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Background: Resistance to standard chemotherapy in metastatic triple-negative breast cancer (mTNBC) is associated
with upregulation of the mitogen-activated protein kinase (MAPK) pathway. Cobimetinib, an MAPK/extracellular
signal-regulated kinase (MEK) inhibitor, may increase sensitivity to taxanes and programmed death-ligand 1
inhibitors. COLET is a three-cohort phase II study evaluating first-line cobimetinib plus chemotherapy, with or
without atezolizumab, in patients with locally advanced or mTNBC.
Patients and methods: Patients were �18 years with locally advanced or mTNBC. Following a safety run-in, patients
in cohort I were randomized 1:1 to cobimetinib (60 mg, D3-D23 of each 28-day cycle) or placebo, plus paclitaxel
(80 mg/m2, D1, 8, and 15). Additional patients were randomized (1:1) to cohort II or III to receive cobimetinib plus
atezolizumab (840 mg, D1 and D15) and either paclitaxel (cohort II) or nab-paclitaxel [cohort III (100 mg/m2, D1,
D8, and D15)]. Primary endpoints were investigator-assessed progression-free survival (PFS) (cohort I) and confirmed
objective response rate (ORR) (cohorts II/III). Safety and tolerability were also assessed.
Results: In the expansion stages, median PFS was 5.5 months for cobimetinib/paclitaxel versus 3.8 months for placebo/
paclitaxel in cohort I [hazard ratio 0.73; 95% confidence interval (CI) 0.43-1.24; P ¼ 0.25]. In cohort I, ORR was 38.3%
(95% CI 24.40-52.20) for cobimetinib/paclitaxel and 20.9% (95% CI 8.77-33.09) for placebo/paclitaxel; ORRs in cohorts II
and III were 34.4% (95% CI 18.57-53.19) and 29.0% (95% CI 14.22-48.04), respectively. Diarrhea was the most common
grade �3 adverse events across all cohorts.
Conclusions: Cobimetinib added to paclitaxel did not lead to a statistically significant increase in PFS or ORR, although a
nonsignificant trend toward a numerical increase was observed. Cobimetinib plus atezolizumab and a taxane did not
appear to increase ORR. This demonstrates the potential activity of a combinatorial MEK inhibitor, chemotherapy,
and immunotherapy in this difficult-to-treat population.
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INTRODUCTION

Chemotherapy remains standard of care for metastatic
triple-negative breast cancer (mTNBC).1,2 Resistance to
taxanes is common,1-3 and upregulation of the mitogen-
activated protein kinase (MAPK) pathway may contribute.4

In preclinical models, MAPK/extracellular signal-regulated
kinase (MEK) inhibitors increase taxane sensitivity.5,6

Cobimetinib (COTELLIC; F. Hoffmann-La Roche Ltd, Basel,
Switzerland), a potent, selective MEK1/2 inhibitor,7 may
also modulate intrinsic taxane resistance in these models.5,6
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Use of MEK inhibitors may also increase major
histocompatibility complex classes I and II, programmed
death-ligand 1 (PD-L1) expression, and cluster of differenti-
ation 8-positive T-cell accumulation, sensitizing tumors to
PD-L1 inhibitors.8,9 Atezolizumab targets PD-L1 in the tumor
microenvironment, reactivating T cells by inhibiting binding
of PD-L1 to programmed cell death protein 1 and B7.10-12 In
the IMpassion130 study (NCT02425891), atezolizumab plus
nab-paclitaxel demonstrated prolonged progression-free
survival (PFS) in patients with PD-L1-positive mTNBC
(PD-L1-stained tumor-infiltrating immune cells covering�1%
of the tumor area).13 This led to approval of the regimen in
this patient subset and its approval in first-line TNBC.14,15

COLET (NCT02322814; 2014-002230-32) is a three-cohort
phase II study designed to evaluate efficacy/safety
of cobimetinib plus chemotherapy, with or without
atezolizumab, in patients with locally advanced TNBC or
mTNBC. We present results from the primary analysis of all
three cohorts.
METHODS

