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ABSTRACT 

 

Establishment of hip fracture prediction model using radiomics 

texture analysis of dual-energy x-ray absorptiometry images with 

machine learning application 

 

Namki Hong 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

Directed by Professor Yumie Rhee 

 

 

Dual-energy X-ray absorptiometry (DXA)-based bone mineral density testing is 

standard to diagnose osteoporosis to detect individuals at high risk of fracture. A 

radiomics approach to extract quantifiable texture features from DXA hip images 

may improve hip fracture prediction without additional costs. Here, I investigated 

whether bone radiomics scores from DXA hip images could improve hip fracture 

prediction in a community-based cohort of older women. The derivation set (143 

women who sustained hip fracture [mean age 73, time to fracture median 2.1 

years] vs. 290 age-matched women [mean age 73] who did not sustain hip 

fracture during follow-up [median 5.5 years]) were split to train set (75%) and 

test set (25% hold -out set). Among various models using 14 selected features out 

of 300 texture features mined from DXA hip images in train set, random forest 

model was selected as best model to build bone radiomics score (range 0 to 100) 
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based on the performance in the test set. In a community-based cohort (2029 

women, mean age 71) as clinical validation set, bone radiomics score was 

calculated using model fitted in train set. A total of 34 participants (1.7%) 

sustained hip fracture during median follow-up of 5.4 years (mean bone 

radiomics score 40±16 vs. 28±12 in non-fractured, p<0.001). A one-point bone 

radiomics score increment was associated with an 4% elevated risk of incident 

hip fracture (adjusted hazard ratio [aHR] 1.04, p=0.001) after adjustment for age, 

BMI, previous history of fracture, and femoral neck T-score, with improved 

model fit when added to covariates (likelihood ratio χ2 10.74, p=0.001). The 

association between bone radiomics score with incident hip fracture remained 

robust (adjusted HR 1.06, p<0.001) after adjustment for FRAX hip fracture 

probability. Bone radiomics scores estimated from texture features of DXA hip 

images have the potential to improve hip fracture prediction. 

 

 

 

 

 

 

 

                                                            

Key words: DXA, fracture risk assessment, osteoporosis 
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I. INTRODUCTION  

 

Hip fracture has become a significant health problem in the era of global aging.1 

Hip fracture is associated with increased mortality, morbidity, and economic 

burden.2,3 Currently, areal bone mineral density (aBMD) testing via dual-energy 

X-ray absorptiometry (DXA) is the standard method for diagnosing osteoporosis; 

both clinical risk factors and aBMD are able to identify individuals at high risk 

for hip fracture.4 However, half of fragility fractures occur in individuals without 

osteoporosis, which leaves room for improvement in fracture risk prediction.5 

 Radiomics refers to comprehensive, automated high-throughput mining 

of quantitative standard-of-care medical image features to capture disease 

characteristics that are difficult to identify by human vision alone; in turn, this 

supports clinical decision making with improved diagnostic and/or predictive 

performance.6,7 Radiomics can quantify a large array of radiologic phenotypes, 

including textures and spatial heterogeneity of the bone.6,8 Several studies suggest 

that substantial spatial heterogeneity is related to aging, exercise, and diseases of 

bone distribution and microarchitecture at the proximal femur, which may partly 
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contribute to the susceptibility to hip fracture in addition to bone mass alone.9-12 

A recent study showed spatiotemporal heterogeneity in pixel-wise BMD changes 

with aging using DXA hip images, which suggests the applicability of radiomics 

for DXA images.13 If properly leveraged, radiomics can be useful to mine 

quantitative texture indices at the pixel-wise level that are related to hip fracture 

from DXA hip images; this has the potential to improve hip fracture risk 

prediction as add-on information to DXA aBMD in standard-of-care practice.  

 In this study, I aimed to investigate whether the bone radiomics score 

using texture features from DXA can improve hip fracture risk prediction in older 

women. 
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II. MATERIALS AND METHODS 

 

1. Study subjects 

Two separate data set (Figure 1) were analyzed in this study to develop machine 

learning-based models for the bone radiomics score (derivation set) and to test 

the clinical utility of the score for hip fracture prediction in a prospective 

community-based cohort dataset with the consideration of time-to-event 

information (clinical validation set). This study was approved by the Institutional 

Review Board (IRB) of Severance Hospital, Seoul, Korea (no. 4-2020-0884; 4-

2012-0172). The study was conducted in compliance with the World Medical 

Association Declaration of Helsinki.  

 

 

Figure 1. Study flow. DXA, dual-energy X-ray absorptiometry; EHR, electronic 

health record; KURE, Korean Urban Rural Elderly. 

 

A. Derivation set  

To develop the bone radiomics score based on selected texture features which 

best discriminate individuals who sustain a hip fracture or not, electronic medical 
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records of women aged 65 years or older who sustained any fragility fracture at 

the hip between January 2010 and December 2019 with any DXA images prior 

to the fracture date (n=172) were retrieved from the Clinical Data Repository 

System of Severance Hospital, Seoul, Korea. All incident hip fracture events in 

derivation set were ascertained based on a medical record review conducted by 

investigators (NH and YR). The need for informed consent was waived by IRB 

due to the study design of retrospective medical record review. For control groups, 

women aged 65 years or older who did not sustain any hip fracture between 

January 2012 and December 2018 (n=2320) were selected as control candidates 

from a community-based prospective cohort of older Korean adults (Korean 

Urban Rural Elderly cohort, KURE). Written informed consent was obtained in 

all KURE cohort participants prior to the examination. DXA images were 

obtained at the time of enrollment (2012 to 2015). Hip fracture-free status during 

the follow-up period was determined by interviewer-assisted questionnaires 

during the second-wave follow-up with a 4-year interval (2016 to 2018). This was 

further ascertained by the absence of any International Classification of Diseases 

10 codes (S72.0, S72.1) until December 31, 2018 using a database linked to the 

Korea National Claim Database of the Health Insurance Review and Assessment 

Service, covering 98% of entire Korean population. After 1:2 matching by age 

and follow-up duration, as well as exclusion of individuals without DXA hip 

images (n=2) or those with DXA images taken by an older version of the machine 

(n=6; QDR 4500, Hologic, USA), a total of 433 subjects (case n=143; control 

n=290) remained in the derivation set. The median time-to-fracture in the case 

group was 2.1 years with an interquartile range of 0.9 to 3.9. Follow-up duration 

(hip fracture-free duration) for control group was median 5.5 years [interquartile 

range 4.5-6.4] from the date of DXA testing until Dec 31, 2018. The derivation 

set was then split into a train set (75%) to fit models and an internal test set (a 

hold-out set, 25%) for evaluating model performance.  

 



7 

 

B. Clinical validation set 

To test the performance of the bone radiomics score for hip fracture risk 

prediction in a community-based setting with the consideration of time-to-event 

information, the clinical validation set was constructed using the KURE cohort 

after excluding subset used as hip fracture-free controls to construct derivation 

set (Figure 1). Among a total of 3517 participants at baseline (2012 to 2015), men 

(n=1163), women who were used as matched control group in the derivation set 

(n=294), those who did not undergo hip DXA testing (n=7), and those without 

available DXA image files (n=24) were excluded. Data of remaining 2029 

participants were analyzed as clinical validation set (median follow-up duration 

5.4 years [interquartile range 4.4-5.6]; 34 participants sustained hip fracture 

during follow-up).  

 

2. Image processing 

DXA images were obtained according to the standardized protocol of the 

institution (Discovery W, Hologic, NH, USA). Because all investigation in KURE 

cohort study was conducted at the Severance Hospital, DXA images were 

obtained by a single, identical DXA machine (Discovery W, Hologic, NH, USA; 

fast array scan mode) in both derivation set and clinical validation set. 

Osteoporosis was defined as T-score -2.5 or lower at lumbar spine, femoral neck, 

and total hip in accordance with WHO criteria. Hip structure analysis was 

performed using Hologic APEX analysis software to derive hip geometry 

parameters. DXA hip reports of study subjects were retrieved in a DICOM file 

format from Severance Hospital Picture Archiving and Communication System 

(Figure 2).  
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Figure 2. Development process of machine learning-based bone radiomics score 

for hip fracture prediction. Abbreviations: GLCM, gray level cooccurrence 

matrix; GLSZM, gray level size zone matrix; GLRLM, gray level run length 

matrix; NGTDM, neighboring gray tone difference matrix; GLDM, gray level 

dependence matrix.  

 

 

The absence of artifacts or serious deviations in the region of interest in all DXA 

hip images were reviewed by two experts (NH, YR) with more than 10-years of 

practical experience. After cropping a box-shaped analysis area of the proximal 

femur (image size: mean 191 [95% CI 190-192] x mean 195 [95% CI 194-196] 

pixels in derivation set and mean 190 [95% CI 190-191] x mean 194 [95% CI 

193-194] pixels in clinical validation set; pixel dimension: 0.504 mm), masks for 

regions-of-interest (ROIs: femoral neck, trochanter, intertrochanter, and total hip) 

were generated manually using open source software (3D Slicer, version 4.10.2, 

http://www.slicer.org)14, as guided by existing lines in the images generated by 

the Hologic DXA machine. After automatic removal of the guidance lines 

penetrating ROIs by substituting line pixel values with median values of an 
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adjacent 3-by-3 pixel region using our in-house python code, contrast-limited 

adaptive histogram equalization followed by median filtering was performed to 

enhance texture patterns in DXA hip images with reduction of background 

noise.15,16  

 

3. Feature extraction and selection in the train set 

For each ROI (femoral neck, trochanter, intertrochanter, total hip), 75 gray-level 

texture features were extracted via an automated process using Pyradiomics 3.0, 

an open-source python package (Table 1), yielding a total of 300 texture features 

per one DXA hip image.17 Detailed formulas and descriptions of the texture 

features are provided in Table 1. The intraclass correlation (ICC) of texture 

features for inter-rater agreement (texture features from ROIs segmented by two 

independent analysts blinded to the outcome) was calculated from 30 randomly 

sampled DXA hip images, which showed robust reproducibility (95% confidence 

interval within an ICC range of 0.90 or higher) in 78% of 300 (233/300) texture 

features from four ROIs (Table 2).  

