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ABSTRACT

The role of caspase-10 in cancer pyroptosis
Wonjin Woo

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Lark Kyun Kim)

Liver cancer is the leading cause of cancer mortality worldwide. Despite the
improved treatment of HCC, the 5-year survival rate is relatively lower than other
cancers, therefore further research to identify a new target is needed.

Caspase-10 is a human-only protein that is highly homologous to caspase-8.
Both caspase-10 and caspase-8 are known to activate apoptosis. Given that
caspase-10 is highly homologous to caspase-8, it has been reported that there is
overlap between the substrate of caspases. However, recent studies reported that
caspase-10 might have a distinct role in cancer cell death that differs from that of
caspase-8.

To elucidate the mechanism of caspase-10 in cancer, we generated a caspase-10
knock-out cell line and performed RNA-seq analysis. In this study, we identified
that caspase-10 induces pyroptosis. We show that caspase-10 mediates pyroptosis
by cleaving GSDME under the treatment of sorafenib.

Recently, switching from apoptosis to other types of programmed cell death
such as pyroptosis has emerged as a new strategy for cancer treatment.

Our findings suggest that targeting caspase-10 can be a potential therapy for

patients with liver cancer.

Key words : Caspase-10, pyroptosis, HCC
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The role of caspase-10 in cancer pyroptosis
Wonjin Woo

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Lark Kyun Kim)

I. INTRODUCTION

Liver cancer or hepatocellular carcinoma (HCC) is one of the most common
high-mortality cancers in the world '. Globally, HCC is the fifth most common
cancer and the fourth most common cancer in South Korea. The mortality rate for
HCC was 21.1 per 100,000 of the population in 2016, which is the second highest
cancer mortality rate after lung cancer in South Korea **. The most common risk
factors for HCC include chronic hepatitis B virus (HBV) and chronic hepatitis C
virus (HCV) infection and alcohol abuse *. Despite the improved treatment of
HCC, the five-year survival rate in Korea is relatively low compared with other

cancers °. Thus, further research to identify a new target in liver cancer is needed.

Previously, apoptosis was regarded as the only form of programmed cell death
(PCD) that is different from necrosis. Apoptosis is a physiological programmed
cell death (PCD) that is responsible for the removal of damaged cells °. Apoptosis
is characterized by shrinkage of the cell, phosphatidylserine externalization,
chromatin condensation, cellular budding, fragmentation into apoptotic bodies,
rapid phagocytosis and DNA fragmentation into units of approximately 200 base
pairs "®. Apoptosis can be triggered by a variety of stimuli such as cytokines,

hormones, drugs, and viruses °.



Over the past few decades, researchers have identified several types of
programmed cell death (PCD) in contrast to apoptosis including pyroptosis,
necroptosis, ferroptosis and autophagy '°. These non-apoptotic programmed cell
deaths (PCDs) are pro-inflammatory cell deaths because cells secrete intracellular
contents including inflammatory cytokines and damage-associated molecular
patterns (DAMPs). These non-apoptotic cell deaths are induced by different types
of stimuli ''. Over the past few years, various approaches to induction cancer cell
death through apoptosis have been used as a common cancer therapies However,
one of the hallmarks of cancer is evading apoptosis '?, thereby leading to the
failure of cancer therapy . Due to limitations of apoptosis in cancer therapy,
inducing other types of programmed cell death (PCDs) such as pyroptosis in

cancer cells is emerging as a new therapeutic strategy.

Caspases are cysteine-dependent endo-proteases that cleave their substrates on
following aspartic acid residues. The majority of caspases participate in the
induction of apoptosis . Caspases are classified into two types: initiator caspases,
and effector caspase. Caspase-8, -9, -10 are initiator caspases that activate effector
caspases like caspase-3, -7. Activated effector caspases cleave death substrate and
induce apoptosis '°. Caspase-10 is a human-only protein which shows a high
homology to caspase-8. As caspase-8 is a well-known initiator of the extrinsic
apoptotic pathway. Caspase-10, which is homologous to caspase-8, is regarded
as an initiator caspase function that is similar to caspase-8. However, the role of
caspase-10 is still controversial and not yet fully understood '°. Recent advances
have revealed that caspase-10 can act as a possible tumor suppressor in cancer .
But the specific mechanism of caspase-10 in cancer remains unknown and should

be further explored.