Study design and patients

COLET is a phase II, randomized, multicenter, three-cohort
study (45 sites; 12 countries), investigating cobimetinib or
placebo plus paclitaxel (cohort I), cobimetinib plus
atezolizumab and paclitaxel (cohort II), and cobimetinib
plus atezolizumab and nab-paclitaxel (cohort III), in patients
�18 years old with histologically confirmed estrogen
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Figure 1. COLET study design.
F/U, follow-up; PFS, progression-free survival; TNBC, triple-negative breast cancer.
a Safety run-in population presented previously.36
b Numbers indicate planned patient enrollment.
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receptor-negative, progesterone receptor-negative, and
HER2-negative mTNBC, or locally advanced TNBC not
amenable to resection with curative intent (Figure 1).
Inclusion criteria are in the Supplementary Material,
available at https://doi.org/10.1016/j.annonc.2021.01.065.

The study was conducted according to the International
Council for Harmonisation E6 Guideline for Good Clinical
Practice and the principles of the Declaration of Helsinki, or
the laws and regulations of the country in which the research
was conducted. The protocol and amendments were
approved by independent review boards/ethics committees.
All patients provided written, informed consent.
Procedures

Cohort I comprised a safety run-in (SRI), followed by a
double-blind, placebo-controlled expansion stage, where
patients were randomized 1:1 to receive cobimetinib
(60 mg, oral, on D3-D23 of each 28-day cycle) or placebo,
plus paclitaxel [80 mg/m2, intravenous (IV), D1, D8, and D15
of each 28-day cycle]. SRI patients received the same
dose/schedule for cobimetinib plus paclitaxel. Following
completion of cohort I, additional patients were enrolled
and randomized (1:1) to either cohort II [cobimetinib plus
atezolizumab (840 mg, IV, D1 and D15 of each 28-day cycle)
and paclitaxel] or III [cobimetinib plus atezolizumab and
nab-paclitaxel (100 mg/m2, IV, D1, D8, and D15 of each 28-
day cycle)], with the two cohorts comprising an open-label
SRI and expansion stage. Treatment continued until disease
progression (per RECIST version 1.1) or unacceptable
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toxicity. Stratification was by prior neoadjuvant/adjuvant
taxane therapy (yes versus no) and disease-free interval
from last chemotherapy dose (�12 versus >12 months/no
prior chemotherapy). Additional procedures are described
in the Supplementary Material, available at https://doi.
org/10.1016/j.annonc.2021.01.065.

In the expansion stage of cohort I, the primary efficacy
endpoint was investigator-assessed PFS (planned N ¼ 90;
the time from randomization to the first occurrence of
disease progression or relapse per RECIST version 1.1, or
death from any cause, whichever occurred first). The primary
efficacy endpoint for cohorts II/III was confirmed objective
response rate (ORR; the rate of partial response [PR] or
complete response [CR] occurring after randomization and
confirmed �28 days later per RECIST version 1.1).

Assessments

Tumor imaging occurred at baseline and every 8 weeks
using RECIST version 1.1 until documented investigator-
determined progressive disease, death, or withdrawal of
consent, whichever came first. Follow-up for survival
occurred every 3 months after study drug discontinuation.

Formalin-fixed paraffin-embedded samples for biomarker
analysis were collected from all patients at pretreatment
(archival or baseline; mandatory), on-treatment (C1, D15;
optional), and disease progression (if accessible). The
Supplementary Material, available at https://doi.org/10.
1016/j.annonc.2021.01.065 provides details of the
biomarker analysis, including PD-L1 (PD-L1-positive disease:
�1% PD-L1-positive immune cells measured by SP142).

Adverse events (AEs) and laboratory abnormalities were
graded using the National Cancer InstitutedCommon
Terminology Criteria for Adverse Events version 4.0.

Statistical methods

COLET was designed as a signal-seeking phase II study. The
primary objective in the cohort I expansion stage was to
estimate the PFS hazard ratio (HR) of cobimetinib or
placebo plus paclitaxel. Patients were followed until w60
investigator-assessed PFS events had occurred across
treatment arms, providing 80% power to detect an HR of
0.48, or 51% power to detect an HR of 0.60 at a two-sided
significance level of 5%.

