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ABSTRACT 

 

Multi-Scale Conditional Generative Adversarial Network for  

Small Diseases using Class Activation Region Influence Maximization 

 

Kyeongjin Ann 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Hyuk-Jae Chang) 

 

Automatic detection and classification of thoracic diseases using deep learning 

algorithms have many applications supporting radiologists' diagnosis and prognosis. 

However, in the medical field, the class-imbalanced problem is extremely common 

due to the differences in prevalence among diseases, making it difficult to develop 

these applications. Many GAN-based methods have been proposed to solve the 

class-imbalance problem on chest X-ray (CXR) data. However, these models have 

not been trained well for small-sized diseases because it is challenging to extract 

sufficient information with only a few pixels.  

In this paper, we propose a novel deep generative model called a class activation 

region influence maximization conditional generative adversarial network 

(CARIM-cGAN). The proposed network can control the target disease's presence, 

location, and size with a controllable conditional mask. We newly introduced class 

activation region influence maximization (CARIM) loss to maximize the probabil-

ity of disease occurrence in the bounded region represented by a conditional mask. 

To demonstrate an enhanced generative performance, we conducted numerous 
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qualitative and quantitative evaluations with the samples generated using a CARIM-

cGAN. The results showed that our method has a better performance than other 

methods.  

In conclusion, because the CARIM-cGAN can generate high-quality samples 

based on information on the location and size of the disease, we can contribute to 

solving problems such as disease classification, -detection, and -localization, requir-

ing a higher annotation cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Key words : conditional generative model, medical image augmentation, class ac-

tivation map, high resolution image, nodule classification and detection, chest x-ray 
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I. INTRODUCTION 

 

1. The Need of Multi-Scale Conditional Generative Adversarial 

Network for Small Thoracic Diseases 

 

Building of a large balanced dataset is critical for generalization and convergence 

in supervised learning. Direct use of a small, highly imbalanced dataset as the train-

ing data without additional processes can lead to undesirable outcomes such as over-

fitting [1, 2]. In the medical field, a class imbalance is pervasive owing to the dif-

ferences in prevalence among diseases. For example, on a large-scale chest X-ray 

(CXR) dataset provided by the National Institutes of Health [3], the number of in-

stances of infiltration, nodule, cardiomegaly, and hernia is 19,894, 6,331, 2,776, and 

227, respectively, with a large imbalance ratio of 1:87 between the most and least 

classes.  

Data augmentation techniques such as image transformations have been used to 

address this challenge of insufficient numbers and imbalances of medical imaging 

data and help prevent degrading the performance [4, 5]. The representative, basic 

data augmentation techniques for transforming images include flipping, scaling, ro-

tation, shearing, and changing the contrast. However, by simply augmenting data in 

such a way, it is difficult to improve the performance at a large level because the 

augmented data are also generated from a small number of real datasets and have 

the same diversity as the real data. Therefore, increasing the diversity of a real da-

taset is a fundamental solution that allows deep neural networks to learn richer fea-

tures from the dataset.  

The generative adversarial network (GAN), first introduced by Ian Goodfellow 
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et al. [6], is the most powerful framework for training a generative model. Many 

generative models based on GANs have been proposed and have shown a tremen-

dous success in applications of various fields, including computer vision [7–9]. 

These models can generate new plausible synthetic samples, which alleviate the 

problems of data imbalance and lack of diversity in the real dataset, thereby improv-

ing the performance degradation caused by skewed class proportions [10–14].  

In CXR data augmentation, GAN-based models can produce high-quality syn-

thetic images with high resolutions for large-sized diseases (e.g., effusion, cardio-

megaly, and pneumothorax) [15, 16]. However, it is challenging for small-sized dis-

eases (e.g., nodule and mass) to generate a synthetic image that reflects the charac-

teristics of the disease well. Similar to the detection of small objects in an object 

detection problem, it has a limitation in learning the realistic features of small-sized 

diseases because they are represented by only a few pixels in the image, which has 

a minimal contribution to learning [17, 18].  

In this paper, we propose a novel deep generative model called a class activation 

region influence maximization conditional generative adversarial network 

(CARIM-cGAN) to solve the limitations mentioned above. The proposed network 

can generate CXR samples with small-sized diseases in the desired form using a 

controllable conditional mask consisting of binary bits as input. In addition, to pre-

serve characteristics of target disease, we introduce class activation region influence 

maximization (CARIM) loss newly, which is used in combination with the genera-

tor loss during the training phase.  

 

The contributions of this study are as follows: 

1) The proposed network can control the presence, location, and size for the target 

disease using a controllable conditional mask. The proposed network generates 
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samples of various types (i.e., normal, abnormal samples with different loca-

tions/sizes) and consequently contributes to drastically increasing the diversity 

of the data.  

2) Our model guarantees generation of CXR samples with a small-sized target 

disease using a novel CARIM loss that assigns additional restrictions on the 

bounded area by a given conditional mask. This loss function makes the net-

work concentrate on learning realistic descriptive features for a small-sized dis-

ease.  