Pyroptosis is a form of inflammatory programmed cell death (PCD) that is
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mainly caused by microbial infection '*

. Pryroptosis is morphologically
characterized by pore formation in the plasma membrane leading to cell swelling
and membrane disruption, triggering the release of damage-associated
intracellular molecules, and inflammation '’. Gasdermins (GSDMs) are the key
mediator molecule proteins of pyroptosis which assemble membrane pore. The
gasdermin family consists of GSDMA, GSDMB, GSDMC, GSDME, GSDME,
and PJVK. It is reported that each gasdermin is differently expressed in a variety
of cell types and tissues *°. Gasdermin can be cleaved by caspase and granzymes.
Recent studies revealed that different family of gasdermins can be cleaved by
different caspases or granzymes *'. Once the inactive form of gasdermins has
been proteolytically cleaved by caspases or granzymes, its N-terminal fragment
is possible to assemble in plasma membrane and permeabilize and disrupt
membrane. In recent years, approaches to targeteting pyroptosis other than
apoptosis have emerged to overcome apoptosis resistance in cancer **. Recent
findings reported that pyroptosis facilitates the cytotoxic lymphocytes to kill
tumor cells and reprograms the tumor microenvironment to an
immunostimulatory state Z*. In this study, by examining the role of caspase-10 in
liver cancer pyroptosis, we expect that caspase-10 can be a potential new target
for cancer treatment. Our findings suggest the possibility of pyroptosis as a
potential cancer treatment strategy rather than apoptosis. Therefore, it is crucial
to understand the mechanism of pyroptosis

Liver cancer or hepatocellular carcinoma (HCC) is one of the most common
high-mortality cancers in the world '. Globally, HCC is the fifth most common
cancer and the fourth most common cancer in South Korea. The mortality rate for
HCC was 21.1 per 100,000 of the population in 2016, which is the second highest
cancer mortality rate after lung cancer in South Korea **. The most common risk
factors for HCC include chronic hepatitis B virus (HBV) and chronic hepatitis C
virus (HCV) infection and alcohol abuse *. Despite the improved treatment of

HCC, the five-year survival rate in Korea is relatively low compared with other
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cancers °. Thus, further research to identify a new target in liver cancer is needed.

Previously, apoptosis was regarded as the only form of programmed cell death
(PCD) that is different from necrosis. Apoptosis is a physiological programmed
cell death (PCD) that is responsible for the removal of damaged cells °. Apoptosis
is characterized by shrinkage of the cell, phosphatidylserine externalization,
chromatin condensation, cellular budding, fragmentation into apoptotic bodies,
rapid phagocytosis and DNA fragmentation into units of approximately 200 base
pairs "®. Apoptosis can be triggered by a variety of stimuli such as cytokines,

hormones, drugs, and viruses °.

Over the past few decades, researchers have identified several types of
programmed cell death (PCD) in contrast to apoptosis including pyroptosis,
necroptosis, ferroptosis and autophagy '°. These non-apoptotic programmed cell
deaths (PCDs) are pro-inflammatory cell deaths because cells secrete intracellular
contents including inflammatory cytokines and damage-associated molecular
patterns (DAMPs). These non-apoptotic cell deaths are induced by different types
of stimuli ''. Over the past few years, various approaches to induction cancer cell
death through apoptosis have been used as a common cancer therapies However,

one of the hallmarks of cancer is evading apoptosis '

, thereby leading to the
failure of cancer therapy '*. Due to limitations of apoptosis in cancer therapy,
inducing other types of programmed cell death (PCDs) such as pyroptosis in

cancer cells is emerging as a new therapeutic strategy.