COLET was also designed to estimate the effect of
cobimetinib plus atezolizumab and taxane therapy for
hypothesis generation. The primary objective in cohorts II/III
was to estimate ORR in each cohort after the last recruited
patients had completed two postbaseline tumor
assessments. No formal statistical hypothesis testing was
planned. Based on the ClopperePearson method, 30
patients provided reasonably reliable estimates of ORR and
its 95% confidence interval (CI) for hypothesis generation.

KaplaneMeier methodology was used to estimate
median PFS, overall survival (OS), and duration of response
(DoR), with stratified log-rank tests used to compare
treatment arms in cohort I. HR estimates and their 95% CIs
654 https://doi.org/10.1016/j.annonc.2021.01.065
were determined by the stratified Cox proportional hazards
model. An estimate of ORR and 95% CIs were calculated for
each treatment arm using the ClopperePearson method, as
well as CIs for differences in ORR between treatment arms
in cohort I. Stratification data were determined using
the electronic case report form, or for missing data, the
interactive voice or web response system at time of
randomization. Analysis of endpoints in cohorts II and III
were descriptive.

The intention-to-treat population comprised all
randomized or enrolled patients regardless of study
treatment administration; the safety-evaluable population
was patients who received any study drug.
RESULTS

Patients

Between 12 March 2015 and 31 October 2016, 106 patients
were enrolled into cohort I, 16 into the SRI, and 90
randomized into the expansion stage to either cobimetinib
(n ¼ 47) or placebo (n ¼ 43) plus paclitaxel (clinical cut-off:
8 March 2017; OS clinical cut-off: 29 September 2017;
Supplementary Figure S1A, available at https://doi.org/10.
1016/j.annonc.2021.01.065). Median (range) duration of
follow-up was 8.5 months (1.6-16.8 months) in the
cobimetinib plus paclitaxel arm and 7.7 months (0.7-15.7
months) in the placebo plus paclitaxel arm.

Following completion of cohort I, 63 patients were
randomized into cohorts II (n¼ 32) and III (n¼ 31; November
2016-April 2018; Supplementary Figure S1B, available at
https://doi.org/10.1016/j.annonc.2021.01.065). Clinical
cut-off was 10 August 2018. Median duration of follow-up
was 6.3 months for cohort II and 6.6 months for cohort III.

Baseline characteristics were similar across cohorts
(median ages: 51.0-55.0 years; Table 1). In cohort I, 8/47
(17.0%) and 8/43 (18.6%) patients in the cobimetinib plus
paclitaxel and placebo plus paclitaxel arms, respectively, had
disease-free intervals of �12 months. The proportion in
cohort II was greater than that in cohort III [9/32 (28.1%)
versus 6/31 (19.4%), respectively].
Treatment exposure

In the cohort I expansion stage, median (range) durations of
cobimetinib and paclitaxel treatment in the cobimetinib
plus paclitaxel arm were 19.0 weeks (1-51 weeks) and 18.3
weeks (1-43 weeks), respectively. In the placebo plus
paclitaxel arm, median duration of paclitaxel exposure was
15.1 weeks (1-44 weeks).

Atezolizumab exposure was 14.1 weeks (4-79 weeks) for
cohort II and 20.4 weeks (0-57 weeks) for cohort III; for
cobimetinib, median durations for cohorts II and III were
15.1 weeks (3-79 weeks) and 17.2 weeks (6-58 weeks),
respectively. Mean durations of exposure for paclitaxel/nab-
paclitaxel were 15.1 weeks (5-79 weeks) for cohort II and
18.6 weeks (0-46 weeks) for cohort III.
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Table 1. Patient demographics and disease characteristics at baseline (intention-to-treat population)

Characteristic, n (%) Cohort I Cohort II Cohort III

Cobimetinib þ
paclitaxel
(n ¼ 47)

Placebo þ
paclitaxel
(n ¼ 43)