 

Table 1. Formulas and descriptions of radiomics texture features17 
Based 

metho

ds 

Parameter Formula Description 

Grey Level Co-occurrence Matrix (GLCM) : A Gray Level Co-occurrence Matrix 

(GLCM) of size Ng×Ng describes the second-order joint probability function of an 

image region constrained by the mask and is defined as P(i,j|δ,θ). The (i,j)th element 

of this matrix represents the number of times the combination of levels i and j occur 

in two pixels in the image, that are separated by a distance of δ pixels along angle θ. 

GLC

M  

Featur

es 

Autocorrela

tion 
𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Autocorrelation is 

a measure of the 

magnitude of the 

fineness and 

coarseness of 

texture. 
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Joint 

Average 

𝑗𝑜𝑖𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝜇𝑥

= ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

The mean gray 

level intensity of 

the i distribution. 

Cluster 

Prominence 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 

= ∑ ∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)4𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Cluster 

Prominence is a 

measure of the 

skewness and 

asymmetry of the 

GLCM. A higher 

values implies 

more asymmetry 

about the mean 

while a lower value 

indicates a peak 

near the mean 

value and less 

variation about the 

mean. 

Cluster 

Shade 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 

= ∑ ∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Cluster Shade is a 

measure of the 

skewness and 

uniformity of the 

GLCM. A higher 

cluster shade 

implies greater 

asymmetry about 

the mean. 

Cluster 

Tendency 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 

= ∑ ∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Cluster Tendency 

is a measure of 

groupings of 

voxels with similar 

gray-level values. 

Contrast 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 

= ∑ ∑(𝑖 + 𝑗)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Contrast is a 

measure of the 

local intensity 

variation, favoring 

values away from 

the diagonal. A 

larger value 

correlates with a 

greater disparity in 

intensity values 

among 

neighboring 

voxels. 
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Correlation 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=  
∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1
𝑗

𝑁𝑔

𝑖=1
− 𝜇𝑥𝜇𝑦

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
 

Correlation is a 

value between 0 

(uncorrelated) and 

1 (perfectly 

correlated) 

showing the linear 

dependency of 

gray level values to 

their respective 

voxels in the 

GLCM. 

Difference 

Average 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= ∑ 𝑘𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

  

Difference Average 

measures the 

relationship 

between 

occurrences of 

pairs with similar 

intensity values 

and occurrences of 

pairs with differing 

intensity values. 

Difference 

Entropy 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

= ∑ 𝑝𝑥−𝑦(𝑘) log2(𝑝𝑥−𝑦(𝑘) + 𝜖)

𝑁𝑔−1

𝑘=0

  

Difference Entropy 

is a measure of the 

randomness/variab

ility in 

neighborhood 

intensity value 

differences. 

Difference 

Variance 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

= ∑ (𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

  

Difference 

Variance is a 

measure of 

heterogeneity that 

places higher 

weights on 

differing intensity 

level pairs that 

deviate more from 

the mean. 

Joint 

Energy 𝑗𝑜𝑖𝑛𝑡 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑(𝑝(𝑖, 𝑗))2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Energy is a 

measure of 

homogeneous 

patterns in the 

image. A greater 

Energy implies that 

there are more 

instances of 

intensity value 

pairs in the image 
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that neighbor each 

other at higher 

frequencies. 

Joint 

Entropy 

𝑗𝑜𝑖𝑛𝑡 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

= − ∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Joint entropy is a 

measure of the 

randomness/variab

ility in 

neighborhood 

intensity values. 

Information

al Measure 

of 

Correlation 

(IMC) 1 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max {𝐻𝑋, 𝐻𝑌}
 

This class of 

features 

characterizes the 

textures of an 

image / object by 

creating a new 

matrix GLCM 

based on counting 

how often pairs of 

pixels with specific 

gray-level values 

and in a specified 

spatial relationship 

(distance and 

direction) occur in 

the image / object 

and then 

computing 

statistics from 

GLCM.IMC1 

assesses the 

correlation 

between each and 

every probability 

distribution 

(quantifying the 

complexity of the 

texture). It 

represents the 

information of a 

single distribution.  

Information

al Measure 

of 

Correlation 

(IMC) 2 

𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 

IMC2 also assesses 

the correlation 

between each and 

every probability 

distribution 

(quantifying the 

complexity of the 

texture). It 
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represents the 

information of two 

of the distributions. 

Inverse 

Difference 

Moment 

(IDM) 

𝐼𝐷𝑀 = ∑
𝑝𝑥−𝑦(𝑘)

1 + 𝑘2

𝑁𝑔−1

𝑘=0

 

IDM is a measure 

of the local 

homogeneity of an 

image. IDM 

weights are the 

inverse of the 

Contrast weights. 

Maximal 

Correlation 

Coefficient 

(MCC) 

𝑀𝐶𝐶 = √
𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 
𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄

 

 

𝑄(𝑖, 𝑗) = ∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁𝑔

𝑘=0

 

The Maximal 

Correlation 

Coefficient is a 

measure of 

complexity of the 

texture and 

0≤MCC≤1. 

Inverse 

Difference 

Moment 

Normalized 

(IDMN) 

𝐼𝐷𝑀𝑁 = ∑
𝑝𝑥−𝑦(𝑘)

1 + (
𝑘2

𝑁𝑔
2)

𝑁𝑔−1

𝑘=0

 

IDMN (inverse 

difference moment 

normalized) is a 

measure of the 

local homogeneity 

of an image. IDMN 

weights are the 

inverse of the 

Contrast weights. 

Inverse 

Difference 

(ID) 
𝐼𝐷 = ∑

𝑝𝑥−𝑦(𝑘)

1 + 𝑘

𝑁𝑔−1

𝑘=0

 

ID is another 

measure of the 

local homogeneity 

of an image. With 

more uniform gray 

levels, the 

denominator will 

remain low, 

resulting in a 

higher overall 

value. 

Inverse 

Difference 

Normalized 

(IDN) 

𝐼𝐷𝑁 = ∑
𝑝𝑥−𝑦(𝑘)

1 + (
𝑘

𝑁𝑔
)

𝑁𝑔−1

𝑘=0

 

IDN is another 

measure of the 

local homogeneity 

of an image 

Inverse 

Variance 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑
𝑝𝑥−𝑦(𝑘)

𝑘2

𝑁𝑔−1

𝑘=0

 

Inverse of the 

variance calculated 

is taken 

Maximum 

Probability 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
= max (𝑝(𝑖, 𝑗)) 

Maximum 

Probability is 

occurrences of the 
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most predominant 

pair of neighboring 

intensity values. 

Sum 

Average 𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑝𝑥−𝑦(𝑘)𝑘

2𝑁𝑔

𝑘=2

 

Sum Average 

measures the 

relationship 

between 

occurrences of 

pairs with lower 

intensity values 

and occurrences of 

pairs with higher 

intensity values. 

Sum 

Entropy 

𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

= ∑ 𝑝𝑥−𝑦(𝑘) log2(𝑝𝑥+𝑦(𝑘) + 𝜖)

2𝑁𝑔

𝑘=2

 

Sum Entropy is a 

sum of 

neighborhood 

intensity value 

differences. 

Sum of 

Squares 

𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

= ∑ ∑(𝑖 − 𝜇𝑥)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Sum of Squares or 

Variance is a 

measure in the 

distribution of 

neigboring 

intensity level pairs 

about the mean 

intensity level in 

the GLCM. 

Gray Level Size Zone Matrix (GLSZM):  A Gray Level Size Zone (GLSZM) 

quantifies gray level zones in an image. A gray level zone is defined as a the number 

of connected voxels that share the same gray level intensity. A voxel is considered 

connected if the distance is 1 according to the infinity norm (26-connected region in a 

3D, 8-connected region in 2D). In a gray level size zone matrix P(i,j) the (i,j)th element 

equals the number of zones with gray level i and size j appear in image. 

GLSZ

M 

feature

s 

Small Area 

Emphasis 

(SAE) 
𝑆𝐴𝐸 =  

∑ ∑
𝑃(𝑖, 𝑗)

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

SAE is a measure 

of the distribution 

of small size zones, 

with a greater value 

indicative of more 

smaller size zones 

and more fine 

textures. 

Large Area 

Emphasis 

(LAE) 
𝐿𝐴𝐸 =  

∑ ∑ 𝑃(𝑖, 𝑗)𝑗2𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

LAE is a measure 

of the distribution 

of large area size 

zones, with a 

greater value 

indicative of more 

larger size zones 
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and more coarse 

textures. 

Gray Level 

Non-

Uniformity 

(GLN) 

𝐺𝐿𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑠
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑧

 

GLN measures the 

variability of gray-

level intensity 

values in the 

image, with a 

lower value 

indicating more 

homogeneity in 

intensity values. 