Caspases are cysteine-dependent endo-proteases that cleave their substrates on
following aspartic acid residues. The majority of caspases participate in the
induction of apoptosis . Caspases are classified into two types: initiator caspases,
and effector caspase. Caspase-8, -9, -10 are initiator caspases that activate effector

caspases like caspase-3, -7. Activated effector caspases cleave death substrate and
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induce apoptosis '°. Caspase-10 is a human-only protein which shows a high
homology to caspase-8. As caspase-8 is a well-known initiator of the extrinsic
apoptotic pathway. Caspase-10, which is homologous to caspase-8, is regarded
as an initiator caspase function that is similar to caspase-8. However, the role of
caspase-10 is still controversial and not yet fully understood '°. Recent advances
have revealed that caspase-10 can act as a possible tumor suppressor in cancer .
But the specific mechanism of caspase-10 in cancer remains unknown and should

be further explored.

Pyroptosis is a form of inflammatory programmed cell death (PCD) that is

mainly caused by microbial infection '*

. Pryroptosis is morphologically
characterized by pore formation in the plasma membrane leading to cell swelling
and membrane disruption, triggering the release of damage-associated
intracellular molecules, and inflammation '’. Gasdermins (GSDMs) are the key
mediator molecule proteins of pyroptosis which assemble membrane pore. The
gasdermin family consists of GSDMA, GSDMB, GSDMC, GSDME, GSDME,
and PJVK. It is reported that each gasdermin is differently expressed in a variety
of cell types and tissues *°. Gasdermin can be cleaved by caspase and granzymes.
Recent studies revealed that different family of gasdermins can be cleaved by
different caspases or granzymes *'. Once the inactive form of gasdermins has
been proteolytically cleaved by caspases or granzymes, its N-terminal fragment
is possible to assemble in plasma membrane and permeabilize and disrupt
membrane. In recent years, approaches to targeteting pyroptosis other than
apoptosis have emerged to overcome apoptosis resistance in cancer **. Recent
findings reported that pyroptosis facilitates the cytotoxic lymphocytes to kill
tumor cells and reprograms the tumor microenvironment to an
immunostimulatory state Z*. In this study, by examining the role of caspase-10 in
liver cancer pyroptosis, we expect that caspase-10 can be a potential new target

for cancer treatment. Our findings suggest the possibility of pyroptosis as a
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potential cancer treatment strategy rather than apoptosis. Therefore, it is crucial

to understand the mechanism of pyroptosis.



II. MATERIALS AND METHODS

1. Cell line and cell culture

HepG2 cells were maintained in DMEM (Hyclone, Logan, Utah, USA)
supplemented with 10% FBS (Gibco) and 1% penicillin—streptomycin.
Puromycin (2ug/ml) (InvivoGen #ant-pr) was added to the medium to maintain

caspase knock-out HepG2 cell lines. The cells were incubated at 37°C in 5%
CO2.

2. Generation of caspase-10 and casasp-8 knock-out HepG2 cell line using

the CRISPR/Cas9 system

The gRNA sequences of caspase-10 and caspase-8 were designed using the
CHOPCHOP tool. gRNAs were cloned into the Lenti-CRISPR vr2 (Addgene
#52961). Constructs were transduced into HepG2 cells, using the Neon™
Transfection System (Life Technology; 1400 V, 10 ms, and 3 pulses). For
caspase-10 and caspase-8 knock-out cell selection, puromycin (2ug/ml) was
added to the medium. After puromycin selection, caspase-10 and caspase-8
knock-out sequences were confirmed by Sanger Sequencing and western blot.
HepG2 cells were maintained in DMEM (Hyclone, Logan, Utah, USA)
supplemented with 10% FBS (Gibco) and 1% penicillin—streptomycin.
Puromycin (2ug/ml) (InvivoGen #ant-pr) was added to the medium to maintain
caspase knock-out HepG2 cell lines. The cells were incubated at 37°C in 5%
CO2.

3. Antibodies and reagents

Anti-caspase-10 (#ab177475), anti-GSDME (#ab215191) and anti-6X His
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(#ab9108) are obtained from Abcam; anti-GAPDH (sc-25778) and anti-myc
(#sc-40) are obtained from Santa Cruz Biotechnology; anti-caspase-8 (#M058-
3) is obtained from MBL. All antibodies for the western blot analyses were
used at 1:1000 dilution.

Recombinant human TNF-a protein (#210-TA-100) is obtained from R&D
Systems. 5-Fluorouracil (#F6627); Cisplatin (#C2210000) and Sorafenib
(SML2653) are all obtained from Sigma-Aldrich.

