analysis remained significant (p-value<5x10−8) after 

meta-analysis across all ancestry groups, although fifteen AdmAFR, nine EAS, three HIS, 

and one SAS index variants from ancestry-specific analysis did not (trans-ancestry p-value 

7.7x10−6 to 5.9x10−8, Supplementary Figure 5, Supplementary Note). In total, we identified 

941 lipid-associated loci including 355 novel loci from either single- or trans-ancestry 

analyses.

Next, we compared the number of loci identified per 100,000 participants in each ancestry 

group and the combined dataset (Figure 1e). African and Hispanic ancestry-specific analyses 

identified the most loci per genotyped individual, perhaps due to African ancestry and/or 

increased genetic diversity. European and trans-ancestry analyses identified slightly fewer 

loci per 100,000 individuals, likely reflecting a slight reduction in the benefit from new 

samples added to very large sample sizes (>1m). For the genome-wide significant variants 

discovered in each ancestry, we estimated the proportion of ancestry-enriched variants by 

enumerating the number of other ancestries with sufficient power to detect association 

(range 0 to 4). We estimated the power for discovery of each variant by assuming an 

equivalent discovery sample size in the other ancestries, fixed effect size, and observed 

allele frequencies from the other ancestries (Figure 1f). To allow for comparison at similar 

sample sizes across ancestry groups, we selected European ancestry index variants identified 

from a meta-analysis of ~100,000 individuals subsampled from the present study. African 

ancestry index-variants were most ancestry-enriched, with only 61% of index variants 

demonstrating sufficient power in at least one other ancestry group (equal N, power>80% 

to reach alpha=5x10−8), likely due to population-enriched allele frequencies. In comparison, 

88% of South Asian index variants had estimated power >80% in at least one other ancestry.

Finally, we found that both the number of identified variants and the mean observed 

chi-squared values from genome-wide lipid association tests were approximately linearly 

related to meta-analysis sample size across ancestries (Supplementary Table 6, Extended 

Data Figure 2). However, in the European ancestry group the incremental increase in either 

the number of loci or chi-squared value was slightly attenuated at the largest sample sizes. 

Taken together, these results suggest that once sufficiently well-powered GWAS sample 

sizes are reached within a given ancestry group, assembling large sample sizes of other 

under-represented groups will modestly enhance variant discovery relative to increasing the 

sample size of the dominant ancestry.

Comparison of effects across ancestries

Differences in association signals across ancestries despite similar sample sizes could 

be due to variation in allele frequencies and/or effect sizes. This could reflect differing 

patterns of LD with the underlying causal variant or an interaction with an environmental 

risk factor whose prevalence varies by ancestry and/or geography. We found that effect 

size estimates of individual variants were largely similar based on pairwise comparison 
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between ancestries (r2=0.93 for variants with p-value<5x10−8) (Extended Data Figure 

3, Supplementary Table 7, Supplementary Figure 6). We additionally tested for genome-

level differences in effect size correlation between East Asian, European, and South 

Asian ancestry groups using Popcorn29, which were not significantly different from 1 (p-

value>0.05, Supplementary Figures 7 and 8). We tested for differences in genetic correlation 

between Admixed African and European ancestries in the UK Biobank and Million Veteran 

Program (MVP) using bivariate GREML30,31 as the Popcorn method does not account for 

long-range LD in admixed populations. Genetic correlation between Admixed African and 

European ancestries for HDL-C (r=0.84) was not significantly different from 1 in the UK 

Biobank (possibly due to relatively small numbers of African ancestry individuals), while 

correlations for the other traits ranged from 0.52-0.60 in UK Biobank and 0.47-0.69 in MVP 

(Supplementary Table 8). These results indicate moderately high correlation in lipid effect 

sizes across ancestry groups when considering all genome-wide variants.

Of the 2,286 variants that reached genome-wide significance in the trans-ancestry meta-

analysis across all five lipid traits, 159 (7%) showed significant heterogeneity of effect size 

due to ancestry (p-value<2.2x10−5; Bonferroni correction for 2,286 variants, Supplementary 

Table 5). Of these 159, 31 showed the largest effect in African ancestry analyses, 24 in 

East Asian, 67 in European, 20 in Hispanic, and 17 in South Asian. Only 49 (2%) of 

these variants from trans-ancestry meta-analysis showed significant residual heterogeneity 

not due to ancestry, which may be attributable to differences in ascertainment or analysis 

strategy between cohorts (Supplementary Table 5), suggesting cohort-related factors are a 

less important driver of heterogeneity than genetic ancestry.

Trans-ancestry analyses aid fine-mapping

We next assessed whether trans-ancestry fine-mapping narrowed the set of likely causal 

variants at each of the independent trans-ancestry association signals (LD r2<0.7), assuming 

one shared causal variant per ±500 kb region (Supplementary Table 9). 19% of the 

association signals had only one variant in the 99% credible set and 55% (816/1,486) 

had ≤10. In contrast, 5% (73/1486) had >100. Of the 407 variants with >90% posterior 

probability of being the causal variant at a locus in the trans-ancestry meta-analysis, 56 

(14%) were missense variants, 7 (2%) were splice-region variants, and 4 (1%) were stop-

gain variants (CD36, HBB, ANGPTL8, PDE3B). (Supplementary Tables 10–12).