Cobimetinib þ
atezolizumab þ
paclitaxel
(n ¼ 32)

Cobimetinib þ
atezolizumab þ
nab-paclitaxel
(n ¼ 31)

Median age (range), years 55.0
(34-73)

53.0
(31-80)

52.0
(26-79)

51.0
(20-75)

Disease stage
Locally advanced 5 (10.6) 3 (7.0) 5 (15.6) 7 (22.6)
Metastatic 42 (89.4) 40 (93.0) 27 (84.4) 24 (77.4)

Race
White 32 (68.1) 34 (79.1) 28 (87.5) 25 (80.6)
Asian 11 (23.4) 9 (20.9) 2 (6.3) 5 (16.1)
Other/unknown 4 (8.5) 0 2 (6.3) 1 (3.2)

Prior neoadjuvant/adjuvant
taxane therapy

27 (57.4) 28 (65.1) 21 (65.6) 20 (64.5)

Disease-free interval from
last dose of chemotherapy
�12 months 8 (17.0) 8 (18.6) 9 (28.1) 6 (19.4)
>12 months/no prior
chemotherapy

39 (83.0) 35 (81.4) 23 (71.9) 25 (80.6)

PD-L1 status
Negative 26 (55.3) 18 (41.9) 9 (28.1) 11 (35.5)
Positive 7 (14.9) 11 (25.6) 16 (50.0) 15 (48.4)
Missing 14 (29.8) 14 (32.6) 7 (21.9) 5 (16.1)

PD-L1, programmed death-ligand 1.
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Cohort I. At data cut-off in the cohort I expansion stage, 31/
47 (66.0%) patients in the cobimetinib plus paclitaxel arm
and 31/43 (72.1%) in the placebo plus paclitaxel arm had a
PFS event. Median (range) PFS was 5.5 months (4.2-7.4
months) for cobimetinib plus paclitaxel versus 3.8 months
(1.9-7.2 months) for placebo plus paclitaxel (Figure 2A).
The stratified log-rank HR comparing the treatment arms
was 0.73 (95% CI 0.43-1.24; P ¼ 0.25; not statistically
significant). The difference was more pronounced in
individuals with a disease-free interval of �12 months
[n ¼ 16; 5.4 versus 1.7 months (HR 0.29, 95% CI 0.09-0.95)].
There was a 17.4% increase in ORR [cobimetinib plus
paclitaxel arm: 38.3% (18/47 patients; 95% CI 24.40-52.20);
placebo plus paclitaxel arm: 20.9% (9/43 patients; 95% CI
8.77-33.09)] (Table 2).

No confirmed CR was observed in either arm (Table 2);
seven patients in the cobimetinib plus paclitaxel arm
continued on single-agent cobimetinib (range 2-9 further
treatment cycles) following paclitaxel discontinuation,
and response (PR or stable disease) was maintained
(Supplementary Figure S2A/B, available at https://doi.org/
10.1016/j.annonc.2021.01.065). At the 40-week assessment,
in the cobimetinib plus paclitaxel arm, four patients
maintained a PR, and two had stable disease; in the placebo
plus paclitaxel arm one patient maintained a PR. Median DoR
was comparable between arms [cobimetinib plus paclitaxel:
5.3 months (95% CI 3.71-6.11); placebo plus paclitaxel: 5.5
months {[3.94-not evaluable (NE)]} (Table 2). At OS data
cut-off, 22/47 (46.8%) patients in the cobimetinib plus
paclitaxel arm and 17/43 (39.5%) in the placebo plus
Volume 32 - Issue 5 - 2021
paclitaxel arm had died. Median (range) OS was 16.0 months
(1.6-21.1 months) for cobimetinib plus paclitaxel versus 19.6
months (0.7-24.1 months) for placebo plus paclitaxel (HR
1.05; 95% CI 0.55-2.01; Supplementary Figure S3A, available
at https://doi.org/10.1016/j.annonc.2021.01.065).