3) To demonstrate that the proposed model is superior to other generative models, 

we conducted experiments from various perspectives, such as the t-SNE [19], 

image differencing, histogram, FID [20], PSNR [21], and classification. 

 

2. Review of Related Studies 

 

The deep convolutional GAN (DCGAN) proposed by Alec Radford et al. [22] is 

one of the successful networks designed for image generation, which is composed 

of convolution layers without max pooling or fully connected layers and uses a con-

volutional stride and transposed convolution for the down- and up-sampling. Alt-

hough this model improves learning stability compared to the previous model, it has 

difficulty in generating high-resolution (256 × 256) images. 

The conditional GANs (cGANs) proposed by Mehdi Mirza et al. [23] uses con-

ditional variables as input to the generator and discriminator. The representative 

cGAN-based studies include Pix2Pix [24], CycleGAN [25], DiscoGAN [26], and 

StarGAN [27], which can generate desirable image styles using a target condition. 

The progressive growing of GANs (PGGANs) proposed by Tero Karras et al. [28] 

is an extension to the GAN that enables stable training and high-quality image 
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generation. It’s training starts from low-resolution images to high-resolution images 

by adding new layers to the generator and discriminator progressively.  

In [29] and [30], CPGGAN, a study related to cGAN and PGGAN, is described. 

First, the model proposed by [29] combinates a conditional variable (class type) into 

PGGANs for the task of unsupervised CXR synthesis, which allows for the control 

of various diseases. It generated high-resolution images well, but this model has a 

disadvantage in that it cannot finely control the location or size of the disease. Sec-

ond, the model proposed by [30] incorporates conditional variables (bounding boxes) 

into PGGANs to control brain metastases at the designated positions/sizes on the 

magnetic resonance (MR) images. In the case of general cGANs, the discriminator’s 

loss function is implemented as the sum of the unconditional loss that distinguishes 

real from fake and the conditional loss that encourages the use of conditional infor-

mation. However, this model does not have a conditional loss in the discriminator, 

and thus it is possible to generate only tumor samples, not normal cases. Neglecting 

normal sample generation is inefficient in that all information obtained by the mask 

is not utilized. Therefore, there is extensibility to cover both cases with and without 

a disease. 

GAN-based models for augmenting CXR datasets have been studied to address 

the imbalanced classes, a chronic problem in the utilization of medical data. Related 

studies [15] and [16] trained a DCGAN as a generative model independently of each 

disease to generate synthetic CXR images for all target diseases. A classification 

network, based on AlexNet [31], was then trained using both real and synthesized 

data. The authors showed that increasing the diversity of a dataset with CXR sam-

ples generated using a DCGAN helps improve the classification performance and 

avoid overfitting. 

As another example, [32] used a CycleGAN to balance the data through CXR 
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data augmentation in the preprocessing step of the binary classification task. Cy-

cleGAN is a framework for training image-to-image translation models without 

paired examples and is usually used to deal with the problem of data unpairing in 

the image conversion process. CycleGAN in [32] was utilized to generate a paired 

dataset that refers to a relationship such as fibrosis versus no fibrosis.  

However, the above studies show that the classification accuracy was improved 

for large-sized diseases (e.g., pneumonia, pleural-thickening), but not for small-

sized diseases (e.g., fibrosis) after the data augmentation.  

Therefore, to address the poor classification performance depending on the size 

of the disease, it is necessary to build a robust generative model capable of generat-

ing CXR datasets that realistically reflect the disease property regardless of its size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7



 

II. METHODS 

 

This section details the proposed CARIM-cGAN. Our goal is to generate high-

resolution synthetic CXR samples with small-sized diseases. In this study, a lung 

nodule was selected as the target disease among the major thoracic diseases. This 

nodule is a tiny globular lesion in the lung approximately 3cm in length. Sec. II. 1 

introduces the proposed multi-scale cGAN using a controllable conditional mask. 

And CARIM, a novel method for improving the generative performance for small-

sized diseases, is described in section Sec. II. 2. 

 

1. Multi-scale Conditional Generative Adversarial Network us-

ing a Controllable Conditional Mask 

 

For synthetic CXR images to be used as training data, they must be generated at 

high-resolution that can fully reflect the characteristics of the thoracic structure and 

organs. We used StackGAN++ [33] as a backbone structure, which is one of the 

best solutions for generating high-resolution samples. StackGAN++ has multiple 

generators and discriminators in a tree-shaped structure, gradually learning the dis-

tribution of samples at multiple scales. At each branch, the generator produces sam-

ples at the corresponding scale, and the discriminator estimates the probabilities of 

whether the given samples came from training data of that scale. Therefore, the net-

work progressively generates the samples from low to high-resolution through mul-

tiple branches during the generation phase.  

In this study, we have made four additional modifications to the previous study 

to achieve our goal. First, the proposed network uses a conditional mask to control 
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the presence, location, and size of the disease. Second, we used the least-square 

GAN loss [34] to penalize samples according to how far they were from the decision 

boundary. Third, to eliminate the occurrence of checkerboard artifacts, the nearest-

neighbor method [35] was used for all branches as an up-sampling layer. Finally, 

spectral normalization (SN) [36] was used for generators and discriminators to sta-

bilize the training. 