The median number of variants in 99% credible sets from European ancestry analysis was 

13; this was reduced to 8 in the trans-ancestry analysis. Of 1,486 association signals, 825 

(56%) had reduced credible set size in the trans-ancestry analysis. At these 825 loci, the 

number of variants in the trans-ancestry credible sets were reduced by 40% relative to the 

minimum credible set size in either Admixed African (the most genetically diverse group) 

or European ancestry analyses (Extended Data Figure 4). We estimate that increasing the 

sample size of European ancestry samples to that of the trans-ancestry analysis would yield 

a 20% reduction in credible set size, approximately half of the 40% reduction observed 

in trans-ancestry analysis. This suggests that sample size differences alone do not explain 

the reduction, rather differences in LD patterns and effect sizes across ancestries likely 

contribute to the improved fine-mapping (Supplementary Note). For example, rs900776, 
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an intronic variant in the DMTN region with many high LD variants in the European 

ancestry group, has a posterior probability of being causal of 0.86 in the African ancestry 

derived credible sets, >0.99 in the trans-ancestry analysis, but only 0.51 in the European 

ancestry-specific analysis (Figure 2).

Trans-ancestry PRS are most predictive

We evaluated the potential of polygenic risk scores (PRS, sometimes also called polygenic 

scores or PGS) to predict elevated LDL-C, a major causal risk factor of CAD, in diverse 

ancestry groups. We created three non-overlapping datasets to separately: i) perform 

ancestry-specific or trans-ancestry GWAS to estimate variant effect sizes, ii) optimize risk 

score parameters, and iii) evaluate the utility of the resulting scores. For each ancestry-

specific or trans-ancestry GWAS we created multiple polygenic score weights -- either 

genome-wide with PRS-CS32 or using pruning and thresholding to select independent 

variants. We tested each score in the optimizing dataset, which was matched for ancestry 

to the GWAS (AdmAFR, EAS, EUR, SAS, ALL from UK biobank or HIS from Michigan 

Genomics Initiative (MGI), Extended Data Figures 5 and 6, Supplementary Tables 13–15). 

The top-performing score from each GWAS was selected: PRS-CS for East Asian ancestry, 

European ancestry, and European ancestry 2010 scores from a previous GLGC GWAS4, 

and an optimized pruning and threshold-based score for all others. We then evaluated the 

polygenic scores in 8 cohorts of individuals (N=295,577, Supplementary Table 16), not 

included in the discovery GWAS, from 6 ancestral groups: East Asian (146,477), European 

American (85,571), African American (21,730), African (2,452 East Africa, 4,972 South 

Africa, 7,309 West Africa), South Asian (15,242), Hispanic American (7,669), and Asian 

American (4,155).

The polygenic score developed from trans-ancestry meta-analysis consistently showed the 

best or near-best performance in each group tested, with improved or comparable prediction 

relative to ancestry-matched scores (adjusted R2 ~ 0.10-0.16, Figure 3, Supplementary Table 

17, Extended Data Figure 7). This observation was especially evident for ancestries with 

smaller GWAS sample sizes, as was the case for HIS and SAS. For African Americans 

in MGI and MVP, polygenic prediction was similar for individuals with different levels 

of recent African ancestry admixture (Extended Data Figure 8) and reached the level 

of prediction observed for European ancestry individuals from the same dataset. The 

increase in LDL-C per each standard deviation increase in the polygenic score was 

also similar between ancestry groups in MVP: 13.2±0.22 mg/dL for African American, 

8.9±0.47 mg/dL for Asian (EAS/SAS), 10.5±0.10 mg/dL for European, and 10.6±0.32 

mg/dL for Hispanic ancestry individuals. We repeated the evaluation of trans-ancestry vs 

single-ancestry polygenic scores with a set GWAS with sample size of ~100k individuals 

and with fixed methodology; results were consistent with those from the full dataset (Figure 

3b, Supplementary Figure 9). Thus, polygenic prediction for LDL-C in all ancestries appears 

to benefit the most from adding samples of diverse ancestries once relatively large numbers 

of European ancestry individuals have already been included. Additional studies are needed 

to determine if this applies to other phenotypes with different genetic architectures and 

heritabilities.
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Discussion

Genome-wide discovery for blood lipid traits based on ~1.65 million individuals from five 

ancestry groups confirmed that the contributions of common genetic variation to blood lipids 

are largely similar across diverse populations. First, we found that the number of significant 

loci relative to sample size was similar within each ancestry group, and approximately 

linearly related to sample size, with a small increase in ancestry-specific variants observed 

in African ancestry cohorts relative to the others. Second, we demonstrated that inclusion 

of additional ancestries through trans-ancestry fine-mapping reduces the set of candidate 

causal variants in credible sets and does so more rapidly than in single-ancestry analysis. 