Gray Level 

Non-

Uniformity 

Normalized 

(GLNN) 

𝐺𝐿𝑁𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑠
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑧
2

 

GLNN measures 

the variability of 

gray-level intensity 

values in the 

image, with a 

lower value 

indicating a greater 

similarity in 

intensity values. 

This is the 

normalized version 

of the GLN 

formula. 

Size-Zone 

Non-

Uniformity 

(SZN) 

𝑆𝑍𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)2𝑁𝑠

𝑗=1

𝑁𝑧

 

SZN measures the 

variability of size 

zone volumes in 

the image, with a 

lower value 

indicating more 

homogeneity in 

size zone volumes. 

Size-Zone 

Non-

Uniformity 

Normalized 

(SZNN) 

𝑆𝑍𝑁𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)2𝑁𝑠

𝑗=1

𝑁𝑧
2

 

SZNN measures 

the variability of 

size zone volumes 

throughout the 

image, with a 

lower value 

indicating more 

homogeneity 

among zone size 

volumes in the 

image. This is the 

normalized version 

of the SZN 

formula. 

Zone 

Percentage 
𝑍𝑃 =

𝑁𝑧

𝑁𝑝

 
ZP measures the 

coarseness of the 
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(ZP) texture by taking 

the ratio of number 

of zones and 

number of voxels 

in the ROI. 

Gray Level 

Variance 

(GLV) 
𝐺𝐿𝑁 =  ∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

GLV measures the 

variance in gray 

level intensities for 

the zones. 

Zone 

Variance 

(ZV) 
𝑍𝑉 =  ∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

ZV measures the 

variance in zone 

size volumes for 

the zones. 

Zone 

Entropy 

(ZE) 
𝑍𝐸 = ∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑆

𝑗=1

𝑁𝑔

𝑖=1

 

ZE measures the 

uncertainty/rando

mness in the 

distribution of zone 

sizes and gray 

levels. A higher 

value indicates 

more 

heterogeneneity in 

the texture 

patterns. 

Low Gray 

Level Zone 

Emphasis 

(LGLZE) 

𝐿𝐺𝐿𝑍𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗)
𝑖2

𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

LGLZE measures 

the distribution of 

lower gray-level 

size zones, with a 

higher value 

indicating a greater 

proportion of lower 

gray-level values 

and size zones in 

the image. 

High Gray 

Level Zone 

Emphasis 

(HGLZE) 

𝐻𝐺𝐿𝑍𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗)𝑖2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

HGLZE measures 

the distribution of 

the higher gray-

level values, with a 

higher value 

indicating a greater 

proportion of 

higher gray-level 

values and size 

zones in the image. 

Small Area 

Low Gray 

Level 

Emphasis 

𝑆𝐴𝐿𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

SALGLE 

measures the 

proportion in the 

image of the joint 
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(SALGLE) distribution of 

smaller size zones 

with lower gray-

level values. 

Small Area 

High Gray 

Level 

Emphasis(S

AHGLE) 

𝑆𝐴𝐻𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

SAHGLE 

measures the 

proportion in the 

image of the joint 

distribution of 

smaller size zones 

with higher gray-

level values. 

Large Area 

Low Gray 

Level 

Emphasis 

(LALGLE) 

𝐿𝐴𝐿𝐺𝐿𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

LALGLE 

measures the 

proportion in the 

image of the joint 

distribution of 

larger size zones 

with lower gray-

level values. 

Large Area 

High Gray 

Level 

Emphasis 

(LAHGLE) 

𝐿𝐴𝐻𝐺𝐿𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗)𝑖2𝑗2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

LAHGLE 

measures the 

proportion in the 

image of the joint 

distribution of 

larger size zones 

with higher gray-

level values. 

Gray Level Run Length Matrix (GLRLM):  A Gray Level Run Length Matrix 

(GLRLM) quantifies gray level runs, which are defined as the length in number of 

pixels, of consecutive pixels that have the same gray level value. In a gray level run 

length matrix P(i,j|θ), the (i,j)th element describes the number of runs with gray level 

i and length j occur in the image (ROI) along angle θ. 

GLRL

M 

feature

s 

Short Run 

Emphasis 

(SRE) 
𝑆𝑅𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗|𝜃)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

SRE is a measure 

of the distribution 

of short run 

lengths, with a 

greater value 

indicative of 

shorter run lengths 

and more fine 

textural textures. 

Long Run 

Emphasis 

(LRE) 
𝐿𝑅𝐸 =  

∑ ∑ 𝐏(𝑖, 𝑗|𝜃)𝑗2𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

LRE is a measure 

of the distribution 

of long run lengths, 

with a greater value 

indicative of longer 
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run lengths and 

more coarse 

structural textures. 

Gray Level 

Non-

Uniformity 

(GLN) 

𝐺𝐿𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑟
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

GLN measures the 

similarity of gray-

level intensity 

values in the 

image, where a 

lower GLN value 

correlates with a 

greater similarity 

in intensity values. 

Gray Level 

Non-

Uniformity 

Normalized 

(GLNN) 

𝐺𝐿𝑁𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑟
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)2
 

GLNN measures 

the similarity of 

gray-level intensity 

values in the 

image, where a 

lower GLNN value 

correlates with a 

greater similarity 

in intensity values. 

This is the 

normalized version 

of the GLN 

formula. 

Run Length 

Non-

Uniformity 

(RLN) 

𝑅𝐿𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑔

𝑖=1
)2𝑁𝑟

𝑗=1

𝑁𝑟(𝜃)
 

RLN measures the 

similarity of run 

lengths throughout 

the image, with a 

lower value 

indicating more 

homogeneity 

among run lengths 

in the image. 

Run Length 

Non-

Uniformity 

Normalized 

(RLNN) 

𝑅𝐿𝑁𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑔

𝑖=1
)2𝑁𝑟

𝑗=1

𝑁𝑟(𝜃)2
 

RLNN measures 

the similarity of 

run lengths 

throughout the 

image, with a 

lower value 

indicating more 

homogeneity 

among run lengths 

in the image. This 

is the normalized 

version of the RLN 

formula. 
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Run 

Percentage 

(RP) 

𝑅𝐿𝑁𝑁 =  
𝑁𝑟(𝜃)

𝑁𝑝

 

RP measures the 

coarseness of the 

texture by taking 

the ratio of number 

of runs and number 

of voxels in the 

ROI. 

Gray Level 

Variance 

(GLV) 
𝐺𝐿𝑉 =  ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)(𝑖 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

GLV measures the 

variance in gray 

level intensity for 

the runs. 

Run 

Variance 

(RV) 
𝑅𝑉 =  ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

RV is a measure of 

the variance in runs 

for the run lengths. 

Run 

Entropy 

(RE) 

𝑅𝐸

= − ∑ ∑ 𝑝(𝑖, 𝑗|𝜃) log2(𝑝(𝑖, 𝑗|𝜃)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

+ 𝜖) 

RE measures the 

uncertainty/rando

mness in the 

distribution of run 

lengths and gray 

levels. A higher 

value indicates 

more heterogeneity 

in the texture 

patterns. 

Low Gray 

Level Run 

Emphasis 

(LGLRE) 

𝐿𝐺𝐿𝑅𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗|𝜃)
𝑖2

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

LGLRE measures 

the distribution of 

low gray-level 

values, with a 

higher value 

indicating a greater 

concentration of 

low gray-level 

values in the 

image. 

High Gray 

Level Run 

Emphasis 

(HGLRE) 

𝐻𝐺𝐿𝑅𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑟
𝑗=1 𝑖2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

HGLRE measures 

the distribution of 

the higher gray-

level values, with a 

higher value 

indicating a greater 

concentration of 

high gray-level 

values in the 

image. 

Short Run 

Low Gray 

Level 

Emphasis 

𝑆𝑅𝐿𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗|𝜃)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

SRLGLE measures 

the joint 

distribution of 

shorter run lengths 
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(SRLGLE) with lower gray-

level values. 

Short Run 

High Gray 

Level 

Emphasis 
𝑆𝐵𝐻𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗|𝜃)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

SRHGLE 

measures the joint 

distribution of 

shorter run lengths 

with higher gray-

level values. 

Long Run 

Low Gray 

Level 

Emphasis 

(LRLGLE) 

𝐿𝑅𝐿𝐺𝐿𝑅𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗|𝜃)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

LRLGLRE 

measures the joint 

distribution of long 

run lengths with 

lower gray-level 

values. 

Long Run 

High Gray 

Level 

Emphasis 

(LRHGLE) 

𝐿𝑅𝐻𝐺𝐿𝑅𝐸

=  
∑ ∑ 𝐏(𝑖, 𝑗|𝜃)

𝑁𝑟
𝑗=1 𝑖2𝑗2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

LRHGLRE 

measures the joint 

distribution of long 

run lengths with 

higher gray-level 

values. 

Gray Level Dependence Matrix (GLDM) : A Gray Level Dependence Matrix (GLDM) 

quantifies gray level dependencies in an image. A gray level dependency is defined as 

a the number of connected voxels within distance δ that are dependent on the center 

voxel. A neighboring voxel with gray level j is considered dependent on center voxel 

with gray level i if |i−j|≤α. In a gray level dependence matrix P(i,j) the (i,j)th element 

describes the number of times a voxel with gray level i with j dependent voxels in its 

neighborhood appears in image. 

GLD

M 

feature

s 

Small 

Dependence 

Emphasis 

(SDE) 

𝑆𝐷𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗)
𝑖2

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

A measure of the 

distribution of 

small 

dependencies, with 

a greater value 

indicative of 

smaller 

dependence and 

less homogeneous 

textures. 