Fig. 1 shows the architecture of the proposed CARIM-cGAN, which takes a 100-

dimensional latent vector such that 𝑧 ~ 𝑁(0, 1) and a conditional mask 𝐶 as in-

puts and generates samples at multiple scales. The conditional mask is a binary im-

age, where the presence, location, and size of the target disease are controlled by a 

bounded region represented by 0s and 1s. It is resized to the corresponding scale for 

each branch and concatenated with the hidden representation of the previous branch 

to be used as input for the next branch. We compute the hidden representation ℎ𝒾 

of the 𝑖𝑡ℎ branch using the following equation: 

 

ℎ𝒾 = 𝐹𝒾(ℎ𝒾−1,    𝐶𝑖),     𝒾 = 1, … , 𝑀,                 (1) 

 

where 𝐶𝑖  is the conditional mask for the 𝑖𝑡ℎ  branch, 𝐹𝒾  is the convolutional 

module of the 𝑖𝑡ℎ branch, and 𝑀 is the total number of branches. In addition, ℎ𝒾 

is computed by 𝐹𝒾 using 𝐶𝑖 and the hidden representation ℎ𝒾−1 from the previ-

ous branch. The noise vector 𝑧 is projected to a spatially extended initial hidden 

representation ℎ0 with 1,024 feature maps. Based on these hidden representations, 

the generators produce synthetic samples at various scales, ranging from low to high, 

i.e.,          

 

 𝓈𝒾  =  𝐺𝒾(ℎ𝒾),     𝒾 =  1, … , 𝑀,                   (2) 
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where 𝐺𝒾 is the generator of the 𝑖𝑡ℎ branch, and 𝓈𝒾  indicates the sample gener-

ated by 𝐺𝒾. 

The discriminator 𝐷𝑖  takes either the real sample 𝓍𝒾 or synthesized sample 𝓈𝒾 

at the scale of the 𝑖𝑡ℎ branch and the disease condition as inputs, and learns both 

conditional and unconditional perspectives. The conditional perspective determines 

whether the sample and condition match or not, and the unconditional perspective 

distinguishes whether the sample is real or synthesized.  

 

ℒ𝒟𝒾
=

1

2
(𝔼𝓍𝒾∼𝒫𝒹𝒶𝓉𝒶𝒾

[(𝒟𝒾(𝓍𝒾) − 1)2] + 𝔼𝓈𝒾∼𝒫𝐺𝒾
[(𝒟𝒾(𝓈𝒾))2] + 

𝔼𝓍𝒾∼𝒫𝒹𝒶𝓉𝒶𝒾
[(𝒟𝒾(𝓍𝒾|�̂� ) − 1)2] + 𝔼𝓈𝒾∼𝒫𝐺𝒾

[(𝒟𝒾(𝓈𝒾|�̂� ))2],      (3) 

 

where �̂� is the class information obtained from the conditional mask, which is ex-

pressed as 0 for a normal state and as 1 for a nodule.  

The generator 𝐺𝑖  jointly approximates unconditional and conditional distribu-

tions of samples at the scale of the 𝑖𝑡ℎ branch, which is optimized by minimizing 

the loss ℒ𝐺𝒾
. The generator 𝐺𝑖  and discriminator 𝐷𝑖  at the 𝑖𝑡ℎ  branch are alter-

natively trained against each other.  

 

 ℒ𝐺𝒾
=

1

2
(𝔼𝓈𝒾∼𝒫𝐺𝒾

[(𝒟𝒾(𝓈𝒾) − 1)2] + 𝔼𝓈𝒾∼𝒫𝐺𝒾
[(𝒟𝒾(𝓈𝒾|𝐶𝑖) − 1)2])    (4) 
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2. Class Activation Region Influence Maximization 

 

The class activation map (CAM) was first introduced by Zhou et al. [37] to visu-

alize what the convolutional neural network (CNN) is looking for in classifying im-

ages, highlighting the importance of the image region to the prediction. Selvaraju et 

al. [38] proposed Grad-CAM, a generalization of the CAM, which compensates for 

shortcomings such as dependencies on the global average pooling (GAP) layer. This 

approach defines the class-discriminative localization map 𝑀𝑐 for any class 𝑐 at 

the feature maps 𝐴𝑘 of the 𝑘𝑡ℎ convolutional layer through the following equa-

tion: 

 

 𝑀𝑐 = ReLU(∑ 𝑎𝑘
𝑐 𝐴𝑘

𝑘 );  𝑎𝑘
𝑐 = 

1

𝑤ℎ
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

ℎ
𝑗=1

𝑤
𝑖=1  ,         (5) 

 

where 
𝛿𝑦𝑐

𝛿𝐴𝑖𝑗
𝑘  is the gradient of the score 𝑦𝑐 for a target class 𝑐 with respect to the 

feature map 𝐴𝑘 ∈ 𝑅𝑤×ℎ of the width 𝑤 and height ℎ, indexed by 𝑖 and 𝑗, re-

spectively.  

The neuron importance weight 𝑎𝑘
𝑐  of the feature map 𝑘 for a target class 𝑐 is 

defined as the global-average-pooled gradient over the width and height dimensions. 