4. Flow cytometry

To measure the cell death response in HepG2, cells were treated with TNF-a,
5-Fluorouracil, cisplatin, and sorafenib at the desired concentrations. After
exposure to the drugs for 48 hours, the cells were collected using trypsin-EDTA
(Gibco #25200056) and centrifuged and washed twice with 4°C PBS. Then,

HepG2 cells were stained for 15 min with Annexin V-FITC and PI (Annexin V:
FITC Apoptosis Detection Kit #BD 556547) at room temperature in the dark.
For ROS detection, cells were treated with 100ng/ml TNF-o at 37°C and 5%
CO2. Then, cells were stained for 3 hr with 5 uM with MitoSOX™ Red
(Invitrogen #M36008) at 37°C for 20 min 37 °C in the dark. After staining, the
cells were analyzed by flow cytometry (BD Biosciences FACS Canto™ II).

Data files were analyzed using FlowJo V10.

5. Cell proliferation assay

For IncuCyte® cell proliferation assay, HepG2 cells were plated in a 96-well
plate for three days. Cells were imaged by IncuCyte® Live-Cell proliferation
assays and phase area confluence (%) was quantified by IncuCyte® 3 Live-Cell
analysis System (Sartorious).

For MTT assay, reagents (DoGenBio #EZ-Cytox) are added in medium with
9



HepG2 cells and incubated for 30 min at 37 °C.

For migration assay, 1 X 105 LX-2 HSCs were plated in an ImageLock 96-
well plate (Sartorious 4379). The cell-free area is created in a confluent
monolayer by the wound maker (Essen BioScience #4563) and cell migration
was imaged using the IncuCyte® S3 Live-Cell analysis System (Sartorious).

For trypan blue staining assay, cells were stained by trypan blue (Sigma

#T8154) and measured by Vi-CELL™XR 2.04 cell counter (Beckman Coulter).

6. RNA-sequencing analysis

The RNA-sequencing data was generated with the paired-end sequencing
method. The read of the RNA-sequencing data was aligned by HISAT2
(version 2.2.1) according to the provided index file from HISAT2
(https://genome-idx.s3.amazonaws.com/hisat/grch38 tran.tar.gz). The SAM
files were processed by SAMtools (version 1.10) for read sorting. Read
quantification of sam files was conducted by HTSeq (version 0.11.1) to
generate the read count data. The read count data was normalized and the
differentially expressed genes (DEGs) between each sample were analyzed by
DESeq2. Only genes with at least 1.5-fold expression difference and adjusted
p-value of less than 0.05 were selected. The DEGs were divided with K-means
clustering and visualized by Morpheus
(https://software.broadinstitute.org/morpheus/). To investigate the functional
roles of each DEG cluster, we conducted pathway analysis by using:Profiler
(https://biit.cs.ut.ee/gprofiler/gost) and gene set enrichment analysis by using
GSEA (https://www.gsea-msigdb.org/gsea/index.jsp).

10



7. Western blot analysis

HepG?2 cells were lysed in RIPA buffer (CST #9806S), and 50ug of the total
protein from each lysate was then loaded to SDS-PAGE. Primary antibodies
targeting Caspase-10, -8, GSDME, GAPDH, 6XHis, and Myc (all 1:1000
dilution) were incubated at 4°C overnight. The membrane was then washed
three times with TBST buffer for 10 min per wash and incubated with a
secondary antibody at room temperature for 1 h. LightCycler 480 (Roche) was

used for detection.
8. Overexpression of Caspase and GSDME

Transfection was performed using Lipofectamine 2000 (Invitrogen
#11668019) following the manufacturer's protocols. 2.5ug of empty vector was

co-transfected as a control. The medium was changed after 6 h and cells were

collected after 48 h of transfection.
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II1. RESULTS
1. Generation of caspase knock-out cell line