Cohort II. At data cut-off, ORR in cohort II (primary
endpoint) was 34.4% (11/32 patients; 95% CI 18.57-53.19;
Table 2). Two (6.3%) CRs were observed (Table 2); nine
patients had a PR and 11 had stable disease (Supplementary
Figure S2C, available at https://doi.org/10.1016/j.annonc.
2021.01.065). Median DoR was 5.8 months (95% CI 4.44-
NE; Table 2). As much as 22 of 32 (68.8%) patients had a
PFS event; median (range) PFS was 3.8 months (1.6-18.1
months; 95% CI 3.02-7.36; Figure 2B). At OS data cut-off,
10/32 (31.3%) patients had died; median (range) OS was
11.0 months (1.8-18.2 months; 95% CI 9.53-NE;
Supplementary Figure S3B, available at https://doi.org/10.
1016/j.annonc.2021.01.065).

Cohort III. At data cut-off, ORR in cohort III was 29.0% (9/31
patients; 95% CI 14.22-48.04; Table 2). No CRs were observed
(Table 2); nine patients had a PR and 16 had stable disease
(Supplementary Figure S2D, available at https://doi.org/10.
1016/j.annonc.2021.01.065). Median DoR was 11.0 months
(95% CI 7.26-NE; Table 2). As much as 17 of 31 (54.8%)
patients had a PFS event; median (range) PFS was 7.0months
(0.0-13.3 months; 95% CI 3.65-12.81; Figure 2C). At OS data
cut-off, 6/31 (19.4%) patients had died. Median (range) OS
was NE (0.3-16.4 months; 95% CI 10.15-NE; Supplementary
Figure S3C, available at https://doi.org/10.1016/j.annonc.
2021.01.065).
https://doi.org/10.1016/j.annonc.2021.01.065 655
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Figure 2. Investigator-assessed progression-free survival (PFS).a

(A) Cohort I: cobimetinib or placebo þ paclitaxel treatment arm. (B) Cohort II: cobimetinib þ atezolizumab þ paclitaxel arm. (C) Cohort III: cobimetinib þ
atezolizumab þ nab-paclitaxel arm.
a Investigator-assessed PFS was defined as the time from randomization to the first occurrence of disease progression or relapse per RECIST version 1.1, or death from
any cause, whichever occurred first.
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Table 2. Best overall response rate, confirmed (intention-to-treat population)

Response Cohort I Cohort II Cohort III

Cobimetinib þ
paclitaxel
(N ¼ 47), n (%)
(95% CI)

Placebo þ
paclitaxel
(N ¼ 43), n (%)
(95% CI)

Cobimetinib þ
atezolizumab þ
paclitaxel
(N ¼ 32), n (%)
(95% CI)

Cobimetinib þ
atezolizumab þ
nab-paclitaxel
(N ¼ 31), n (%)
(95% CI)

Confirmed overall
response rate

18 (38.3)
(24.40-52.20)

9 (20.9)
(8.77-33.09)

11 (34.4)
(18.57-53.19)

9 (29.0)
(14.22-48.04)

Prior taxane therapy 9 (33.3)
(15.50-51.11)

3 (14.3)
(1.32-27.25)

7 (21.9)
(9.28-39.97)

7 (22.6)
(9.59-41.10)

No prior taxane therapy 9 (45.0)
(23.20-66.80)

5 (33.3)
(9.48-57.19)

4 (12.5)
(3.51-29.00)

2 (6.5)
(0.79-21.42)

Complete response 0 0 2 (6.3)
(0.77-20.81)

0 (0.00-11.22)

Partial response 18 (38.3)
(24.40-52.20)

9 (20.9)
(8.77-33.09)

9 (28.1)
(13.75-46.75)

9 (29.0)
(14.22-48.04)

Stable disease 18 (38.3)
(24.40-52.20)

16 (37.2)
(22.76-51.66)

11 (34.4)
(18.57-53.19)

16 (51.6)
(33.06-69.85)

Progressive disease 8 (17.0)
(6.28-27.77)

17 (39.5)
(24.92-54.15)

10 (31.3)
(16.12-50.01)

3 (9.7)
(2.04-25.75)

Not donea 3 (6.4)b 1 (2.3)b 0 3 (9.7)
(0.00-20.08)