The class-discriminative localization map 𝑀𝑐 is computed by performing a linear 

combination of feature maps and the neuron importance weight and then applying 

the ReLU activation function to consider the positive influence on the target class. 

To obtain fine-grained pixel-scale representations, we use up-sampled activation 

maps. 

In this paper, we propose a novel CARIM loss, an extended version of Grad-
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CAM, to ensure that the disease is generated in the bounded region defined by the 

conditional mask. The CARIM loss maximizes the values of the CAM in the 

bounded region through the following equation: 

 

ℒ𝐶𝐴𝑅𝐼𝑀 =
1

|Ω|
∑ (1 − 𝑀𝑛𝑜𝑟𝑚

𝑐 (𝑥))2
𝑥∈Ω ,                 (6) 

 

where 𝑀𝑛𝑜𝑟𝑚
𝑐 (𝑥) is the value of the CAM normalized by max(𝑀𝑐) at location 

𝑥; Ω is the bounded region defined by the conditional mask, i.e., the region where 

the nodule should appear (𝑥 ∈ Ω); and |Ω| is the number of elements within Ω.  

This loss function shifts the network attention in classifying the disease to the 

bounded region by the conditional mask, making the region significantly impact the 

classification. Thus, it increases the likelihood of a targeted disease lesion caused 

by a conditional mask and can help learn realistic descriptive features for small-

sized diseases. 

Fig. 2 shows the overall process of maximizing the values of the CAM in the 

bounded region by the conditional mask. Computing the CAM requires additional 

pre-trained networks for targeted disease classification. In this study, CheXNet [39], 

a 121-layer densely connected CNN trained on the largest publicly available CXR 

dataset [3], was selected as the pre-trained classification network. This network cal-

culates the CAM referred to (5) using synthetic samples as the input. The values of 

the CAM within the bounded region by the given conditional mask are maximized 

by the loss function referred to (6). As shown in Fig. 1, only samples at the last scale 

are used for a CARIM loss computation because samples at low-scales do not ade-

quately represent characteristics for small-sized diseases, resulting in unnecessary 

computational overhead. In conclusion, the final loss function for the generator is 

expressed by the weighted sum of the multi-scale generative loss and the CARIM 
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loss, as referred to (7), which makes it possible to learn a network in an end-to-end 

manner. 

 

ℒ𝐺 =
1

2
∑ (𝔼𝓈𝒾∼𝒫𝐺𝒾

[(𝒟𝒾(𝓈𝒾) − 1)2] + 𝔼𝓈𝒾∼𝒫𝐺𝒾
[(𝒟𝒾(𝓈𝒾|𝐶) − 1)2])𝑀

𝒾=1 + 𝜆ℒ𝐶𝐴𝑅𝐼𝑀 ,  (7) 

 

where 𝜆 is the weighting parameter for the CARIM loss, and the optimal value for 

𝜆 is determined empirically as 0.001. 

As a result, the network generates high-resolution samples that depict the details 

of the thoracic structure by learning the data distributions at multiple scales. In ad-

dition, it ensures the generation of a disease with a rich representation in the 

bounded region by a given conditional mask. 
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III. EXPERIMENTS AND RESULTS 

 

This part introduces evaluations to demonstrate the performance of the CARIM-

cGAN. In Sec. III. 3, for evaluating our method’s capacity qualitatively, we con-

ducted the following experiments. First, to prove that our model is better than pre-

vious state-of-the-art methods, we visualized the samples generated by each model. 

In addition, to verify that the synthetic samples were generated close to the real 

samples, we visualized the distribution of real and synthetic samples using t-distrib-

uted stochastic neighbor embedding (t-SNE). Finally, to show that the synthetic 

sample matches the conditional mask, we experimented with samples generated by 

CARIM-cGAN utilizing the image differencing and histogram technique. In Sec. 

III. 4, for interpreting the performance of the models quantitatively, we calculated 

the Fréchet Inception Distance (FID) and Peak Signal to Noise Ratio (PSNR), which 

are an indicator to assess the quality of the generated data, for all comparative mod-

els, and trained the classification model based on DenseNet [40]. 

 

1. Dataset 

 

We used the ChestX-ray14 dataset, a large scale CXR dataset released by [3]. It 

comprises 112,120 frontal-view X-ray samples of 30,805 unique patients with labels 

for 14 diseases (where each sample can have multiple labels) from the associated 

radiological reports. In the database, only 51,759 samples contain one or more pa-

thologies, and the remaining 60,361 samples are normal cases. There are 6,331 nod-

ule samples among the samples containing pathologies. Specifically, the 79 nodule 

samples have ground-truth bounding boxes marked with the location of the disease.  

We also used Grad-CAM to obtain nodule localization maps for real nodule 
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samples from CheXNet, a classification model pretrained with many nodule sam-

ples. The pre-trained model can perform weakly supervised rough localization of a 

nodule and its classification, and extracted localization maps were used as the prior 

position distribution for a conditional mask. Therefore, it is possible to obtain a con-

ditional mask that realistically reflects the position of the nodule from the prior po-

sition distribution, which is more effective than generating the conditional mask 

randomly. 