First, to investigate the role of caspase-10 in liver cancer, we generated
caspase-10 and caspase-8 knock-out HepG?2 cell line using CRISPR/Cas9
technology (Figure 1). We confirmed caspase knock-out HepG2 by performing

genome sequencing and western blot (Figure 2).
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Figure 1. Schematic flow of generation knock-out cell line.
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Figure 2. Generation of caspase-10 knock-out cell line. (A, B) Caspase knock-

out cell line confirmed by Sanger sequencing. (C) Expression of caspase-10, -8

in HepG2 control cell and caspase knock-out cell
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Table 1. gRNA target sequences

Targeted gRNA Sequence (5'-3")

Caspase-10 CACCGAGAGAAACCCTTTGTCGGGT

Caspase-8 @ AAACACCCGACAAAGGGTTTCTCTC

15



Table 2. Generation of caspase knock-out cell line (%)

gRNA Colony Total Colony
Caspase-8 Caspase-8KO 11 (47.8%) 23
Caspase-10 Caspase-8 KO 22 (52.4%) 42
7
Caspase-8 KO (25%)
Caspase-8/ Caspase-10 : 7 28
Caspase-8 KO (25%)

Caspase-8/10 DKO 0
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2. Caspase-10 regulates TNF-a-induced programmed cell death

As a preliminary study to investigate cell death response in liver cancer,
HepG2 cells were treated with various stimuli **. Since the TNF receptor family
is also known as CD95, it is well known to induce cell death including
apoptosis *°. As sorafenib is the first-line treatment for advanced hepatocellular
carcinoma ***’, 5-fluorouracil (5-FU) and cisplatin are common chemotherapy
drugs, we carried out annexin-V/propidium iodide (PI) staining under each
stimulus. Annexin-V/propidium iodide (PI) staining shows that all stimuli
induced HepG2 cell death. Especially, we observed that TNF-a stimulation
markedly increased annexin V-positive populations (Figure 3). Our observation
is consistent with the fact that TNF-a is known to induce programmed cell
death including apoptosis. Given that TNF-a stimulation markedly induces
programmed cell, we next investigated the roles of caspase-10 in the TNF-a-
induced programmed cell death.

We found that annexin-V positive populations are decreased in caspase-10
knock-out HepG2 (Figure 4). This result indicates that caspase-10 is crucial for
inducing apoptosis, and it may also be involved in other types of programmed

cell death.
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Figure 3. Cell death response of HepG2 cells treatment with various stimuli.
HepG2 cells were treated with 100ng/ml TNF- a, 10ng/ml 5-FU, 50 uM cisplatin,
60uM sorafenib for 24h. Cell death are measured by Annexin-V/PI staining
followed by flow cytometry.
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Figure 4. Caspase-10 regulates programmed cell death under TNF-a
stimulation. (a) HepG2 cells were treated with 100 ng/ml TNF-a for 24 h. Cell
death is measured by Annexin-V/PI staining followed by flow cytometry.
Represented in the contour plot. (b) Represented in the histogram. (c)
Quantitative analysis of programmed cell death is measured by the percentage of
Annexin-V. For comparisons between HepG2 control cell caspase-10 knock-out
cell, a Student’s t-test was employed (For a p-value of <0.05 was considered

statistically significant. *p < 0.05, **p < 0.01).
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3. Proliferation rates are increased in caspase-10 knock-out HepG2 in

steady state

Next, in order to investigate the roles of caspase-10 in cancer cell death, we
performed RNA-seq in caspase knock-out HepG2 cells. We first analyzed
caspase-10 knock-out HepG2 in steady state. Our RNA-seq analysis shows that
cell proliferation related genes were up-regulated in caspase-10 knock-out
HepG2 in steady state (Figure 5). We confirmed that caspase-10 regulates
cancer proliferation by proliferation assays including IncuCyte® proliferation
assay, MTT, migration assay and trypan blue staining assay (Figure 6). It
appears that the proliferation rates were much higher in caspase-10 knock out
HepG2. In contrast, proliferation rates were much lower in caspase-8 knock-
out HepG2. These results suggest that caspase-10 acts as a tumor suppressor
that differs from caspase-8. Also, caspase-10 could be a potential target to