Trans-ancestry GWAS should therefore facilitate identification of effector genes at GWAS 

loci and allow for accelerated biological insight and identification of potential drug targets. 

Third, we found that a polygenic score derived from ~88k African ancestry and ~830k 

European ancestry individuals was correlated with observed lipid levels among individuals 

with admixed African ancestry as well as among individuals with European ancestry. 

We hypothesize that the inclusion of African ancestry individuals in the GWAS yields 

improvement in polygenic prediction performance through the general fine-mapping of 

loci and the improved prioritization of trans-ancestry causal variants. Fourth, and perhaps 

most important, the trans-ancestry score was generally most informative across all major 

population groups examined. This provides useful information for other genetic discovery 

efforts and investigations of the utility of the polygenic scores in diverse populations.

Generalizability of these findings regarding portability of polygenic scores from the trans-

ancestry meta-analysis to other traits may depend on the heritability, degree of polygenicity, 

level of genetic correlation, allele frequencies of causal variants across ancestry groups, 

gene-environment interactions, and representation of diverse populations in the GWAS33,34. 

While many traits show a high degree of shared genetic correlation across ancestries31,35,36 

others have distinct genetic variants with large effects that are more common in specific 

ancestry groups33 which may limit the utility of trans-ancestry polygenic scores for 

particular phenotypes in some ancestries.

The benefits from genetic discovery efforts as GWAS sample sizes increase will likely not 

be measured just by the number of loci discovered. Rather, the focus will increasingly 

turn to improving our understanding of the biology at established loci, identifying 

potential therapeutic targets, and efficiently identifying individuals at high-risk of adverse 

health outcomes across population groups without exacerbating existing health disparities. 

Considering the results presented here, and those of related studies37–39, we believe future 

genetic studies will benefit substantially from meta-analysis across participants of diverse 

ancestries. Further gains in the depth and number of sequenced individuals of diverse 

ancestries40,41 may additionally improve discovery of novel variants and loci in diverse 

cohorts, particularly variants absent from arrays and imputation reference panels. Our results 

suggest that diversifying the populations under study, rather than simply increasing the 

sample size, is now the single most efficient approach to achieving these goals, at least 

for blood lipids and likely for tightly related downstream adverse health outcomes such as 

cardiovascular disease. However, if costs for recruitment of diverse populations are higher 

than recruitment of individuals from previously studied ancestry groups, and total number 

Graham et al. Page 6

Nature. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of genome-wide significant index variants is the goal, then continued low-cost recruitment 

of majority ancestry groups is expected to still provide some benefit. Taken together, our 

results also strongly support ongoing and future large-scale recruitment efforts targeted 

at the enrollment and DNA collection of non-European ancestry participants. Geneticists 

and those responsible for cohort development must continue diversifying genetic discovery 

datasets, while increasing sample size in a cost-effective manner, to ensure genetic studies 

reduce rather than exacerbate existing health inequities across race, ancestry, geographic 

region, and nationality.

Methods:

Cohort level analysis

Each cohort contributed GWAS summary statistics for HDL-C, LDL-C, nonHDL-C, TC and 

TG, imputation quality statistics, and analysis metrics for quality control (QC), following 

a detailed analysis plan (Supplementary File 1). Briefly, we requested that each cohort 

perform imputation to 1000 Genomes Phase 3 (1KGP3), with European ancestry cohorts 

additionally imputing with the Haplotype Reference Consortium (HRC) panel using the 

Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html#!) which 

uses Minimac software42. Detailed pre-imputation QC guidelines were provided; these 

included removing samples with call rate < 95%, samples with heterozygosity > median 

+ 3(interquartile range), ancestry outliers from principal component analysis within each 

ancestry group, and variants deviating from Hardy-Weinberg equilibrium (p-value < 10−6) 

or with variant call rate < 98%. Analyses were carried out separately by ancestry group 

and were additionally stratified by cases and controls where appropriate (i.e. for a disease-

focused cohort such as CAD). Residuals were generated separately in males and females 

adjusting for age, age2, principal components of ancestry, and any necessary study-specific 

covariates. Triglyceride levels were natural-log transformed before generating residuals. 

Inverse normalization was then done on the residual values. Individuals on cholesterol 

lowering medication had their pre-medication levels43 approximated by dividing the LDL-C 

value by 0.7 and the TC value by 0.8. Association analysis of the residuals for the majority 

of cohorts was carried out using a linear mixed-model approach in rvtests or with other 

similar software including BOLT-LMM44, SAIGE45, or deCode association software.