 

2. Implementation Details 

 

We adopted a two-step learning strategy to train the proposed model effectively. 

In the first step, the generation model is trained without the CARIM loss, and in the 

second step, the CARIM loss is included in the training. This learning strategy has 

the following advantages. First, it can increase the stability of the model. This model 

learns the image's overall structure in the first step and detailed descriptive features 

in the second step. It helps the model clarify what needs to be done at each step and 

consequently contributes to convergence and stability of GAN training. Second, it 

can reduce unnecessary computation overhead. It is ineffective to apply CARIM 

loss from the scratch because there is not enough information to learn early in the 

learning process. Therefore, applying CARIM loss after the model has sufficient 

feature representation is cost-effective.  

In more detail, in the first step, the proposed model was trained for normal and 

nodule CXR samples using a mini-batch size of 24. The number of training epochs 

was set to 43. Also, to update the network weights, Adam optimization [41] with a 

learning rate of 2 ×  10−5  was used. After training, we saved the model that 

achieved the best generative performance. In the second step, the trained model was 
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then subsequently fine-tuned with CARIM loss. For this transfer learning, the mini-

batch size was set to 16, and the number of training epochs was set to 13. The opti-

mization method was the same as in the first step. 

 

3. Qualitative Evaluations 

 

A. Comparison of CARIM-cGAN with State-of-the-Art Methods 

 

Fig. 3 shows the normal and nodule samples obtained from [15, 16, 42]; [29]; 

[43]; a CARIM-cGAN without a CARIM loss; and a CARIM-cGAN (from left to 

right). All models in Fig. 3 were trained using the same ChestX-ray14 dataset. Here, 

nodules appear as round, white shadows with a diameter of 3cm or less on a CXR.  

As indicated in Fig. 3, in [15, 16, 42], it is difficult to interpret the state of the 

major organs due to blurred regions of the sample and an unclear shape of the ribs 

or lung bronchi. In addition, the study in [29] and [43] generally have well-modeled 

chest characteristics, but the nodule is invisible in the synthetic sample. Thus, we 

can interpret that [15, 16, 42], [29], and [43] have a significantly lower quality than 

the real data and the samples generated by the proposed generative model. By con-

trast, the samples generated from a CARIM-cGAN without a CARIM loss and a 

CARIM-cGAN have a substantial quality similar to real data. However, in the nod-

ule case, the target disease in the sample generated by a CARIM-cGAN looks more 

like a real nodule than that of CARIM-cGAN without a CARIM loss. In conclusion, 

these results demonstrate that the proposed model can properly produce data includ-

ing structural features as well as detailed elements. 
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Model - DCGAN PGGAN Multi-scale conditional GAN 

Method Real [15, 16, 42] [29] [43] 

CARIM-

cGAN 

(w/o 

CARIM 

Loss) 

CARIM-

cGAN 

(Proposed) 

        

Case #1 

Normal 

      
        

Nodule 

      
        

Case #2 

Normal 

      
        

Normal 

      
        

        

Case #3 

Normal 

      
        

Nodule 
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Figure 3. Comparison of synthetic samples between other state-of-the-art meth-

ods and the proposed method. The white and yellow boxes indicate the ground 

truth of nodule lesion for real samples and the given conditional mask, respec-

tively. The synthetic normal and nodule sample from each model were generated 

with the same 𝒛 noise but a different condition. The samples generated by [15, 

16, 42], [29], and [43] are difficult to extract nodule regions because they do not 

use a conditional mask as input. Therefore, to provide reliable regions of interest, 

the nodule regions in these samples are marked by one expert radiologist with 

three years of experience. If there is no nodule region, we obtained the nodule 

regions by extracting the heatmaps from these samples through the CheXNet and 

specifying parts with high values on these heatmaps. 
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B. Comparison of Synthetic Samples by a CARIM-cGAN with Real 

Samples: Visualization using t-SNE 

 

The t-SNE is a nonlinear method for a dimensionality reduction, which models 

each high-dimensional object by a point in a low-dimensional map by reflecting the 

degree of similarity between objects. We visually analyze the distributions of real 

and synthetic datasets with the following samples: (i) 1,000 real normal CXR sam-

ples, (ii) 79 real nodule CXR samples, and (iii-iv) 1,000 synthetic normal and nodule 

CXR samples by a CARIM-cGAN.  

As shown in Fig. 4, real and synthetic CXR samples are distributed differently 

owing to the strong anatomical consistency of real CXR samples even though they 

belong to the same class group. In other words, samples from two different classes 

have similar distributions for real and synthetic datasets. Since the nodule is repre-

sented by only a few pixels in the CXR image and its influence is relatively low, it 

is not easy to obtain a distinct distribution between samples of two class groups 

using t-SNE. However, the distribution is widespread with real and synthetic sam-

ples separated, indicating the increased data diversity.   