CI, confidence interval.
a Patients were classified as ‘Not done’ if no postbaseline response assessments were available.
b Data presented as n (%).
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Safety

Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2021.01.065 provides a summary of the
safety-evaluable population (cohorts I-III). Most patients
[46/47 (97.9%)] had �1 AE in the cobimetinib plus
paclitaxel arm; all patients in the placebo plus paclitaxel arm
of cohort I, and cohorts II and III had �1 AE. Most common
AEs in the cobimetinib plus paclitaxel arm of cohort I and in
cohorts II and III were diarrhea [cobimetinib plus paclitaxel
arm: 36/47 (76.6%) versus placebo plus paclitaxel arm: n ¼
12/43 (27.9%); cohort II: 21/32 (65.6%); cohort III: 27/30
(90.0%)], nausea [cobimetinib plus paclitaxel arm: 21/47
(44.7%) versus placebo plus paclitaxel arm: n ¼ 16/43
(37.2%); cohort II: 13/32 (40.6%); cohort III: 15/30 (50.0%)],
and rash [cobimetinib plus paclitaxel arm: 20/47 (42.6%)
versus placebo plus paclitaxel arm: n ¼ 5/43 (11.6%);
cohort II: 12/32 (37.5%); cohort III: 16/30 (53.3%);
Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2021.01.065].

Most events of diarrhea across all cohorts were grade
1/2, except in the cobimetinib plus paclitaxel arm of cohort
I, where 11/36 events were grade 3 (23.4%), including one
serious AE resulting in treatment discontinuation. Median
duration of diarrhea varied by cohort [I (cobimetinib plus
paclitaxel, n ¼ 36): 2.07 weeks; I (placebo plus paclitaxel,
n ¼ 12): 1.93 weeks; II (n ¼ 21): 4.57 weeks; III (n ¼ 27):
3.43 weeks]. At data cut-off, most diarrhea events had
resolved/were resolving.

In cohort I, the most common grade �3 AEs occurring in
�2 patients in any treatment arm included diarrhea,
neutropenia, and stomatitis; diarrhea and stomatitis
occurred more frequently in the cobimetinib plus paclitaxel
arm versus the placebo plus paclitaxel arm (Supplementary
Table S2, available at https://doi.org/10.1016/j.annonc.
Volume 32 - Issue 5 - 2021
2021.01.065). Serious AEs were reported in 17/47 (36.2%)
patients in the cobimetinib plus paclitaxel arm and 9/43
(20.9%) in the placebo plus paclitaxel arm. There were no
grade 5 (fatal) AEs (Supplementary Table S1, available at
https://doi.org/10.1016/j.annonc.2021.01.065).

Grade �3 AEs occurring in �2 patients in either cohort II
or III were diarrhea, anemia, neutropenia, and decreased
neutrophil count (Supplementary Table S2, available at
https://doi.org/10.1016/j.annonc.2021.01.065). Serious AEs
were reported in 15/32 (46.9%) patients in cohort II and 13/
30 (43.3%) in cohort III (Supplementary Table S1, available
at https://doi.org/10.1016/j.annonc.2021.01.065). There
were two (6.3%) fatal AEs in cohort II (Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2021.01.065), namely, pulmonary embolism (occurred
after treatment discontinuation due to disease progression)
and lung infiltration; neither were suspected to be
treatment-related.