regulate tumor growth.
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Figure 5. Cell proliferation-related genes are up-regulated in caspase-10
knock-out HepG2. (A) The cluster heat map of expression profiles of mRNA at
steady state. (B) Pathway analysis at steady state. (C-E) Gene Set Enrichment
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Figure 6. Increased cell proliferation in caspase-10 knock-out HepG2. (A) An
Incucyte cell proliferation assay measuring confluence over time. (B) Cell
proliferation of HepG2 cell was determined by MTT assay. (C) The effects of
caspase-10 knock-out on cell migration were evaluated with the wound healing
assay using the IncuCyte® analyzer in HepG2. (D) Cell proliferation of HepG2

cells was determined by Trypan blue exclusion assay.
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4. ROS level is increased in caspase-10 knock-out HepG2 under TNF-a

stimulation

We next analyzed increased gene expression in caspase knock-out HepG2
under TNF-o stimulation (Figure 7). We discovered the components of the
mitochondrial electron transport chain (ETC) including cytochrome B,
cytochrome oxidase subunits, mitochondrial membrane ATP synthase, and
NADH-ubiquinone oxidoreductase chain 4L were up-regulated in caspase-10
knock-out HepG2 (Cluster2) (Figure 8). Some electrons from the
mitochondrial electron transport chain (ETC) are directly transferred to O2
leading to generation of reactive oxygen species (ROS) . We hypothesized
that the level of ROS is increased in caspase-10 knock-out HepG2. We
therefore performed ROS detection assay. Indeed, we confirmed that the level
of ROS is increased in caspase-10 knock-out HepG2 under TNF-a stimulation.
As signaling molecules, ROS play a pivotal role in the number of cellular
processes. Under normal physiological conditions, the ROS level is
homeostatically controlled by scavenging systems ». It is well known that
elevated levels of ROS can cause mitochondrial dysfunction, damage to DNA,
lipids, and proteins, and ultimately lead to cell death®. It has been reported that
there are two faces of ROS in cancer. A high level of ROS can cause cell
damage and cell death. However, a moderate level of ROS can cause tumor
promotion by activating cancer cell proliferation, oncogene activation and
activation of cell survival-signaling cascade *'. We expected that elevated level
of ROS in caspase-10 knock-out HepG2 would correlate with ROS

contribution as a tumor promotion.
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Figure 7. RNA-seq analysis on HepG2 cells under TNF-o stimulation. The
cluster heat map of the expression profiles of the mRNA level under TNF-a

stimulation. Representative genes in the cluster heat map are shown.
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5. Chemokines are decreased in caspase-10 knock-out HepG2 under TNF-

a stimulation

We next analyzed decreased gene expression in caspase-10 knock-out HepG2
under TNF-a stimulation. We found that the expression levels of chemokines
including IL-7, IL-5, IL-2, IL-6 were decreased in caspase-10 knock-out
HepG2 (Figure 10). Since chemokines are known for activating the immune
system by regulating the migration of immune cells into tissues **, we expected
that the immune system was suppressed in caspasepl0 knock-out HepG2,

indicates that caspase-10 regulates activation of the immune system.
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6. Caspase-10 cleaves GSDME to induce pyroptosis

Caspases were recently identified as the mediators of pyroptosis by cleaving
gasdermin family members. We next hypothesized that caspase-10 might be
involved in the pyroptosis process. To test our hypothesis, caspase-10 and
caspase-8 are overexpressed in 293T cells with GSDME. We found out that
caspase-10 cleaves GSDME. Interestingly, we observed caspase-8 also cleaves
GSDME but with lower efficiency. This suggests that caspase-10 might have a

distinct role in pyroptosis (Figure 11).
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Figure 11. Caspase-10 cleaves GSDME to induce pyroptosis. Western blot

was performed with caspase-10 and caspase-8 overexpression 293T cells.
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7. Sorafenib-induced caspase-10-dependent pyroptosis

Next, we investigated whether GSDME is cleaved by endogenous caspase-10
in HepG2. We observed that activated caspase-10 cleaved GSDME treatment
with sorafenib but not cisplatin, indicating that HepG2 underwent a different
cell death mechanism between sorafenib and cisplatin. In addition, we
confirmed that caspase-8 shows lower efficiency than caspase-10,
corresponding to Figure 11.