 To address the above limitation, in Fig. 5, we visualize the local feature distri-

butions using cropped samples based on the disease region. The distributions for the 

synthetic normal and nodule samples are generated close to those of the real normal 

and nodule samples, respectively, and the real and synthetic normal samples have a 

distinct distribution from the real and synthetic nodule samples. These results indi-

cate that the proposed model generates synthetic CXR images that reflect the intrin-

sic characteristics of the two different class groups and increases data diversity. 
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Figure 4. t-SNE results with 1,000 256 × 256 samples per category: (a) real nor-

mal samples, (b) real nodule samples, (c) synthetic normal samples by CARIM-

cGAN, and (d) synthetic nodule samples by CARIM-cGAN. 
 

 

 
Figure 5. t-SNE results with 79 or 1,000 50×50 samples per category: (a) 1,000 

real normal samples resized randomly in the lung, (b) 79 real nodule samples 

resized based on the ground-truth, (c) 1,000 synthetic normal samples resized 

based on the conditional mask by CARIM-cGAN, and (d) 1,000 synthetic nodule 

samples resized based on the conditional mask by CARIM-cGAN. 
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C. Difference Map and Class Activation Map Histogram 

 

To demonstrate that the disease is generated only in the bounded region by a 

given conditional mask, we visualized a difference map between synthetic normal 

and nodule samples according to the conditional mask setting, and class activation 

map distributions between the bounded regions and others.  

For calculating the difference map, normal and nodule samples are generated with 

the conditional mask filled with 0s and the conditional mask including bounded re-

gions represented by 1s, respectively, using the same z noise. Fig. 6 shows that the 

brightest part of the difference map precisely matches the bounded regions by the 

given conditional mask. It means that the proposed model generates CXR samples 

by reflecting the presence, size, and location information of the target disease using 

conditional masks. 

Also, we obtained class activation maps for 2,000 synthetic nodule samples from 

CheXNet using Grad-CAM. We then plotted the histograms of map values inside 

and outside the bounded regions by the conditional masks. Fig. 7 shows that the 

histogram of class activation map values inside the bounded regions is closer to the 

maximum value (min-max normalization) than that of outer regions.  

A paired t-test is performed to analyze the difference between pixels inside and 

outside the bounding boxes obtained in the same heatmap. There is a statistically 

significant difference between the two groups (p-value < 0.001), which means that 

the target disease is generated within the bounded region by the conditional mask. 
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Nodule 

Sample 

Conditional 

Mask 
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Map 

 

      

Case #1 

 
  

  

 

     

Case #2 

    
     

Case #3 

     
      

 

Figure 6. Example difference maps between the synthetic normal samples and 

the nodule samples which are generated by CARIM-cGAN with the same 𝒛 

noise but a different condition. In all cases, the bounded region by the conditional 

mask and the region with the largest difference in the difference map match each 

other. 
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Figure 7. The histograms of class activation map values inside (red) and outside 

(blue) the bounded regions by conditional masks. The x-axis of the histogram 

refers to the pixel values ranging from 0.00 to 0.255, and the y-axis refers to the 

density. 
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4. Quantitative Evaluations 

 

A. Fréchet Inception Distance (FID) 

 

The FID is a measure used to calculate the similarity, i.e., the Fréchet distance 

between two multivariate gaussians with mean 𝜇 and covariance 𝛴, between real 

and synthetic samples defined as the following equation: 

 

𝐹𝐼𝐷 = ‖𝜇𝑥 − 𝜇𝑠‖2
2 + 𝑇𝑟 (𝛴𝑥 + 𝛴𝑠 − 2(𝛴𝑥𝛴𝑠)

1

2) ,                     (8) 

 

where 𝑥 is the real dataset, and 𝑠 is the synthetic samples. The lower FID score 

means that the synthetic samples are high quality and resemble real samples. 

To compare the performance among the generative models quantitatively, we cal-

culated the FID score as a performance indicator using the following samples: (i-ii) 

1,000 real normal and nodule CXR samples and (iii-iv) 1,000 synthetic normal and 

nodule CXR samples. Table 1 shows the FID scores along with the properties for 

the comparative models. In this experiment, the FID score of the proposed model 

was about 25% lower than that of [15, 16, 42] and was about 46% lower than that 

of [43]. In addition, the FID score of the proposed model was about 7% lower than 

that of [29] for nodules and higher than that of [29] for normal. As an ablation study, 

the application of the CARIM loss resulted in an additional 14% performance im-

provement over the case where it was not.  

In conclusion, these results suggest that the proposed model has better generative 

performance, which is comparable to state-of-the-art results for normal and better 

for small-sized diseases. 
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B. Peak Signal to Noise Ratio (PSNR) 

 

We calculated an image quality metric, the peak signal-to-noise ratio (PSNR), for 

quantifying the power of a signal and corrupting noise. 

To calculate the PSNR, we prepared the following samples: (i-ii) 1,000 un-

cropped real and synthetic normal samples, (iii) 79 real nodule samples cropped 

based on ground truth location, (iv) 1,000 synthetic nodule samples cropped to in-

clude nodule region. 

Unlike the proposed method, because synthetic nodule samples by other tech-

niques [15, 16, 42], [29], and [43] that do not use a conditional mask as input have 

no information on where the nodule should occur, it is not easy to extract nodule 

regions. Therefore, one expert radiologist with three years of experience cropped 

the nodule regions in these samples. If there are no nodule regions, nodule regions 

are extracted at an arbitrary location inside the lung to make cropped samples. 