Quality Control

Each input file was assessed for quality control using the EasyQC software46 (www.genepi-

regensburg.de/easyqc). We generated QQ plots by minor allele frequency (MAF) bins, 

assessed trends in standard errors relative to sample size for each cohort, and checked MAF 

of submitted variants relative to their expected value based on the imputation reference 

panel. In addition, we checked that each cohort reproduced the expected direction of effect 

at most known loci relative to the cohort sample size. Cohorts identified to have issues with 

the submitted files were contacted and corrected files were submitted or the cohort was 

excluded from meta-analysis. Results from either sex-stratified analysis or sex-combined 

analysis with sex as a covariate were used. During the QC process, within each cohort 

we removed poorly imputed variants (info score or r2 < 0.3), variants deviating from Hardy-

Weinberg Equilibrium (HWE p-value < 10−8, except for MVP which used HWE p-value 
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< 10−20), and variants with minor allele count < 3. An imputation info score threshold of 

0.3 was selected to balance the inclusion of variants across diverse studies while removing 

poorly imputed variants. Summary statistics were then genomic-control (GC) corrected 

using the λGC value calculated from the median p-value of variants with MAF > 0.5%. To 

capture as many variants as possible, summary statistics from cohorts that had submitted 

both HRC and 1KGP3 imputed files were joined, selecting variants imputed from HRC 

where both imputed versions of a variant existed. For variants imputed by both panels, we 

observed that variants imputed from the HRC panel resulted in a higher imputation info 

score for 94% of variants when compared to the imputation info score from 1KGP3.

Meta-analysis

Ancestry-specific meta-analysis was performed using RAREMETAL47 (https://github.com/

SailajaVeda/raremetal). Trans-ancestry meta-analysis was performed using MR-MEGA48 

with 5 principal components of ancestry. The choice of 5 principal components was made 

after comparing the λGC values across minor allele frequency bins from meta-analysis of 

HDL-C with MR-MEGA using from 2 up to 10 principal components. In addition, fixed-

effects meta-analysis was carried out with METAL49 to calculate effect sizes for use in the 

creation of polygenic scores. Study-level principal components were plotted for each cohort 

by ancestry group to verify that the reported ancestry for each cohort was as expected. 

Following meta-analysis, we identified loci based on a genome-wide significance threshold 

of 5x10−8 after GC correction using the λGC value calculated from the median p-value 

of variants with MAF > 0.5%. The choice of double-GC correction was made to be most 

conservative and to minimize potential false-positive findings. Observed λGC values were 

within the expected range for similarly sized studies and are included in Supplementary 

Tables 2 and 4. Variants with a cumulative minor allele count ≤ 30 and those found in 

a single study were excluded from index variant selection. Index variants were identified 

following an iterative procedure starting with the most significant variant and grouping 

the surrounding region into a locus based on the larger of either ± 500 kb or ± 0.25 

cM. cM positions were interpolated using the genetic map distributed with Eagle v2.3.2 

(genetic_map_hg19_withX.txt)50. Variants were annotated using WGSA51 including the 

summary of each variant from SnpEff52 and the closest genes for intergenic variants from 

ANNOVAR53. Annotation of variants as known or novel was done based on manual review 

of previously published variants and with variants reported in the GWAS catalog27 for any 

of the studied lipid traits (accessed May 2020, provided as Supplementary Table 18). For 

comparison between ancestries and lipid traits, index variants were grouped into genomic 

regions starting with the most significantly associated variant and grouping all surrounding 

index variants within ± 500 kb into a single region.

Power to detect association within each ancestry was determined using the effect size and 

sample size of the variant within the original discovery ancestry group and the observed 

allele frequency from the other ancestry groups with alpha set to 5x10−8. We excluded 

variants that were only successfully imputed in a single ancestry group to account for 

imputation panel differences between groups (ie. Haplotype Reference Consortium for 

European ancestry individuals and 1000 Genomes for other ancestries). Variants that were 

successfully imputed in 2 or more ancestries were assumed to have zero power in any 
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other ancestry where the variant was not successfully imputed. The proportion of variance 

explained by each variant was estimated as 2β2(1-f)f where β is the effect size from METAL 

and f is the effect allele frequency (Supplementary Table 19). The proportion of variance 

explained within each ancestry was estimated using the trans-ancestry effect size from 

METAL with the ancestry-specific allele frequency. Coverage of the genome by associated 

genetic regions was calculated using BEDTools54 for the regions defined by the minimum 

and maximum position within each locus having p-value < 5x10−8.

Conditional analysis

Approximate conditional analysis was performed using rareGWAMA55 to identify index 

variants that were shadows of nearby, more significant associations. LD reference 

populations were taken from UK Biobank specific to Admixed African, European (subset of 

40,000), or South Asian ancestry individuals or from the 1000 Genomes project (1KGP3) 

for East Asian or Hispanic ancestry individuals. Conditional analysis was carried out 

using the individual cohort level summary statistics as was done for meta-analysis with 

RAREMETAL. rareGWAMA requires imputation quality scores which were set to 1 for 

all variants that had previously passed quality control (pre-filtered at imputation info/r2 > 

0.3). The European ancestry subset of UK Biobank was used as the reference population 

for the conditional analysis of the trans-ancestry meta-analysis (~80% European ancestry). 