Exploratory biomarker analysis

Gene expression profiling was performed for 72/106
(67.9%) patients in cohort I, including 13 patients from SRI.
As much as 56 of 72 (78%) patients had basal-like subtypes
at baseline, per intrinsic subtyping.16 Cobimetinib plus
paclitaxel demonstrated a more favorable HR for PFS for
patients with basal subtype tumors [n ¼ 56 (cobimetinib
plus paclitaxel: n ¼ 34; placebo plus paclitaxel: n ¼ 22); HR
0.49, 95% CI 0.26-0.92], but not for those with nonbasal
subtype tumors [n ¼ 16 (cobimetinib plus paclitaxel: n ¼
12; placebo plus paclitaxel: n ¼ 4); HR 0.85, 95% CI 0.15-
4.72], compared with the intention-to-treat population.
Patients with basal subtype tumors displayed a greater ORR
than their nonbasal subtype counterparts [ORR 51% (n ¼
19/37) versus 27% (n ¼ 4/15)]; however, the latter
https://doi.org/10.1016/j.annonc.2021.01.065 657
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displayed overall better prognosis [median PFS: 6.9 (95% CI
2.33-not reached) versus 5.4 months (95% CI 3.52-7.10); HR
0.45, 95% CI 0.19-1.05]. PD-L1-positive samples were
enriched in tumors of basal versus nonbasal subtype [n ¼
21/56 (37.5%) versus 3/14 (21.4%); Supplementary
Table S3, available at https://doi.org/10.1016/j.annonc.
2021.01.065]. All immune-enriched tumor subtypes were
basal-like (n ¼ 26/26; 100%).

In cohorts II and III, patients with PD-L1-positive disease
had numerically higher ORRs than those with PD-L1-
negative disease [39% (12/31 patients) versus 19% (4/21)]
and median PFS [7.0 (95% CI 3.65-9.10) versus 3.7 months
(95% CI 2.14-6.41); Supplementary Figure S4, available at
https://doi.org/10.1016/j.annonc.2021.01.065]. Patients
with basal tumors showed higher ORRs than those
with nonbasal disease [35.6% (16/45 patients) versus 12.5%
(1/8)], but no clear difference in median PFS [5.59 (95% CI
3.65-7.49) versus 3.68 months (95% CI 1.71-not reached);
Supplementary Figure S5, available at https://doi.org/10.
1016/j.annonc.2021.01.065]. ORR and median PFS were
similar between patients with low or high MAPK activity
[ORR 33.3% (8/24 patients) versus 31.0% (9/29); PFS 5.49
(95% CI 2.14-7.49) versus 6.41 months (95% CI 3.02-12.81);
Supplementary Figure S6, available at https://doi.org/10.
1016/j.annonc.2021.01.065].
DISCUSSION

COLET is the first study evaluating first-line PD-L1 inhibitor,
MEK inhibitor, and taxane combination (cobimetinib plus
atezolizumab and paclitaxel/nab-paclitaxel) for locally
advanced or mTNBC.

Consistent with cobimetinib modulating intrinsic taxane
resistance, its addition to paclitaxel did not lead to a
statistically significant increase in median PFS or ORR, but
resulted in a nonsignificant trend toward a numerical
increase, with ORR more pronounced in individuals with a
disease-free interval of �12 months. The ORR and
reductions in tumor volume suggest a biologic effect, and
the HR for cohort I PFS suggests there may be activity
of cobimetinib versus placebo when combined with
paclitaxel. Cobimetinib is approved in combination with
the B-Raf proto-oncogene serine/threonine kinase (BRAF)
inhibitor vemurafenib for patients with BRAFV600-mutated
advanced melanoma and resistance to single-agent BRAF
inhibitor therapy,7,17 in which reactivation of MAPK
through MEK is the most common mechanism.18,19 Given
that upregulation of the MAPK pathway may also
contribute to taxane resistance in mTNBC,4 it is not
unexpected that cobimetinib plus paclitaxel led to
modest clinical improvement. Small patient numbers, the
statistical design of COLET, the heterogeneity of TNBC,20

and the many potential mechanisms simultaneously
contributing to taxane resistance21-23 may also have
contributed to the lack of significant improvement.