As presented in Table 1, we demonstrated that our method achieves better per-

formance in the PSNR than other comparative models. As a result, it means that the 

synthetic samples by the proposed model look more realistic the real than other 

models in signal properties. 
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C. Classification Performance 

 

To verify the classification performance improvement by the proposed method, 

we trained DenseNet-121 as a classification model using four combinations of real 

and synthetic CXR samples as follows: 

 

∙ Imbalanced real dataset (DS1): This is an extremely imbalanced dataset. Of 

all of the available real CXR samples, the normal condition has 59,728 samples, 

while the nodule has only 5,698 samples. 

∙ Balanced real dataset (DS2): A balanced version of the real dataset is set to 

the minimum number of available real CXR samples. In this case, because the 

nodule dataset is smaller than the normal dataset, 5,698 nodule samples and 

only 5,698 randomly extracted normal samples were used to build this dataset. 

∙ Balanced real dataset augmented with synthesized CXR using CARIM-

cGAN without CARIM loss (DS3): This dataset is composed by adding 2,000 

samples generated from a CARIM-cGAN without a CARIM loss to DS2 per 

class. 

∙ Balanced real dataset augmented with synthesized CXR using CARIM-

cGAN (DS4): This dataset is composed by adding 2,000 samples generated 

from the proposed CARIM-cGAN to DS2 per class. 

 

A confusion matrix is a performance measurement method for classification. 

From the confusion matrix, true positive (𝑇𝑝), true negative (𝑇𝑛), false positive (𝐹𝑝), 

and false negative (𝐹𝑛) values are obtained, and six metrics (e.g., accuracy, sensitiv-

ity, specificity, precision, recall, and F1-score) are calculated for the performance 

evaluation using the following formulas: accuracy = (𝑇𝑛 + 𝑇𝑝)/ (𝑇𝑛 + 𝑇𝑝 + 𝐹𝑛 +
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𝐹𝑝), sensitivity = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑛), specificity = 𝑇𝑛  / (𝑇𝑛 + 𝐹𝑝), precision defined as 

𝑃 = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑝), and recall defined as 𝑅 = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑛). The weighted average 

of the precision and recall is called the F1-score, which is defined as 𝑓1 = (2 ⋅ 𝑃 ⋅

𝑅)/(𝑃 + 𝑅). In this section, we only use five metrics, excluding the recall, and ad-

ditionally include the area under the curve (AUC), which is another measure for 

evaluating the ability of the classifier. We used 1,266 real samples (633 normal 

samples and 633 nodule samples) as a test dataset for evaluation and calculated five 

metrics and AUC scores on the test dataset for models trained with DS1, DS2, DS3, 

and DS4, respectively, as presented in Table 2.  

The performances for imbalanced dataset DS1 are unreliable despite being gen-

erally higher than those of the other datasets, except for the specificity and AUC. In 

the case of binary classification with an imbalanced dataset, it is a common problem 

that a minority group containing significantly fewer samples is biased toward the 

majority group. The bias toward the majority class can be alleviated by down-sam-

pling the dataset containing more samples among the two classes. Thus, training 

with a balanced dataset DS2 can yield reliable results. DS3 and DS4 are the aug-

mented datasets with DS2 and synthetic samples, and the performance results for 

DS3 and DS4 are on average 2% higher than those of the real balanced dataset DS2 

for all measures. In addition, the classification model with DS4 achieves a better 

performance than DS3 for all metrics except the precision.  

The results demonstrated that further use of synthesized samples achieves a better 

classification performance than with only real samples, and CARIM loss helps im-

prove the generative performance effectively. 
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Table 2. Accuracy, sensitivity, specificity, precision, F1 score, and AUC scores 

for nodule classification on DS1, DS2, DS3, and DS4 

 

 
Imbalanced 

Dataset 
Balanced Dataset 

Measure DS1 DS2 DS3 DS4 

Accuracy 0.9100 0.6034 0.6113 0.6208 

Sensitivity 0.9107 0.5780 0.5807 0.5898 

Specificity 0.0000 0.6533 0.6793 0.6843 

Precision 0.9999 0.7661 0.8009 0.7930 

F1 score 0.9532 0.6589 0.6733 0.6765 

AUC 0.4553 0.6157 0.6300 0.6371 
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IV. DISCUSSION 

 

This paper proposes a high-resolution image generative model for small-sized 

diseases using a CARIM loss function specializing in maximizing the probability of 

target diseases. The proposed CARIM loss shifts the classification network attention 

to the bounded regions by a conditional mask when classifying diseases, allowing 

those regions to influence classification significantly. Therefore, it may increase the 

likelihood of target disease lesions by the conditional mask and help learn realistic 

descriptive characteristics for small-sized diseases.  