Stepwise conditional analysis was performed sequentially for the index variants within each 

chromosome ranked by most to least significant. Index variants were then flagged as not 

independent from other more significant variants if the absolute value of the ratio of the 

original effect size to the effect size after conditional analysis was greater than the 95th 

percentile of all values (Supplementary Figure 10). This threshold was selected to remove 

variants whose effects were driven by nearby, more strongly associated variants in LD. This 

corresponded to a ratio of original to conditional effect size of 1.6 for ancestry-specific 

conditional analysis and a ratio of 1.7 for the trans-ancestry conditional analysis. The effect 

sizes from meta-analysis with METAL were used for comparison with the trans-ancestry 

conditional analysis results. Variants flagged as non-independent were excluded from the 

summary results in the manuscript and are flagged as non-independent in Supplementary 

Tables 3 and 5.

Genetic correlation

Popcorn29 was used to assess the degree of correlation in effect sizes between ancestry 

groups for each of the lipid traits with 1000 Genomes phase 3 as the reference LD 

panel. Only variants with MAF > 0.01 in each ancestry individually were included in 

the comparison. Both the genetic effect and genetic impact models were tested. Bivariate 

GREML from GCTA was used to calculate the genetic correlation between unrelated 

Admixed Africans and a subset of white British individuals in the UK Biobank following the 

method of Guo et al30,31. HapMap3 variants with MAF > 0.01 in each ancestry were used 

to construct the genetic relationship matrix (GRM) with the allele frequencies standardized 

in each population. Individuals with genetic relatedness > 0.05 were removed. A total of up 

to 5,575 AdmAfr and 38,668 white British individuals from UK Biobank were included in 

the analysis of each trait after removal of related individuals. The measured lipid traits were 

corrected for medication use and were inverse-normalized after correction for age, sex, and 
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batch. Principal components 1-20 constructed from the GRM were included as covariates in 

the calculation of genetic correlation. Analysis within the Million Veteran Program included 

24,502 European ancestry and 21,950 African American unrelated individuals. Maximum 

measured values were used for LDL-C, TC, and triglycerides and minimum values for 

HDL-C. Lipid traits were inverse-normalized after correction for age and sex with principal 

components 1-20 included as covariates in the calculation of genetic correlation.

Credible sets

Credible sets of potentially causal variants were generated for each of the loci identified 

in the trans-ancestry meta-analysis. We determined 99% credible sets of variants that 

encompassed the causal variant with 99% posterior probability. Regions for construction 

of credible sets were defined as the ± 500 kb region around each index variant. Bayes 

factors56,57 (BF) for each variant in the ancestry-specific meta-analysis were approximated 

by:

BF ≈ exp 0.5 β2

SE2 − log NAS

where β and SE are the effect sizes and standard errors from the RAREMETAL meta-

analysis, and NAS is the ancestry-specific sample size. A full derivation is included in the 

Supplementary Methods. To account for the difference in sample sizes between ancestry 

groups, we additionally approximated the Bayes factors after adjustment for the total trans-

ancestry sample size for each trait (NTE) relative to the ancestry-specific sample size for that 

trait using the following equation:

BF ≈ exp 0.5
β2NTE

SE2NAS
− log NTE

Credible sets for the trans-ancestry meta-analysis were generated using the Bayes factors 

as output by MR-MEGA. The credible sets within each region were generated by ranking 

all variants by Bayes factor and calculating the number of variants required to reach a 

cumulative probability of 99%. In addition, we calculated credible sets in the same manner 

using the European ancestry and trans-ancestry meta-analysis results but including only 

the set of variants present in the AdmAFR meta-analysis. To summarize the size of the 

credible sets across the 5 lipid traits examined, we identified the set of independent index 

variants from the trans-ancestry meta-analysis after grouping variants based on LD. For 

each ± 500kb region centered around the most-significantly associated index variant for 

any trait, we determined the pairwise LD between all index variants in this region using 

LDpair58 with all reference populations (1000 Genomes AFR, AMR, EAS, EUR, and SAS) 

included. We considered variants to be independent if they were outside of this region, had 

LD r2 < 0.7, or were not available in the LDpair reference populations. Variants within the 

credible sets were annotated with SnpEff52 using WGSA51 and with VEP59. The number 

of variants in LD with an index variant was determined using LDproxy58 (Supplementary 

Table 20). Protein numbering was taken from dbSNP60. eQTL colocalization was performed 
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using coloc61 version 3.2.1 with R version 3.4.3 using the default parameters. Results from 

GTEx V862 were compared with the GWAS signals in the region defined by the larger of 

±0.25cM or ±500kb surrounding each index variant. The eQTL and GWAS signals (based 

on p-values from MR-MEGA) were considered to be colocalized if PP3 + PP4 ≥ 0.8 and if 

PP4/(PP3+PP4) > 0.9, where PP3 is the probability of two independent causal variants while 

PP4 is the probability of a single, shared causal variant.