We also hypothesized that cobimetinib may increase
major histocompatibility complex classes I and II, PD-L1
expression, and cluster of differentiation 8-positive T-cell
658 https://doi.org/10.1016/j.annonc.2021.01.065
accumulation, sensitizing tumors to atezolizumab; however,
the combination of atezolizumab, cobimetinib, and a taxane
in cohorts II and III demonstrated a modest ORR. This
contrasts with IMpassion130, where adding atezolizumab
versus placebo to nab-paclitaxel resulted in a w10%
improvement in ORR [ORR 56.0% (51.3-60.6) versus 45.9%
(41.2-50.6)], statistically significant increase in PFS (7.2
versus 5.5 months; HR 0.80, 95% CI 0.69-0.92; P ¼ 0.002),
and numerical increase in OS (21.0 versus 18.7 months; HR
0.86, 95% CI 0.72-1.02; P ¼ 0.08).13,24 This apparent
disparity may be due to the 23.8% of patients in cohorts II/
III of COLET who had a disease-free interval of �12 months,
which is associated with worse prognosis. Furthermore,
ORR has been shown to be only modestly correlated with
OS benefit following checkpoint inhibitor therapy.25

Nonetheless, although the short median follow-ups limit
interpretation of OS benefit or trends, the observed median
PFS in cohort III of COLET was similar to that in
IMpassion13013; the lower PFS in cohort II may be due to the
small sample size, therapeutic superiority of nab-paclitaxel
compared with paclitaxel,26 and increased proportion of
early relapse patients. Additionally, preclinical evidence
suggests that MEK inhibition may be detrimental on early
T-cell proliferation and function, which is particularly relevant
in the ‘cold’ tumor microenvironment of mTNBC and may
explain the lack of a clinically relevant therapeutic benefit
here.27,28 However, due to our small study sample size
and retrospective comparisons between studies of differing
demographics, no definitive conclusions can be drawn.

Of interest, a retrospective, exploratory analysis of
pooled biomarker data in COLET demonstrated a trend
toward improved ORR and PFS in patients with
PD-L1-positive disease in cohorts II and III. This aligns with
IMpassion130, which demonstrated a significantly improved
PFS and ORR of atezolizumab plus nab-paclitaxel in the
PD-L1-positive population, as well as an OS benefit of w10
months.13 However, lack of OS-PD-L1-status association
analysis in COLET, as well as small patient numbers and
absence of a placebo arm in cohorts II/III, means that all
comparisons are descriptive and should be interpreted with
caution. Ongoing phase II/III randomized immunotherapy
trials in TNBC should shed further light on the current
findings.29 Interestingly, there was no association between
MAPK activity and patient outcome; this contrasts with
previous studies demonstrating shorter OS in patients with
MAPK-activated TNBC.30,31 This may be explained by the
small patient numbers in COLET; further studies are
required to elucidate the prognostic significance of MAPK
activity in patients with TNBC.

The safety profiles of the COLET study drug combinations
were consistent with those for the individual drugs, and AEs
were generally manageable.7,15,32,33 In all cohorts, diarrhea
was the most common any-grade AE; most events were
grade 1-2 and managed with loperamide. More grade 3
diarrhea events were observed in the cobimetinib plus
paclitaxel arm of cohort I (versus cohorts II/III), which
can mainly be attributed to earlier intervention with
antidiarrheal treatment and/or dose interruption.
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Although no further trials assessing first-line cobimetinib
for mTNBC are planned, other MEK inhibitors, for
example, selumetinib, are currently being investigated as
combination therapies. Selumetinib plus the PI3K inhibitor
buparlisib has demonstrated efficacy in preclinical mouse
models of intracranialmTNBC, significantly improving survival
and reducing tumor burden.34 Selumetinib plus themTORC1/
2 inhibitor vistusertib has also shown an acceptable safety
profile in an ongoing phase Ib/IIa trial in TNBC, with stable
responses for >16 weeks in seven patients.35

In conclusion, results from COLET showed that addition of
cobimetinib to paclitaxel did not lead to a statistically
significant increase in PFS or ORR, but resulted in a
nonsignificant trend toward a numerical increase.
Cobimetinib, atezolizumab, and a taxane also led to modest
clinical response, although this was more pronounced
in patients with PD-L1-positive disease. These results
demonstrate the potential activity of combinatorial MEK
inhibitor, chemotherapy, and immunotherapy in this
difficult-to-treat patient population. No trials assessing
first-line cobimetinib for mTNBC are planned, but future
studies will improve understanding of the therapeutic value
of other MEK inhibitors in TNBC.
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