We performed qualitative and quantitative evaluations to demonstrate our 

model’s capacity. The difference map and histogram showed that the nodules on the 

synthetic image generated by the CARIM loss appear only in the bounded regions 

defined by the conditional mask. In t-SNE visualization, synthetic samples by the 

proposed model have similar distributions to real samples. FID, and PSNR experi-

ments verified that our model has better performance than other competitors in nod-

ule cases. On the other hand, the PGGAN-based model [29], trained with more data 

for normal and multiple diseases together, shows better performance in normal cases. 

For this reason, the proposed model can be improved with more samples. Based on 

these results, we can conclude that the proposed model can accurately and realisti-

cally generate the disease at the desired location using the conditional mask, which 

other models do not use, and has a similar or better generative quality than the recent 

studies.      

In this paper, CARIM-cGAN is implemented with Grad-CAM [38], known as the 

general version of CAM, but other improved variants [44–50] of Grad-CAM have 

been recently proposed. Although these variations have not been covered in this 

paper, they can obtain weights for each feature channel, are differentiable. Therefore, 

32



 

they can apply to the CARIM loss function so that the proposed model learns more 

fine-grained features and provides optimal interpretation for lung nodules. In addi-

tion, the state-of-the-art generative baseline models such as StyleGAN [51] could 

separate high-level attributes (e.g., pose, disease type) and stochastic variations (e.g., 

lung, heart, ribs) in the generated images. As a result, the use of these techniques 

might make it possible to intuitively scale-specifically control, resulting in the gen-

eration of more diverse and high-quality samples with small-sized diseases. In fu-

ture research, we plan to expand this study by applying better techniques such as 

improved variants of Grad-CAM or StyleGAN. 
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V. CONCLUSION 

 

Many GAN-based generative methods have been developed to address the need 

for a balanced large-scale medical dataset. However, it is still extremely challenging 

to accu-rately generate CXR data because the amount of extracted meaningful in-

formation for training depends on the size of the disease.  

In this paper, to solve the limitations on small-sized diseases, we proposed a 

CARIM-cGAN. The proposed model uses a controllable conditional mask as an 

input condition to generate synthetic CXR samples with the target disease in the 

desired location and size. In addition, to preserve characteristics of target disease, 

we introduce class acti-vation region influence maximization (CARIM) loss newly, 

which makes the network concentrate on learning realistic descriptive features for a 

small-sized disease.  

As a result, our model can generate high-quality, realistic synthetic CXR samples 

and contributes to minimizing the annotation efforts of expert physicians through 

controllable conditions on a conditional mask, such as the presence, location, and 

size of the target disease.   
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ABSTRACT(IN KOREAN) 

 

클래스 활성 지역 영향력 최대화의 사용으로 크기가 작은 

질환 영상 생성이 가능한 조건부 적대적 생성 신경망 

 

< 지도교수 장혁재 > 

연세대학교 대학원 의과학과 

안경진 

 

의료분야에서 데이터의 수적 부족 및 불균형 문제는 빈번하며 

이로 인해 발생하는 딥러닝 네트워크 성능저하 문제는 꾸준히 

제기되어왔고 여전히 도전적인 문제이다. 최근 적대적 생성 신

경망(GAN) 기술을 활용해 데이터를 생성함으로써 의료 인공지

능 학습 성능을 향상시키는 다양한 연구들이 제안되어왔다. 

그러나 의료영상 생성에 있어 크기가 큰 질환은 판별자에 의

해 분류가능한 특징을 비교적 잘 학습하지만 크기가 작은 질환

의 경우 전체 영상대비 해당 질환의 비율이 작기 때문에 특징학

습이 상대적으로 어렵다.  

본 학위논문에서는 작은 질환 생성을 보장하기 위해 조건부 

마스크(conditional mask)와 클래스 활성 지역 영향력 최대화

(class activation region influence maximization, CARIM) 손실함수를 
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사용한 새로운 심층 생성 네트워크를 제안한다. 해당 네트워크

는 조건부 마스크를 입력으로 받아 질환의 존재, 위치 및 크기

를 제어할 수 있고, 클래스 활성 최대화 손실함수를 통해 조건

부 마스크에서 질환 발생 확률이 최대화될 수 있도록 추가적인 

제약을 부여한다. 

따라서 본 네트워크는 질환이 포함된 영상과 포함되지 않은 

영상을 생성할 수 있으며, 질환이 포함된 영상의 경우 질환의 

크기 및 위치 조건을 잘 반영한 고해상도 흉부 X 선 영상(CXR)

을 얻을 수 있다.   

결과적으로 제안한 네트워크는 조건부 마스크기반으로 영상을 

생성하기 때문에 영상 어노테이션(annotation) 비용을 줄일 수 있

어 비용효과적이며, 레이블링이 된 충분한 양의 학습데이터 확

보가 가능해 질환 분류(classification), 검출(detection) 및 지역화

(localization) 문제 성능을 향상시키는데 활용될 수 있다. 이는 

기존 정확도가 낮아 임상현장 적용이 어려웠던 의료인공지능 기

술을 개선해 궁극적으로 치료 및 진단 의료자동화 발전에 기여

할 수 있다. 

 

 

 
 

핵심되는 말 : 조건부 생성 모델, 데이터 증강, 클래스 활성화 

맵, 고해상도, 결절 분류 및 검출, 흉부 X-선 
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