LDL-C polygenic scores

Weights for the LDL-C polygenic scores were derived from beta estimates generated 

from each of the ancestry-specific meta-analyses and from the trans-ancestry results using 

METAL. Additional meta-analyses were carried out using the 2010 Global Lipids Genetics 

Consortium LDL-C meta-analysis results4 in combination with the i) Admixed African or ii) 

Admixed African, East Asian, Hispanic, and South Asian ancestry results from the present 

meta-analysis for comparison. Furthermore, we performed a meta-analysis of European 

ancestry cohorts randomly selected to reach a total sample size near 100K, 200K, or 400K 

to understand the role of increasing European ancestry sample size and the influence of 

imputation panel. In addition, we tested possible methods for improving performance of 

European ancestry derived scores in African ancestry individuals by separately fitting the 

European ancestry polygenic scores in the UK Biobank Admixed African ancestry subset to 

determine the best set of risk score parameters (various pruning and thresholding parameters 

or PRS-CS, Supplementary Note).

We generated polygenic score weights using both: i) significant variants only (at a variety 

of p-value thresholds) and ii) using genome-wide methods. Meta-analysis results were 

first filtered to variants present in UK Biobank, MGI, and MVP with imputation info 

score > 0.3. Pruning and thresholding was performed in PLINK63 with ancestry-matched 

subsets of UK Biobank individuals (AdmAFR N=7,324, EUR N=40,000, SAS N=7,193, 

trans-ancestry: N=10,000 (80% EUR, 15% AdmAFR, 5% SAS)) or 1KGP3 (HIS N=347 , 

EAS N=504) used for LD reference. We additionally tested 1000 Genomes phase 3 with 

all populations included as the LD reference panel for the trans-ancestry score (results not 

shown), which gave very similar results to those of the UK Biobank trans-ancestry reference 

set originally selected for its larger sample size. P-value thresholds (after GC correction) 

of 5x10−10, 5x10−9, 5x10−8, 5x10−7, 5x10−6, 5x10−5, 5x10−4, 5x10−3, and 5x10−2 were 

tested with distance thresholds of 250 and 500 kb and LD r2 thresholds of 0.1 and 0.2. 

Polygenic score weights were also generated using PRS-CS32 with the LD reference panels 

for African, East Asian, and European ancestry populations from 1000 Genomes provided 

by the developers. PRS-CS LD reference panels for the other ancestries were generated 

using 1000 Genomes following the same protocol as provided by the PRS-CS authors32. 

This included removing variants with MAF ≤ 0.01, ambiguous A/T or G/C variants, and 

restricting to variants included in HapMap3. Pairwise LD matrices within pre-defined LD 

blocks64 (using European LDetect blocks for Hispanic and trans-ancestry LD calculations 

and Asian blocks for South Asian) were then calculated using PLINK and converted to 

HDF5 format.
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For each individual in the testing cohorts, polygenic scores were calculated as the sum of 

the dosages multiplied by the given weight at each variant. UK Biobank individuals not 

present in datasets used to generate the summary statistics (either Admixed African, white 

British, both Admixed African and white British, East Asian, South Asian, or all individuals 

excluding South Asian) were used to select the best performing Admixed African, European, 

Admixed African+European, East Asian, South Asian, and trans-ancestry polygenic scores, 

respectively. UK Biobank South Asian ancestry individuals were included in the trans-

ancestry risk score weights but excluded from the UK Biobank trans-ancestry testing 

set due to an initial focus on comparing predictions among European and African 

ancestry individuals. Sample sizes of the ancestry groups in UK Biobank used to test 

PRS performance included: AdmAFR N=6,863; EAS N=1,441; EUR N=389,158; SAS 

N=6,814; ALL=461,918. The best performing Hispanic ancestry polygenic score weights 

were selected based on performance in Hispanic ancestry individuals in the Michigan 

Genomics Initiative dataset. Model fit was assessed by the adjusted R2 of a linear model 

for LDL-C value at initial assessment adjusted for cholesterol medication (divided by 0.7 

to estimate pre-medication levels) with sex, batch, age at initial assessment, and PCs1-4 

as covariates (Supplementary Tables 21–23). Python and R were used for analysis of PRS 

models.

The best performing polygenic score in each ancestry group was then tested in the 

validation cohorts: the Michigan Genomics Initiative (EUR N=17,190; AFRAMR N=1,341), 

East London Genes and Health65 (ELGH; SAS N=15,242), Tohoku Medical Megabank 

Community Cohort Study (ToMMo; EAS N=28,217), Korean Genome and Epidemiology 

Study66 (KoGES; EAS N=118,260), Penn Medicine BioBank (PMBB; AFRAMR=2,138), 

Africa America Diabetes Mellitus (AADM; 3,566 West AFR; 707 East AFR), Africa 

Wits-INDEPTH partnership for Genomic Studies (AWI-Gen; 1,744 East AFR; 4,972 South 

AFR; 3,744 West AFR) and Million Veteran Program participants not included in the 

discovery meta-analysis (MVP; EUR N=68,381; AFRAMR N=18,251; EAS/SAS N=4,155; 

HIS N=7,669). Adjusted R2 values were reported for each cohort and ancestry group, with 