Large 

Dependence 

Emphasis 

(LDE) 

𝐿𝐷𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗)𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

A measure of the 

distribution of 

large 

dependencies, with 

a greater value 

indicative of larger 

dependence and 

more 

homogeneous 

textures. 
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Gray Level 

Non-

Uniformity 

(GLN) 

𝐺𝐿𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗)

𝑁𝑑
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the 

similarity of gray-

level intensity 

values in the 

image, where a 

lower GLN value 

correlates with a 

greater similarity 

in intensity values. 

Dependence 

Non-

Uniformity 

(DN) 

𝐷𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)2𝑁𝑑

𝑗=1

𝑁𝑧

 

Measures the 

similarity of 

dependence 

throughout the 

image, with a 

lower value 

indicating more 

homogeneity 

among 

dependencies in 

the image. 

Dependence 

Non-

Uniformity 

Normalized 

(DNN) 

𝐷𝑁𝑁 =  
∑ (∑ 𝐏(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)2𝑁𝑑

𝑗=1

𝑁𝑧
2

 

Measures the 

similarity of 

dependence 

throughout the 

image, with a 

lower value 

indicating more 

homogeneity 

among 

dependencies in 

the image. This is 

the normalized 

version of the DLN 

formula. 

Gray Level 

Variance 

(GLV) 

𝐺𝐿𝑉 =  ∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

, 

 

𝑤ℎ𝑒𝑟𝑒𝜇 =  ∑ ∑ 𝑖𝑝(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

Measures the 

variance in grey 

level in the image. 

Dependence 

Variance 

(DV) 
𝐷𝑉 =  ∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

, 

Measures the 

variance in 

dependence size in 
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𝑤ℎ𝑒𝑟𝑒𝜇 =  ∑ ∑ 𝑗𝑝(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

the image. 

Dependence 

Entropy 

(DE) 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

= − ∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

The randomness of 

GLDM. Higher 

Dependence 

Entropy implies 

more complex 

texture 

Low Gray 

Level 

Emphasis 

(LGLE) 

𝐿𝐺𝐿𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗)
𝑖2

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the 

distribution of low 

gray-level values, 

with a higher value 

indicating a greater 

concentration of 

low gray-level 

values in the 

image. 

High Gray 

Level 

Emphasis 

(HGLE) 

𝐻𝐺𝐿𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗)𝑖2𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the 

distribution of the 

higher gray-level 

values, with a 

higher value 

indicating a greater 

concentration of 

high gray-level 

values in the 

image. 

Small 

Dependence 

Low Gray 

Level 

Emphasis 

(SDLGLE) 

𝑆𝐷𝐿𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the joint 

distribution of 

small dependence 

with lower gray-

level values. 

Small 

Dependence 

High Gray 

Level 

Emphasis 

(SDHGLE) 

𝑆𝐷𝐻𝐺𝐿𝐸 =  

∑ ∑
𝐏(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the joint 

distribution of 

small dependence 

with higher gray-

level values. 

Large 

Dependence 

Low Gray 

Level 

Emphasis 

(LDLGLE) 

𝐿𝐷𝐿𝐺𝐿𝐸 =  
∑ ∑

𝐏(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the joint 

distribution of 

large dependence 

with lower gray-

level values. 
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Large 

Dependence 

High Gray 

Level 

Emphasis 

(LDHGLE) 

𝐿𝐷𝐻𝐺𝐿𝐸 =  
∑ ∑ 𝐏(𝑖, 𝑗)𝑖2𝑗2𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Measures the joint 

distribution of 

large dependence 

with higher gray-

level values. 

Neighboring Gray Tone Difference Matrix (NGTDM): A Neighboring Gray Tone 

Difference Matrix quantifies the difference between a gray value and the average gray 

value of its neighbors within distance δ. 

NGTD

M 

feature

s 

Coarseness 𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =
1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔

𝑖=1

 

Coarseness is a 

measure of average 

difference between 

the center voxel 

and its 

neighborhood and 

is an indication of 

the spatial rate of 

change. A higher 

value indicates a 

lower spatial 

change rate and a 

locally more 

uniform texture. 

 Contrast 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 

=  (
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝−1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 −

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑗)2) (
1

𝑁𝑣,𝑝
∑ 𝑠𝑖

𝑁𝑔

𝑖=1
),  

where  𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

Contrast is a 

measure of the 

spatial intensity 

change, but is also 

dependent on the 

overall gray level 

dynamic range. 

Contrast is high 

when both the 

dynamic range and 

the spatial change 

rate are high, i.e. an 

image with a large 

range of gray 

levels, with large 

changes between 

voxels and their 

neighborhood. 

 Busyness 
𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =  

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
𝑖=1

∑ ∑ |𝑖𝑝𝑖−𝑗𝑝𝑗|
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 

where  𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0  

A measure of the 

change from a 

pixel to its 

neighbor. A high 

value for busyness 

indicates a ‘busy’ 
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image, with rapid 

changes of 

intensity between 

pixels and its 

neighborhood. 

 Complexity 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  
1

𝑁𝑣,𝑝

∑ ∑|𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

− 𝑗|
𝑝𝑖𝑠𝑖 + 𝑝𝑗𝑠𝑗

𝑝𝑖 + 𝑝𝑗

, 

where  𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

An image is 

considered 

complex when 

there are many 

primitive 

components in the 

image, i.e. the 

image is non-

uniform and there 

are many rapid 

changes in gray 

level intensity. 

 Strength 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

=  
∑ ∑ (𝑝𝑖 + 𝑝𝑗)(𝑖 − 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

∑ 𝑠𝑖
𝑁𝑔

𝑖=1

, 

where  𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

Strength is a 

measure of the 

primitives in an 

image. Its value is 

high when the 

primitives are 

easily defined and 

visible, i.e. an 

image with slow 

change in intensity 

but more large 

coarse differences 

in gray level 

intensities. 

After normalization of the feature scale, removal of highly correlated features 

(correlation coefficient > 0.80; Figure 3), univariate feature selection based on 

the false discovery rate, and recursive feature elimination via an elastic net model 

was performed to reduce the number of features and to select features that are 

relevant for predicting the risk of hip fracture in the train set (75% of the 

derivation cohort) (14 features, Figure 3; inter-rater ICC ≥ 0.90 in all selected 

texture features; Table 2). The relative feature importance from the recursive 

feature elimination process for selected radiomics features is shown in Figure 4. 
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Figure 3. Removal of highly correlated feature. Right panel indicates correlation 

matrix after removal of highly correlated feature sets. 

 

 

 

 

 

Figure 4. Relative feature importance of selected 14 texture features from 

recursive feature elimination via elastic net model (three-fold cross-validation 
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with five-time repetition in train set). Abbreviations: GLCM, gray level 

cooccurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level 

run length matrix; NGTDM, neighboring gray tone difference matrix; GLDM, 

gray level dependence matrix; IDMN, inverse difference moment normalized; 

SAH GLE, small area high gray level emphasis; GLV, gray level variance; SZN, 

size zone uniformity; DNN, dependence non-uniformity normalized; GLN, gray 

level non-uniformity; GLNN, gray level non-uniformity normalized; IMC1, 

informational measure of correlation 1. 
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Table 2. Inter-rater texture feature reproducibility by region-of-interest 

segmentation 

 Intraclass correlation (95% CI) 

Texture features Total hip Femoral neck Intertrochanter Trochanter 

Grey Level Co-

occurrence Matrix 

(GLCM) features 

    

Autocorrelation 0.95 (0.90-0.97) 0.97 (0.94-0.98) 0.90 (0.79-0.95) 0.91 (0.81-0.95) 

Joint Average 0.94 (0.88-0.97) 0.97 (0.93-0.98) 0.87 (0.73-0.93) 0.90 (0.79-0.95) 

Cluster Prominence 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Cluster Shade 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Cluster Tendency 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Contrast 0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Correlation 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Difference Average 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Difference Entropy 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Difference Variance 0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Joint Energy 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Joint Entropy 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Informational Measure 

of Correlation (IMC) 1 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Informational Measure 

of Correlation (IMC) 2 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Inverse Difference 

Moment (IDM) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Maximal Correlation 

Coefficient (MCC) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Inverse Difference 

Moment Normalized 

(IDMN) 

0.98 (0.95-0.99) 0.99 (0.98-0.99) 0.95 (0.90-0.98) 0.97 (0.94-0.99) 

Inverse Difference (ID) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Inverse Difference 

Normalized (IDN) 

0.98 (0.96-0.99) 0.98 (0.97-0.99) 0.96 (0.92-0.98) 0.98 (0.96-0.99) 

Inverse Variance 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Maximum Probability 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Sum Average 0.94 (0.88-0.97) 0.97 (0.93-0.98) 0.87 (0.73-0.93) 0.90 (0.79-0.95) 
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Sum Entropy 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Sum of Squares 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

     

Gray Level Size Zone 

Matrix (GLSZM) 

features 

    

Small Area Emphasis 

(SAE) 

0.88 (0.76-0.94) 0.71 (0.40-0.86) 0.82 (0.63-0.91) 0.83 (0.65-0.92) 

Large Area Emphasis 

(LAE) 

0.99 (0.99-0.99) 0.98 (0.96-0.99) 0.99 (0.99-0.99) 0.98 (0.95-0.99) 

Gray Level Non-

Uniformity (GLN) 