Given that sorafenib is the first-line drug for HCC and received FDA approval
in 2007 -, caspase-10 mediates pyroptosis with sorafenib treatment that

gives potential therapeutic benefits to patients with liver cancer.
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1V. DISCUSSION

Apoptosis was generally considered to be the only form of programmed cell
death ¢, It is well studied that apoptosis can be triggered by an intracellular
signal such as DNA damage or by extrinsic signals such as tumor necrosis factor-
o (TNF-0) *7. Apoptosis has long been considered as a promising target for anti-
cancer therapy. However, resistance to apoptosis and immune evasion in cancer
are considered to be hallmarks of cancer *®. Moreover, recent studies have
revealed that cells that are adjacent to apoptosis occurs may undergo sustained
compensatory proliferation until the wound healing therefore, leads to failure of
cancer therapy *. Due to imitations in apoptosis, approaches to inducing other
types of programmed cell death are emerging as new cancer therapy *.

Studies have reported that caspase not only mediates apoptosis but also regulates
other types of programmed cell death (PCD) such as necroptosis and pyroptosis
1 Recent studies have reported that caspase-8 acts as a molecular switch between

4

apoptosis and necroptosis **. Caspase-10, which shows high homology to
caspase-8, functions as an initiator caspase in death receptor-mediated apoptosis
similar to caspase-8 **. However, the role of caspase-10 is not well elucidated. It
has been considered that caspase-10 may have a different role in cancer cell death
. We hypothesized that caspase-10 might be involved in necroptosis.
Necroptosis is a programmed form of necrosis that results in membrane
permeabilization, ultimately releases intracellular component including DAMPS
45'

Necroptosis is mediated by receptor-interacting proteins (RIP)1, RIP3, and
mixed-lineage kinase domain-like (MLKL). The assembly of RIP1, RIP3 with
other proteins formation oligomeric complex termed necrosome. Activated
MLKLs translocate to plasma membrane and increase membrane permeability
lead to membrane disruption '®. It has been reported that RIP3 expression is

silenced in the majority of cancers as one of the cancer evasion mechanisms.
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Recent studies have reported that the transcription start site (TSS) of RIP3 is
methylated in HepG2, but it can be recovered by treatment with hypomethylating
agents such as 5-AD*. We show Above Data that caspase-10 mediated
programmed cell death under various stimuli, and we concluded that necroptosis
did not occur by caspase-10 in HepG2 since RIP3, which is a key molecule of the
necroptosis, is silenced in HepG2.

Given that GSDMC*, GSDMD cleaved by caspase-8 **, we hypothesized that
caspase-10 might be involved in inducing pyroptosis. To investigate our
hypothesis, we performed overexpression of caspase-10 in 293T cells. Indeed,
we observed cleavage of GSDME within caspase-10 overexpression HepG2 cells.
Notably, we observed that caspase-8 also cleavage GSDME to induce pyroptosis.
However, cleavage efficiency was higher with overexpression of caspase-10.
This suggests that caspase-10 can be a potential target to induce pyroptosis better
than caspase-8.

We next show that sorafenib induces caspase-10-dependent pyroptosis in
HepG?2 cells but not cisplatin. Considering that our preliminary observation under
various cell death inducers including TNF- a, 5-FU, cisplatin, sorafenib were
markedly induce programmed cell death, we hypothesized that both sorafenib and
cisplatin may induce pyroptosis. But only sorafenib induces caspase-10-
dependent pyroptosis.

Further studies will be needed to examine the role of caspase-10 in cancer
pyroptosis; other stimuli such as TNF-a and chemotherapy drugs need to be
investigated. In addition, in this study we show caspase-10-dependent induction
of pyroptosis only in-vitro. For further support for our findings, xenograft as an

in-vivo experimental model will need to be done as well as clinical research.
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V. CONCLUSION

In summary, we showed that caspase-10 mediates cancer cell death.

First, we showed that caspase-10 regulates generation of ROS under TNF- a
stimulation.

Second, our study suggested that caspase-10 regulates chemokines to activate
immune system under TNF- o stimulation.

Finally, we showed that caspase-10 induces pyroptosis by cleaving GSDME under

sorafenib treatment in HepG2.

Therefore, our findings suggested that caspase-10 may be a new target for inducing

pyroptosis in liver cancer.
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