95% confidence intervals for the adjusted R2 values calculated using bootstrapping. Within 

each cohort, covariates used were: MGI- sex, batch, PC1-4, and birth year; PMBB- birth 

year, sex, and PC1-4; ELGH- age, sex, and PC1-10; MVP- sex, PC1-4, birth year, and mean 

age; ToMMo-sex, age, recruitment method, and PC1-20 (only participants from Miyagi 

Prefecture were included); KoGES-age, sex, and recruitment area, AADM-age, sex, PC1-3, 

AWI-Gen East Africa- age, sex, PC1-6, AWI-Gen South Africa- age, sex, PC1-6, and AWI-

Gen West Africa- age, sex, and PC1-4. The type of LDL-C value used in the model varied 

depending on the measurements selected by each cohort. Mean LDL-C values were used for 

MGI, MVP and PMBB, maximum LDL-C values for ELGH, and baseline measurements 

for AADM, AWI-Gen, ToMMo and KoGES. A descriptive summary of each validation 

cohort is included in Supplementary Table 16. African admixture for MGI was calculated 

using all African ancestry individuals in 1000 Genomes with ADMIXTURE v1.367. African 

admixture for MVP was calculated using the YRI and LWK African ancestry individuals in 

1000 Genomes.
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Extended Data

Extended Data Figure 1: Effect sizes of identified index variants from trans-ancestry meta-
analysis
Index variants associated with a) HDL cholesterol, b) LDL cholesterol, c) triglycerides, 

d) nonHDL cholesterol and e) total cholesterol include both common variants of small to 

moderate effect and low frequency variants of moderate to large effect.
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Extended Data Figure 2: Comparison of the number of index variants by sample size
a) Comparison of the number of index variants reaching genome-wide significance (p < 

5x10−8) from meta-analysis of LDL-C in each ancestry group. A meta-analysis of five 

random subsets of European cohorts selected to reach sample sizes of approximately 

100,000, 200,000, 400,000, 600,000, or 800,000 individuals is also shown.

b) Comparison of chi-squared values from meta-analysis of LDL-C for each possible 

combination of ancestry groups (without genomic-control correction) for variants with 

minor allele frequency (MAF) ≥ 5%. The colored lines indicate a linear regression model of 

all meta-analyses for a specific ancestry (eg. all analyses including European individuals).

c) Comparison of chi-squared values from meta-analysis of LDL-C for variants with MAF ≤ 

5%.

d) Comparison of chi-squared valued for variants with MAF ≥ 5% for LDL-C without 

genomic-control correction in a meta-analysis of all European cohorts as well as five subsets 

selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 600,000, or 

800,000 individuals.
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Extended Data Figure 3: Effect sizes by ancestry for unique index variants from ancestry-
specific meta-analysis
Comparison of effect sizes and standard errors for variants reaching genome-wide 

significance (p-value < 5x10−8 as given by RAREMETAL) in both ancestry groups. Variants 

with discordant directions of effect between ancestries are labeled by chromosome and 

position (build 37). Association results for all index variants are given in Supplementary 

Table 3. The red line depicts an equivalent European ancestry and non-European ancestry 

effect size while the black line depicts a linear regression model. R2=0.93
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Extended Data Figure 4: Comparison of credible set size
The number of variants in the 99% credible sets for each association signal are compared 

between a) Admixed African ancestry and trans-ancestry analysis and b) European ancestry 

and trans-ancestry analysis
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Extended Data Figure 5: Overview of LDL-C polygenic score generation and validation
Polygenic scores were calculated separately in each ancestry group or in all ancestries 

combined using either pruning and thresholding or PRS-CS. The polygenic scores were 

then taken forward for testing in ancestry-matched participants followed by validation in 

independent data sets.
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Extended Data Figure 6: Optimal polygenic score threshold by ancestry group for either PRS-CS 
or pruning and thresholding based LDL-C polygenic scores
Adjusted R2 estimated upon testing in UK Biobank ancestry-matched participants (not 

included in GWAS summary statistics).

a. Admixed African, East Asian and South Asian ancestry polygenic scores

b. European and trans-ancestry polygenic scores

c. European ancestry (GLGC 2010) and trans-ancestry polygenic scores

d. All polygenic scores across all thresholds used for score construction
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e. Comparison of adjusted R2 across ancestry groups relative to the maximum 

for covariates alone, polygenic scores from PRS-CS or polygenic scores from 

pruning and thresholding

Extended Data Figure 7: Comparison of PRS performance by admixture quartile
We divided the testing cohorts into quartiles by proportion of African ancestry and estimated 

the performance of the PRS separately within each quartile in a) the Michigan Genomics 

Initiative (N = 1,341) and b) in the Million Veteran Program (N = 18,251). Error bars 

represent 95% confidence intervals.
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Extended Data Figure 8: Improvement in PRS performance in African Americans when starting 
with ancestry-mismatched European ancestry scores by updating weights, updating variant lists, 
or updating both variants and weights to be ancestry-matched.
By comparison to the gold-standard performance of the trans-ancestry-derived PRS in 

African Americans (adjusted R2 = 0.12), a European ancestry derived score capture only 