0.98 (0.95-0.99) 0.89 (0.78-0.95) 0.98 (0.96-0.99) 0.96 (0.93-0.98) 

Gray Level Non-

Uniformity Normalized 

(GLNN) 

0.99 (0.98-0.99) 0.97 (0.95-0.98) 0.99 (0.98-0.99) 0.96 (0.93-0.98) 

Size-Zone Non-

Uniformity (SZN) 

0.95 (0.90-0.97) 0.96 (0.92-0.98) 0.94 (0.87-0.97) 0.72 (0.40-0.86) 

Size-Zone Non-

Uniformity Normalized 

(SZNN) 

0.92 (0.83-0.96) 0.91 (0.81-0.95) 0.88 (0.76-0.94) 0.62 (0.20-0.82) 

Zone Percentage (ZP) 0.98 (0.97-0.99) 0.97 (0.93-0.98) 0.98 (0.97-0.99) 0.97 (0.93-0.98) 

Gray Level Variance 

(GLV) 

0.99 (0.99-0.99) 0.98 (0.96-0.99) 0.99 (0.98-0.99) 0.98 (0.97-0.99) 

Zone Variance (ZV) 0.99 (0.99-0.99) 0.98 (0.96-0.99) 0.99 (0.99-0.99) 0.98 (0.96-0.99) 

Zone Entropy (ZE) 0.97 (0.95-0.98) 0.96 (0.91-0.98) 0.98 (0.97-0.99) 0.95 (0.97-0.88) 

Low Gray Level Zone 

Emphasis (LGLZE) 

0.88 (0.76-0.94) 0.98 (0.95-0.99) 0.81 (0.61-0.91) 0.71 (0.40-0.86) 

High Gray Level Zone 

Emphasis (HGLZE) 

0.96 (0.92-0.98) 0.97 (0.95-0.98) 0.94 (0.88-0.97) 0.91 (0.81-0.95) 

Small Area Low Gray 

Level Emphasis 

(SALGLE) 

0.91 (0.82-0.96) 0.75 (0.48-0.88) 0.88 (0.74-0.94) 0.81 (0.61-0.91) 

Small Area High Gray 

Level Emphasis 

(SAHGLE) 

0.90 (0.76-0.94) 0.92 (0.84-0.96) 0.84 (0.67-0.92) 0.80 (0.58-0.90) 

Large Area Low Gray 

Level Emphasis 

(LALGLE) 

0.98 (0.97-0.99) 0.98 (0.97-0.99) 0.96 (0.93-0.98) 0.95 (0.91-0.97) 

Large Area High Gray 

Level Emphasis 

(LAHGLE) 

0.97 (0.94-0.98) 0.97 (0.95-0.98) 0.88 (0.75-0.94) 0.94 (0.87-0.97) 
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Gray Level Run Length 

Matrix (GLRLM) 

features 

    

Short Run Emphasis 

(SRE) 

0.99 (0.98-0.99) 0.98 (0.96-0.99) 0.99 (0.98-0.99) 0.99 (0.98-0.99) 

Long Run Emphasis 

(LRE) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Gray Level Non-

Uniformity (GLN) 

0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.98-0.99) 

Gray Level Non-

Uniformity Normalized 

(GLNN) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Run Length Non-

Uniformity (RLN) 

0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Run Length Non-

Uniformity Normalized 

(RLNN) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Run Percentage (RP) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Gray Level Variance 

(GLV) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Run Variance (RV) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Run Entropy (RE) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Low Gray Level Run 

Emphasis (LGLRE) 

0.92 (0.83-0.96) 0.93 (0.86-0.97) 0.74 (0.46-0.87) 0.81 (0.60-0.91) 

High Gray Level Run 

Emphasis (HGLRE) 

0.95 (0.90-0.97) 0.97 (0.94-0.98) 0.90 (0.80-0.95) 0.90 (0.80-0.95) 

Short Run Low Gray 

Level Emphasis 

(SRLGLE) 

0.90 (0.79-0.95) 0.94 (0.89-0.97) 0.75 (0.47-0.88) 0.72 (0.42-0.86) 

Short Run High Gray 

Level Emphasis 

(SRHGLE) 

0.97 (0.95-0.98) 0.98 (0.96-0.99) 0.95 (0.91-0.98) 0.94 (0.88-0.97) 

Long Run Low Gray 

Level Emphasis 

(LRLGLE) 

0.97 (0.95-0.99) 0.98 (0.97-0.99) 0.91 (0.82-0.95) 0.96 (0.92-0.98) 

Long Run High Gray 

Level Emphasis 

(LRHGLE) 

0.95 (0.90-0.97) 0.96 (0.92-0.98) 0.85 (0.70-0.93) 0.89 (0.78-0.95) 

     

Gray Level Dependence 

Matrix (GLDM) features 

    

Small Dependence 

Emphasis (SDE) 

0.99 (0.98-0.99) 0.97 (0.94-0.98) 0.99 (0.98-0.99) 0.97 (0.95-0.99) 

Large Dependence 

Emphasis (LDE) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 
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Gray Level Non-

Uniformity (GLN) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Dependence Non-

Uniformity (DN) 

0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Dependence Non-

Uniformity Normalized 

(DNN) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Gray Level Variance 

(GLV) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Dependence Variance 

(DV) 

0.99 (0.99-0.99) 0.97 (0.95-0.98) 0.99 (0.98-0.99) 0.98 (0.97-0.99) 

Dependence Entropy 

(DE) 

0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.99 (0.99-0.99) 

Low Gray Level 

Emphasis (LGLE) 

0.93 (0.86-0.96) 0.92 (0.84-0.96) 0.72 (0.41-0.86) 0.90 (0.79-0.95) 

High Gray Level 

Emphasis (HGLE) 

0.95 (0.90-0.97) 0.97 (0.94-0.98) 0.90 (0.79-0.95) 0.91 (0.81-0.95) 

Small Dependence Low 

Gray Level Emphasis 

(SDLGLE) 

0.91 (0.82-0.95) 0.90 (0.79-0.95) 0.70 (0.37-0.85) 0.83 (0.65-0.92) 

Small Dependence 

High Gray Level 

Emphasis (SDHGLE) 

0.96 (0.92-0.98) 0.98 (0.96-0.99) 0.94 (0.89-0.97) 0.91 (0.82-0.96) 

Large Dependence Low 

Gray Level Emphasis 

(LDLGLE) 

0.94 (0.88-0.97) 0.94 (0.89-0.97) 0.74 (0.46-0.87) 0.92 (0.84-0.96) 

Large Dependence 

High Gray Level 

Emphasis (LDHGLE) 

0.95 (0.89-0.97) 0.97 (0.94-0.98) 0.88 (0.74-0.94) 0.90 (0.80-0.95) 

     

Neighboring Gray Tone 

Difference Matrix 

(NGTDM) features 

    

Coarseness 0.99 (0.99-0.99) 0.98 (0.97-0.99) 0.99 (0.99-0.99) 0.99 (0.98-0.99) 

Contrast 0.98 (0.97-0.99) 0.97 (0.93-0.98) 0.97 (0.95-0.98) 0.98 (0.97-0.99) 

Busyness 0.95 (0.90-0.97) 0.97 (0.95-0.98) 0.90 (0.80-0.95) 0.90 (0.79-0.95) 

Complexity 0.99 (0.98-0.99) 0.97 (0.95-0.98) 0.97 (0.95-0.99) 0.98 (0.96-0.99) 

Strength 0.99 (0.99-0.99) 0.99 (0.98-0.99) 0.99 (0.98-0.99) 0.99 (0.98-0.99) 
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4. Bone radiomics score model development  

Models for hip fracture risk prediction based on 14 selected texture features were 

trained using four commonly used machine learning algorithms in the train set 

(75% of the derivation cohort): random forest, regularized logistic model (elastic 

net), gradient boosted decision tree, and support vector machine (scikit-learn, 

version 0.23.1).18 Hyperparameters of each model were tuned using the grid 

search method with three-fold cross-validation for repeated five times in train set. 

In the internal test set (a hold-out set, 25% of the derivation cohort), model 

performance was evaluated using the area under the receiver-operating 

characteristic curve (AUROC) and the area under the precision-recall curve 

(AUPRC). Model calibration was evaluated using the Brier score (mean squared 

difference between the observed event and predicted probability; ranged 0 to 

1).19,20 Lower Brier score (close to 0) indicates better calibration of the prediction. 

The bone radiomics score was calculated as the probability score ranged from 0 

to 100 for hip fracture from the final model which showed the best performance 

(random forest) in the test set (Figure 5). Final model fitted in train set was 

applied to clinical validation set to calculate bone radiomics score (Figure 6). 
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Figure 5. Performance of models in internal test set (a 25% hold-out set). Left 

panel: area under the receiver-operating characteristics curve (AUROC); right 

panel: area under the precision-recall curve (AUPRC). 

 

 

Figure 6. Schematic process of feature extraction and modeling of bone radiomics 

score  
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5. Statistical analysis 

Group differences in continuous and categorical variables were compared using 

independent samples t-tests and Chi-squared tests, respectively. Risk of hip 

fracture was compared across groups of bone radiomics scores in the clinical 

validation set using the Cochran-Armitage test for trends.21 None of the 

covariates violated the proportional hazard assumption. A Cox regression on bone 

radiomics model based on a sample size of 2029 subjects and event rate 1.7% 

observed in this study achieved 81% power at two-sided significance level 0.05 

to detect a hazard ratio equal to 1.04.22 Likelihood ratio test was used to compare 

the model fit between nested models with or without bone radiomics score. This 

study was written in accordance with the recommendation of the Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE) reporting 

guideline.23 All statistical analyses were performed using python and STATA 14.1 

(College Station, TX, USA). The statistical significance level was set at two-sided 

0.05. 
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III. RESULTS 

1. Characteristics of the study subjects 

In the derivation set, the mean age of subjects was 73 years (73 ± 6 in cases 

[n=143] vs. 73 ± 6 in controls [n=290], p=0.807). Median time to hip fracture in 

cases was 2.1 years [interquartile range 0.9 to 3.9] from the time point of DXA 

testing (Table 3). In controls who did not sustain hip fracture during follow-up, 

follow-up duration was 5.5 years [interquartile range 4.5-6.4] from DXA testing. 

Subjects who sustained hip fracture had a significantly lower femoral neck T-

score (-2.8 ± 1.0 vs. -2.2 ± 1.0, p<0.001) and more history of fragility fracture 

(62% vs 33%, p<0.001) at baseline compared with controls. In the clinical 

validation set, subjects who sustained hip fracture (n=34) during follow-up were 

of an older age (75 ± 5 vs. 71 ± 4 years, p<0.001), had a higher prevalence of 

previous fracture (73 % vs. 33 %, p<0.001), osteoporosis (77% vs. 43%, p<0.001), 

and a lower femoral neck T-score (-2.8 ± 0.9 vs. -1.9 ± 0.9, p<0.001) compared 

to those who did not sustain any hip fracture (n=1995). The proportion of 

individuals with previous exposure to anti-osteoporosis medications within five 

years prior to DXA testing did not differ between individuals who experienced 

hip fracture and those who did not in both the derivation set and clinical validation 

set (p>0.05 for all).  
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Table 3. Characteristics of the study subjects 
 Derivation set 

(Severance Hospital EHR database and community cohort) 

Clinical validation set 

(Community-based cohort [KURE])  

 Case: subjects who 

sustained hip fracture 

during follow-up 

(n=143) 

Control: subjects who 

did not sustain any hip 

fracture during 

follow-up (n=290) 

P value Sustained hip fracture 

during follow-up (n=34) 

Without any hip 

fracture during 

follow-up (n=1995) 

P value 

Age 73 ± 6 73 ± 6 0.807 75 ± 5 71 ± 4 <0.001 

BMI 23.2 ± 4.1 24.2 ± 3.1 0.004 23.6 ± 2.6 24.5 ± 3.1 0.111 

Previous fracture 88 (62) 97 (33) <0.001 25 (73) 33 (33) <0.001 

DXA T-score       

 Lumbar spine  -2.1 ± 1.2 -2.0 ± 1.2 0.477 -1.9 ± 1.2 -1.8 ± 1.2 0.634 

 Femoral neck  -2.8 ± 1.0 -2.2 ± 1.0 <0.001 -2.8 ± 0.9 -1.9 ± 0.9 <0.001 

 Total hip -2.0 ± 1.0 -1.3 ± 1.0 <0.001 -2.0 ± 0.8 -1.0 ± 0.9 <0.001 

Osteoporosis 98 (69) 155 (53) 0.003 26 (77) 854 (43) <0.001 

Previous anti-

osteoporosis 

medication use 

31 (22) 67 (23) 0.739 10 (29) 477 (24) 0.456 

Diabetes 46 (32) 54 (19) 0.002 8 (24) 456 (23) 0.926 

Hypertension 93 (65) 187 (64) 0.910 26 (76) 1223 (61) 0.071 

Any cancer 16 (11) 21 (7) 0.167 4 (11.8) 162 (8) 0.632 

Data are presented as the mean ± standard deviation or number (%). Abbreviations: BMI, body mass index; DXA, dual-energy 

X-ray absorptiometry; EHR, electronic health record. 
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2. Selected texture features and performances of DXA hip radiomics models 

In derivation set, the four models (random forest, gradient boosted decision tree, 

support vector classifier, and elastic net logistic regression) which were fitted 

using train set showed similar modest accuracy (0.72 to 0.74) and AUROCs 

(0.758 to 0.784) in the test set (hold-out set). Random forest model was chosen 

as the final model to estimate the bone radiomics score based on a numerically 

higher value in the AUROC (0.784; reference 0.500), AUPRC (0.664; reference 

0.333), and F1-score (0.64). In clinical validation set, AUROC, AUPRC, and F1-

score was 0.705 (reference 0.500), 0.094 (reference 0.017), and 0.12, respectively. 

Among the top 14 texture features used to develop the models, the GLRLM run 

entropy of the total hip, GLRLM run entropy of the femoral neck, GLCM 

informal measure of correlation 1 (IMC1) of the femoral neck and total hip, 

GLCM inverse difference moment normalized (IDMN) of the femoral neck, and 

GLCM cluster prominence of the total hip were the top five features with high 

importance contributing to the random forest model (Figure 3). Individuals who 

sustained a hip fracture had higher GLRLM run entropy, lower GLCM IMC1 

(both indicate more heterogeneity in texture patterns), and higher GLCM IDMN 

with lower GLSZM GLN (both indicate less variation in gray-level pixel intensity 

values), compared to those who did not sustain a hip fracture in both the 

derivation set and clinical validation set (Figure 7).  

 

 



37 

 

 

Figure 7. Normalized mean difference of texture features selected in final model 

between individuals who sustained hip fracture during follow-up and who did not 

in derivation set and clinical validation set. Abbreviations: GLCM, gray level 

cooccurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level 

run length matrix; NGTDM, neighboring gray tone difference matrix; GLDM, 

gray level dependence matrix; IDMN, inverse difference moment normalized; 

SAH GLE, small area high gray level emphasis; GLV, gray level variance; SZN, 

size zone uniformity; DNN, dependence non-uniformity normalized; GLN, gray 

level non-uniformity; GLNN, gray level non-uniformity normalized; IMC1, 

informational measure of correlation 1. 
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3. Correlations of the bone radiomics score with clinical and hip geometry 

parameters 

In the clinical validation set, the bone radiomics score ranged from 12 to 72, with 

mean score of 28 and standard deviation 12. The bone radiomics score showed a 

weak to moderate correlation with age (r=0.15, p<0.001), height (r=0.18, 

p<0.001), femoral neck BMD (r=-0.29, p<0.001), total hip BMD (r=-0.30, 

p<0.001; Figure 8), and FRAX hip fracture probabilities (r=0.22, p<0.001), 

whereas lumbar spine BMD (r=-0.08, p<0.001) and weight (r=0.01, p=0.747) 

showed negligible or no correlation with the bone radiomics score.  

 

Figure 8. Scatterplot of bone mineral density versus bone radiomics score in 

clinical validation set 

 

Higher bone radiomics scores were observed in individuals who had a prior 

history of fragility fracture (30 ± 13 vs. 27 ± 11, p<0.001) or osteoporosis (31 ± 

13 vs. 26 ± 10, p<0.001) compared to those without. Bone radiomics score 

showed weak to moderate positive correlation with hip axis length (HAL, r=0.10), 

subperiosteal width (SPW, r=0.26 to 0.39), endocortical width (ECW, r=0.26 to 

0.41), buckling ratio (BR, r=0.24 to 0.38), and negative correlation with cortical 

thickness (CT, r=-0.30 to -0.18) at narrow neck, intertrochanter, and femur shaft 

(Table 4). 
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Table 4. Correlation between bone radiomics score and hip geometry parameters 

in clinical validation set 

Pearson 

correlation 

coefficient, r 

SPW ECW CSA CSMI Z CT BR 

Narrow neck 0.39* 0.41* -0.12* 0.16* -0.01 -0.30* 0.38* 

Intertrochanter 0.26* 0.34* -0.18* 0.05* -0.06* -0.19* 0.38* 

Femur shaft 0.26* 0.26* -0.05* 0.19* 0.01 -0.18* 0.24* 

Hip axis length 0.10* 

Neck shaft angle 0.01 

Abbreviations: SPW, subperiosteal width; ECW, endocortical width; CSA, cross-

sectional area; CSMI, cross-sectional momentum of inertia; Z, section modulus; CT, 

cortical thickness; BR, buckling ratio. *: p value< 0.05 

 

 

4. Hip fracture risk prediction using the bone radiomics score in clinical 

validation set 

In the clinical validation cohort, the risk of incident hip fracture during follow-

up increased across bone radiomics score groups (p for the trend <0.001, Figure 

9).  
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Figure 9. Risk of hip fracture according to bone radiomics score in the clinical 

validation set. Solid lines with caps indicate 95% confidence interval. 

 

 

Individuals who sustained hip fracture during follow-up had higher bone 

radiomics score than those who did not (40 ± 16 vs. 28 ± 12, p<0.001). Figure 10 

provides visual examples of DXA scans and radiomics feature values of 

participants with high radiomics score who sustained hip fracture and those with 

low radiomics score who did not sustain hip fracture during follow-up.  
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Figure 10. Visual examples of DXA scans and radiomics feature values of a 

woman with high radiomics score who sustained hip fracture versus a woman 

with low radiomics score who did not sustain hip fracture during follow-up in 

clinical validation set. Abbreviations: TH, total hip; FN, femoral neck; IT, 

intertrochanter; TR, trochanter; GLCM, gray level cooccurrence matrix; GLSZM, 

gray level size zone matrix; GLRLM, gray level run length matrix; NGTDM, 

neighbouring gray tone difference matrix; GLDM, gray level dependence matrix; 

IDMN, inverse difference moment normalized; SAH GLE, small area high gray 

level emphasis; GLV, gray level variance; SZN, size zone uniformity; DNN, 

dependence non-uniformity normalized; GLN, gray level non-uniformity; GLNN, 

gray level non-uniformity normalized; IMC1, informational measure of 

correlation 1. 

 

 

A one-point increase in the bone radiomics score was associated with a 4% 

elevated risk for hip fracture in multivariable Cox model independent of age, BMI, 

history of previous fracture, and femoral neck T-score (adjusted HR 1.04, 95% 

CI 1.02-1.06, p=0.001; Table 5). 
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Table 5. Predictors of incident hip fracture in clinical validation set 

 Univariable model Multivariable model 1 Multivariable model 2 

Predictors of incident hip fracture Unadjusted HR 

(95% CI) 

P value Adjusted HR 

(95% CI) 

P value Adjusted HR 

(95% CI) 

P value 

Age (per one year increase) 1.17 (1.09-1.25) <0.001 1.07 (0.99-1.15) 0.062 1.06 (0.98-1.14) 0.105 

Body mass index (per one kg/m2 

increase) 

0.91 (0.81-1.02) 0.113 0.97 (0.87-1.09) 0.679 0.98 (0.88-1.11) 0.844 

Previous fracture (yes versus no) 5.05 (2.35-10.83) <0.001 3.06 (1.40-6.70) 0.005 2.86 (1.31-6.23) 0.008 

Femoral neck T-score  

(per one T-score decrease) 

3.96 (2.58-6.08) <0.001 2.73 (1.69-4.42) <0.001 2.55 (1.54-4.21) <0.001 

Bone radiomics score  

(per one point increase) 

1.06 (1.04-1.09) <0.001   1.04 (1.02-1.06) 0.001 

C-index Bone radiomics score alone: 

0.72 

Model 1: 0.80 Model 2: 0.84 

Likelihood ratio χ2 Bone radiomics score alone: 

26.13 

Model 1: 54.48 Model 2: 65.22* 

*The bone radiomics score improved the goodness-of-fit of model when added to age, body mass index, previous fracture, and femoral neck 

T-score by likelihood ratio test (likelihood ratio χ2 10.74, p=0.001)
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Adjustment for osteoporosis as categorical variable instead of femoral neck T-

score in multivariable model did not alter the results (adjusted HR 1.04, p<0.001). 

Further adjustment for hip geometry variables including narrow neck SPW, ECW, 

CT, BR, or HAL in multivariable Cox model did not attenuate the association 

between bone radiomics score with hip fracture. The association between bone 

radiomics score with incident hip fracture remained robust after adjustment for 

FRAX hip fracture probability score (adjusted HR 1.06 per one bone radiomics 

score increase, 95% CI 1.03-1.08, p<0.001). Gradient of risk (HR per one SD 

change) for femoral neck aBMD and bone radiomics score was 3.36 (95% CI 

2.30-4.91) and 2.08 (95% CI 1.59-2.72), respectively (Table 6).  

 

Table 6. Gradient of risk (hazard ratio per SD) for femoral neck aBMD and 

bone radiomics score in clinical validation set 

Gradient of risk  Univariate Cox model Multivariable Cox model* 

 HR/SD  

(95% CI) 

P value HR/SD  

(95% CI) 

P value 

Femoral neck 

aBMD (per SD 

decrease) 

3.36  

(2.30-4.91) 

<0.001 2.44  

(1.59-3.72) 

<0.001 

Bone radiomics 

score (per SD 

increase) 

2.08  

(1.59-2.72) 

<0.001 1.74  

(1.32-2.30) 

0.001 

*Adjusted for age, BMI, and previous fracture 

 

Gradient of risk for bone radiomics score was adjusted to 1.74 (95% CI 1.32-2.30) 

in multivariable model including age, BMI, previous fracture (gradient of risk for 

femoral neck aBMD 2.44 in multivariable model, 95% CI 1.59-3.72). The bone 

radiomics score improved the model prediction when added to age, body mass 

index, previous fracture, and femoral neck T-score (likelihood ratio χ2 10.74, 

p=0.001; Table 5). In subgroup analysis, bone radiomics score remained as an 

independent predictor of incident hip fracture in subgroups by exposure to anti-
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osteoporosis medication, any falls within a prior year, low handgrip strength, and 

diabetes mellitus (Table 7).  

 

Table 7. Subgroup analysis in clinical validation set 
External test set Adjusted hazard ratio (95% CI); 

per one point increase in bone 

radiomics score* 

P value P for 

interaction 

Anti-osteoporosis medications within 

five years prior to DXA testing 

   

  Yes (n=487, 24%) 1.05 (1.01-1.10) 0.024 0.617 

  No (n=1542, 76%) 1.04 (1.01-1.07) 0.011  

Falls within a prior year     

 Yes (n=543, 27%) 1.05 (1.01-1.09) 0.019 0.538 

 No (n=1486, 73%) 1.04 (1.01-1.07) 0.023  

Low handgrip strength (men < 28 kg; 

women < 18 kg) 

   

  Yes (n=382, 19%) 1.04 (1.00-1.08) 0.047 0.843 

  No (n=1647, 81%) 1.04 (1.01-1.07) 0.006  

Diabetes mellitus    

  Yes (n=464, 23%) 1.05 (1.01-1.11) 0.037 0.214 

  No (n=1565, 77%) 1.03 (1.01-1.06) 0.012  

CKD (estimated GFR<60 

mL/min/1.73m2) 

   

 Yes (n=664, 33%) 1.02 (0.98-1.06) 0.253 0.215 

 No (n=1365, 67%) 1.06 (1.03-1.09) <0.001  

*Adjusted for age, previous fragility fracture, BMI, and femoral neck T-score. Low handgrip 

strength was defined based on Asian Working Group for Sarcopenia 2019 updated consensus 

statement (J Am Med Dir Assoc. 2020 Mar;21(3):300-307). Abbreviations: CKD, chronic kidney 

disease. 

 

Statistical significance of bone radiomics score was attenuated in subgroup with 

chronic kidney disease (defined as estimated glomerular filtration rate 60 

mL/min/1.73m2 or less) in multivariable Cox model (unadjusted hazard ratio 1.03, 

95% CI 1.01-1.08, p=0.013; adjusted hazard ratio 1.02, 95% CI 0.98-1.06, 

p=0.253). However, interaction between bone radiomics score and presence of 

chronic kidney disease in multivariable model did not reach statistical 

significance (p for interaction = 0.215). Association of bone radiomics score with 

incident hip fracture remained significant (adjusted hazard ratio 1.04, 95% CI 

1.01-1.06, p=0.002) after excluding participants with self-reported history of 
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rheumatoid arthritis (n=26, 1.3%), any exposure to systemic glucocorticoid use 

(n=21, 1.0%), or any self-reported hyperthyroidism (n=31, 1.5%). 
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IV. DISCUSSION 

 

In this study, I found that the bone radiomics score derived from texture features 

of DXA hip images improved hip fracture risk prediction in community-dwelling 

older women. The bone radiomics score remained independent predictor of 

incident hip fracture after adjustment for femoral neck T-score, clinical risk 

factors, or FRAX hip fracture probability. Bone radiomics score improved 

predictive performance of the model when added to age, BMI, history of previous 

fracture, and femoral neck T-score. 

 Quantitative analysis of bone texture features from various imaging 

modalities has been actively used to find bone quality markers reflecting bone 

microarchitecture.24 The trabecular bone score (TBS) is the current best example 

for applying the principle of texture analysis to DXA-based vertebral images to 

quantify the variation in gray-level texture from one pixel to the adjacent 

pixels.25,26 Low TBS values indicate lesser gray-level pixel intensity variations in 

a two-dimensional spine image, which is related to worse bone structure and an 

elevated risk of major osteoporotic fractures.25 Given the differences in 

mechanical, biological characteristics, and the composition of cortical and 

trabecular bone between the spine and hip bone, textural indices from hip bone 

images might have distinctive clinical implications, especially for hip fracture 

risk prediction.27-29 In a study using 21 human cadaveric hips, texture analysis on 

excised hip images obtained by a high-resolution x-ray device provided better 

prediction of the femoral failure load than DXA aBMD alone.30 A recent study 

analyzed the spatiotemporal changes of proximal femurs according to age using 

region free analysis of DXA hip scans from over 13000 Western Europeans, 

which suggest the potential of texture features based on a pixel-to-pixel 

relationship in the DXA hip scans as a bone quality biomarker.13 In line with these 

findings, I observed that texture features obtained from DXA hip scans showed 

different patterns between individuals who sustained hip fractures and those who 
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did not. Similar to the findings in TBS, DXA hip scans of individuals who 

sustained hip fractures had less pixel-to-pixel intensity variation.25,26 In addition, 

higher heterogeneity in texture patterns in individuals with hip fracture was 

observed compared to those without, which may indirectly reflect altered bone 

microarchitecture of the hip, including cortical bone trabecularization, 

transformation of trabecular plates to rods, trabecular thinning, and a loss of 

connectivity leading to bone fragility.31 As an extension of prior studies, I 

observed that higher bone radiomics scores estimated using texture features from 

DXA hip scan images (a model-based summation for the degree of lesser pixel-

to-pixel intensity variation and higher heterogeneity in hip bone texture patterns) 

was associated with elevated risk of hip fracture independent of clinical risk 

factors and DXA aBMD in older Korean women in a prospective cohort; this had 

incremental prognostic value for hip fracture when combined with established 

predictors. Individuals with high risk of fracture had lesser degree of pixel 

intensity variation (relatively high local homogeneity), whereas they had higher 

level of texture heterogeneity (abrupt changes in pixel patterns).  

 DXA is the current standard-of-care imaging modality which guides 

clinical decisions for detection, initiation of pharmacologic treatment, and 

follow-up of individuals with osteoporosis and high risk of fracture.32 Radiomics 

is an emerging principle for a comprehensive, automated quantification of the 

radiographic phenotype using data characterization algorithms, which have been 

intensively studied in oncology fields for tumor characterization and 

prognostication.6 In this study, a radiomics-based approach for two-dimensional 

DXA hip images with machine learning algorithms was able to mine significant 

texture features related to hip fracture. These findings suggest the potential utility 

and extensibility of a radiomics-based approach as an add-on procedure to DXA 

scans in routine clinical practice, including previously stored images, to improve 

fracture risk prediction. However, there are several challenges in the radiomics 

modeling process, including susceptible data reproducibility, particularly 
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regarding segmentation, high dimensionality (more features than observations) 

leading to overfitting, and inherent high correlation among features.33,34 In this 

study, segmentation of ROIs guided by contour lines in DXA hip images enabled 

relatively robust inter-rater reproducibility (ICC>0.90) in most of the texture 

features from each ROI and in all of 14 features selected in the final model. To 

reduce dimensionality and to avoid collinearity, I applied various machine 

learning principles to select as few features as possible with the optimal predictive 

performance. To test the generalizability of the bone radiomics score, analysis 

was performed using a community-based prospective cohort dataset with incident 

fracture data. Although further meticulous studies need to be performed to 

validate the utility of the bone radiomics score, our study showed the potential of 

a radiomics approach for DXA images to improve fracture prediction along with 

DXA aBMD. 

In a prior study performed in UK, obese group (BMI 30 kg/m2 or higher) 

had higher precision error (%CV) in femoral neck BMD compared to normal 

(BMI < 25 kg/m2) or overweight group (BMI 25-29.9 kg/m2), partly due to 

increased soft tissue thickness and inhomogeneity.35 However, difference of 

precision error in femoral neck BMD or total hip BMD between normal and 

overweight group did not reach statistical significance. In our derivation set and 

clinical validation cohort, most of subjects had BMI within normal to overweight 

range (96% and 95%; mean BMI 23.4 kg/m2 and 24.5 kg/m2), whereas 4% and 

5% had BMI at obese range (BMI 30 kg/m2 or higher). Among all radiomics 

features, GLRLM gray-level non-uniformity (total hip, r=0.37; intertrochanter, 

r=0.28; trochanter, r=0.24, p<0.001 for all) and NGTDM coarseness (total hip r=-

0.30; intertrochanter r=-0.20; p<0.001 for all) showed weak to moderate 

correlation with weight, all of which were not included in the final model. Other 

radiomics features showed weak to negligible correlation (-0.2 to 0.2) with 

weight or BMI. Although I did not observe significant interference by weight on 

bone radiomics score in this study, it remains unclear whether radiomics features 
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would be affected by weight in obese individuals with BMI 30 kg/m2 or higher, 

which merits further investigation. 

 This study has several limitations. Although I tried to assess hip fracture-

free status in KURE cohort by interviewer-assisted questionnaires during follow-

up with further ascertainment of the absence of any claims for ICD10 codes 

(S72.0, S72.1; hip fracture codes) based on data linkage with Korean HIRA 

database covering 98% of entire Korean population, I was not able to directly 

confirm fracture-free status at individual level by reviewing medical records and 

imaging data. This may have affected the results by classifying some individuals 

at high risk as low risk group. However, the incidence rate of hip fracture in older 

women participants of KURE cohort in this study was 334.6/100,000 person-year, 

which was similar to previously reported incidence rates in Korean older women 

with similar age (age 75-79, 332.8/100,000 person-year) using nationwide 

database.36 Hip fracture cases for the derivation set were retrieved from the 

Severance Hospital EHR database while the age-matched subset of KURE cohort 

was used to provide non-fracture controls for the derivation set. Although 

excluding the subset used for derivation set from clinical validation set was 

inevitable to maintain integrity of clinical validation set and the number of subset 

used for derivation set was small relative to entire cohort size, it might bias the 

underlying risk assessment by systematically excluding those who did not have 

fracture. The radiomics model was developed to capture the difference in textural 

characteristics of DXA images of individuals who sustained a hip fracture or not; 

the scope of the outcome was limited to hip fracture in this study. AUPRC in test 

set was lower than AUROC, which may relate to class imbalance.37 Because our 

data did not have TBS measurements, I could not analyze the correlation between 

TBS and the bone radiomics score. The bone radiomics score may have 

incremental value for DXA aBMD and TBS and this needs to be examined in 

future studies. Statistical non-significance of age in multivariable models may 

reflect the relatively small size of the cohort with limited power. Although this 
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study is a proof-of-concept study, I acknowledge that number of outcomes are 

limited in both derivation set and clinical validation set. Further investigation in 

larger cohort is needed to examine the incremental prognostic value of bone 

radiomics score over BMD or clinical risk factors. Our findings cannot be 

generalized to ethnicities other than Koreans or men at this stage. As our data are 

based on a single DXA manufacturer (Hologic), further studies are needed to 

apply the bone radiomics score model for hip images obtained from other DXA 

manufacturers. Information about anti-osteoporosis medication use after DXA 

testing during follow-up were not available in this study. Although a prior study 

showed the association between texture features from proximal femur and 

femoral strength using human cadaveric femurs, the biologic relevance of the 

bone radiomics score needs to be further explored.30 Although all analysis 

procedures were semi-automated, automation of segmentation and mask 

generation process would facilitate effective application of radiomics-based 

approach to DXA images. Textural heterogeneity in the cortical and trabecular 

bone in DXA hip images could not be discerned due to limited resolution of DXA 

images. 

 

V. CONCLUSION 

 

In conclusion, the bone radiomics score based on texture features from DXA hip 

images was associated with an elevated risk of hip fracture, independent of 

clinical risk factors and the DXA T-score. The bone radiomics score may have 

the potential to improve fracture risk prediction as an addition to DXA testing in 

current standard-of-care practice; this needs to be validated in further studies. 
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국문요약 

 

골밀도 영상 라디오믹스 텍스처 분석 및 머신러닝 기반 

대퇴골절 예측모델 수립 

 

<지도교수 이유미> 

 

연세대학교 대학원 의학과 

홍남기 

 

내 용 

 
이중에너지 X-선 흡수계측법 (DXA) 골밀도검사는 골절고위험군을 

판별하기 위한 골다공증 진단의 표준검사이다. 대퇴부 골밀도 영상을 

이용한 라디오믹스 분석은 추가 비용 없이 골절예측력을 개선할 

가능성이 있다. 본 연구는 지역사회 거주 노인 여성에서 대퇴골밀도 

영상 기반 라디오믹스 대퇴골절 예측모델 (골라디오믹스점수) 을 

구축하고, 골라디오믹스점수가 대퇴골절 예측력 개선 여부를 

검정하였다. 모델구축코호트은 세브란스병원 후향코호트를 기반으로 

구성되었다 (140명, 골밀도 기반조사 후 추적관찰기간 중 대퇴골절 

경험, 평균나이 73세, 골절까지 기간 중위수 2.1년; 290명, 나이 

매칭한 추적관찰 기간 중 대퇴골절을 경험하지 않은 대조군, 

평균나이 73세, 추적관찰기간 중위수 5.5년). 모델구축코호트는 

75%의 학습데이터셋과 25%의 테스트데이터셋으로 나뉘었다. 

대퇴골밀도 영상에서 얻어진 300개의 라디오믹스 특성변수 중 

14개의 최적 특성변수를 기계학습기법을 통해 추출하였고, 이를 

이용해 예측모델을 구축하였을 때 랜덤포레스트 기반 모델이 

테스트셋에서 최적 성능을 보여주었고 이를 토대로 

골라디오믹스점수를 계산하였다 (0-100점). 임상검증데이터셋인 

지역사회코호트에서 (2029명 여성, 평균나이 71세), 앞서 구축한 

학습데이터셋에서 학습한 모델을 기반으로 골라디오믹스점수를 

계산하였다. 총 34명 (1.7%)의 여성에서 중위수 5.4년 추적관찰 기간 

동안 대퇴골절이 발생하였다 (평균 골라디오믹스점수 골절군 40±16 

대 비골절군 28±12 점, p<0.001). 골라디오믹스가 1점 상승할 때 

나이, 체질량지수, 기존골절력, 대퇴골밀도 T점수와 독립적으로 
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대퇴골절발생위험도가 4% 증가하였으며 (보정 위험비 [aHR] 1.04, 

p=0.001), 골라디오믹스점수는 기존 예측인자로 이루어진 기본 

모델에 추가되었을 때 모델의 적합도를 유의하게 개선시켰다 

(likelihood ratio χ
2 10.74, p=0.001). 골라디오믹스점수의 대퇴골절 

예측력은 기존 골절예측모델은 FRAX 점수를 보정하였을 때도 

독립적으로 유의하였다 (aHR 1.06, p<0.001). 대퇴골밀도 영상에서 

추출한 골라디오믹스점수는 추가 비용없이 대퇴골절 예측력을 

개선시킬 가능성이 있다.  
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