47% of the variance explained by the trans-ancestry PRS. When LD and association 

information from the target population is used to optimize the list of variants for inclusion 

in the PRS, but with ancestry-mismatched weights from European ancestry GWAS, the 

variance explained reaches 71% of the gold standard. If the PRS variant list selected in 

European ancestry individuals were genotyped in the target population, and PRS weights 

were updated using a GWAS from the target population, the variance explained reached 

87% of the gold standard. Finally, deriving both the marker list and weights from the 

target population (single-ancestry GWAS) explained 94% of the variance relative to the 

gold-standard trans-ancestry PRS.
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Figure 1: Comparison of identified loci across ancestry groups
a) Allele frequency distribution and b) effect sizes of Admixed African ancestry index 

variants in non-African ancestry populations. c) Allele frequency distribution and d) effect 

sizes of European ancestry index variants in non-European ancestry populations. Boxplots 

depict the median value as the center, first and third quartiles as box boundaries and 

whiskers extending 1.5 times the inter-quartile range, with points beyond this region shown 

individually. Sample sizes for each ancestry are provided in Table 1. The mean effect 

size of Admixed African ancestry identified index variants is larger than from European 

ancestry analysis, reflecting the difference in power to detect an association within each 

group as a result of the >10-fold difference in sample size. e) Number of loci identified 

within each ancestry group, normalized to a constant sample size of 100,000 individuals and 

averaged across lipid traits. At currently available sample sizes, trans-ancestry and European 

ancestry analyses identify a lower proportion of loci relative to the number of individuals 

than analyses of other ancestry groups. However, the larger sample size of European or 

trans-ancestry analyses leads to a greater relative proportion of novel loci and a higher 

proportion of loci significant only in European ancestry analyses. f) Proportion of index 

variants identified from each ancestry-specific meta-analysis that would be well-powered 

to detect an association of the same effect size but with ancestry-specific frequencies 

in the other ancestry groups. Dark blue regions indicate variants likely to be detected 

at an equivalent sample size only in the original ancestry group (i.e. ancestry-specific). 

Additional comparisons of allele frequencies and effect sizes across ancestries are provided 

in Supplementary Figure 3.
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Figure 2: Inclusion of multiple ancestries drives improved fine-mapping
a) Association of the DMTN intron variant rs900776 with LDL-C or b) DMTN expression. 

The region spanned by the 99% credible sets are shown in the center box. The LDL-C 

association signal significantly colocalizes with the GTEx eQTL signal of DMTN in liver. 

c) The LD patterns for variants in the European ancestry 99% credible set differ greatly 

between African and European ancestry individuals in 1000 Genomes. The lead variant has 

a posterior probability of 0.86 in Admixed African, 0.51 in European, and >0.99 in the 

trans-ancestry analysis.
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Figure 3: Trans-ancestry LDL-C PRS show similar performance across ancestry groups
a) Polygenic scores generated from trans-ancestry meta-analysis show equivalent or better 

performance across most ancestry groups relative to ancestry-specific PRS within each 

cohort, whereas European ancestry-specific scores show less transferability. Adjusted R2 is 

calculated with the risk score as a predictor of LDL-C in a linear model with covariates. 

AFR: African, AFRAMR: African American, ASN: Asian American b) Trans-ancestry 

scores derived from equal proportions of each ancestry group predict LDL-C better for 

African Americans in MGI than predominantly European ancestry scores at constant sample 

size. Error bars depict 95% confidence intervals. Sample sizes for each cohort are provided 

in Supplementary Table 16.
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Table 1:

Meta-analysis sample size by ancestry group

Ancestry Group Sample Size Number of Cohorts Mean Sample Size per Cohort (range) Number of Variants

European 1,320,016 146 10,928 (173-389,344) 47 M

East Asian 146,492 40 7,448 (150-131,050) 17 M

Admixed African/African 99,432 19 5,330 (473-62,022) 33 M

Hispanic 48,057 10 6,032 (1,496-22,302) 27 M

South Asian 40,963 7 6,413 (1,796-16,110) 17 M

Total 1,654,960 201 52 M

The present meta-analysis represents a 6-fold overall increase in sample size relative to the most recent 2018 Million Veteran Program blood lipid 

meta-analysis13, with a 2-fold increase in sample size of Admixed African and Hispanic individuals.

Nature. Author manuscript; available in PMC 2022 June 09.


	Abstract
	Ancestry-specific genetic discovery
	Trans-ancestry genetic discovery
	Comparison of effects across ancestries
	Trans-ancestry analyses aid fine-mapping
	Trans-ancestry PRS are most predictive
	Discussion
	Methods:
	Cohort level analysis
	Quality Control
	Meta-analysis
	Conditional analysis
	Genetic correlation
	Credible sets
	LDL-C polygenic scores

	Extended Data
	Extended Data Figure 1:
	Extended Data Figure 2:
	Extended Data Figure 3:
	Extended Data Figure 4:
	Extended Data Figure 5:
	Extended Data Figure 6:
	Extended Data Figure 7:
	Extended Data Figure 8:
	References
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:

