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Abstract

Purpose—Non-European populations are under-represented in genetics studies, hindering 

clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs 

using the largest available studies of Asian ancestry and to assess the transferability of PRS across 

ethnic subgroups.

Methods—The development data set comprised 138,309 women from 17 case-control studies. 

PRSs were generated using a clumping and thresholding method, lasso penalized regression, an 

Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of 

multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 

incident cases).

Results—The best performing PRS (genome-wide set of single-nucleotide variations [formerly 

single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and 

an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and 

This work is licensed under a CC BY 4.0 International license.
*Correspondence and requests for materials should be addressed to Weang-Kee Ho, School of Mathematical Sciences, 
Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia. 
WeangKee.Ho@nottingham.edu.my . **Soo-Hwang Teo, Cancer Research Malaysia, 1 Jalan SS12/1A, Subang Jaya, 47500 Selangor, 
Malaysia. soohwang.teo@cancerresearch.my .
Weang-Kee Ho and Mei-Chee Tai are co–first authors.
Douglas F. Easton and Soo-Hwang Teo jointly supervised this work.

Author Information 
Conceptualization: W.-K.H., J.S., A.C.A., D.F.E., S.-H.T.; Data Curation: J.D., N.M., K.Mi., J.Lo.; Formal Analysis: W.-K.H., 
M.-C.T., X.S., J.Li., P.J.H., I.Y.M., K.L., Y.-H.J., S.-H.L., D.F.E.; Project Administration: M.-C.T., M.K.B., Q.W., E.A.W.; Resources: 
T.H., K.R., V.K.M.T., B.K.T.T., S.M.T., E.Y.T., S.H.L., Y.-T.G., Y.Z., D.K., J.-Y.C., W.H., H.-B.L., M.K., Y.O., N.M., B.B.J., S.K.P., 
S.-W.K., C.-Y.S., P.-E.W., B.P., K.R.Mu., A.L., A.H.W., C.-C.T., K.Ma., H.I., A.K., T.L.C., E.M.J., A.W.K., M.I., T.Y., S.-S.K., 
K.J.A., R.A.M., W.-P.K., C.-C.K., J.-M.Y., R.D., R.G.W., Z.C., L.L., J.Lv., K.-J.J., P.K., P.D.B.P., A.M.D., X.O.S., C.-H.Y., N.A.M.T., 
W.Z., M.H., S.-H.T.; Supervision: D.F.E., S.-H.T.; Writing-original draft: W.-K.H., M.-C.T., A.C.A., D.F.E., S.-H.T.; Writing-review 
and editing: W.-K.H., M.-C.T., J.D., X.S., J.Li., P.J.H., I.Y.M., K.L., Y.-H.J., S.-H.L., N.M., M.K.B., Q.W., K.Mi., J.Lo., E.A.W., 
T.H., K.R., V.K.M.T., B.K.T.T., S.M.T., E.Y.T., S.H.L., Y.-T.G., Y.Z., D.K., J.-Y.C., W.H., H.-B.L., M.K., Y.O., S.N., B.B.J., S.K.P., 
S.-W.K., C.-Y.S., P.-E.W., B.P., K.Mu., A.L., A.H.W., C.-C.T., K.Ma., H.I., A.K., T.L.C., E.M.J., A.W.K., M.I., T.Y., S.-S.K., K.J.A., 
R.A.M., W.-P.K., C.-C.K., J.-M.Y., R.D., R.G.W., Z.C., L.L., J.Lv., K.-J.J., P.K., P.D.B.P., A.M.D., J.S., X.-O.S., C.-H.Y., A.M.T., 
A.C.A., W.Z., M.H., D.F.E., S.-H.T.

Ethics Declaration 
The Malaysian Breast Cancer Genetic Study was approved by the Independent Ethics Committee, Ramsay Sime Darby Health Care 
(reference no: 201109.4 and 201208.1), and the Medical Ethics Committee, University Malaya Medical Centre (reference no: 842.9). 
Analyses using China Kadoorie Biobank data were conducted under research approval 2020-0047. Each study listed was approved by 
the local institutional ethics committees and review boards, and all participants provided written informed consent.

Conflict of Interest 
The authors declare no conflicts of interest.

Additional Information 
The online version of this article (https://doi.org/10.1016/j.gim.2021.11.008) contains supplementary material, which is available to 
authorized users.

Europe PMC Funders Group
Author Manuscript
Genet Med. Author manuscript; available in PMC 2022 March 08.

Published in final edited form as:
Genet Med. 2022 March 01; 24(3): 586–600. doi:10.1016/j.gim.2021.11.008.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by/4.0/
https://www.gimjournal.org/article/S1098-3600(21)05386-7/fulltext


European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 

1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The 

distribution of the latter PRS was different across ethnic subgroups, confirming the importance of 

population-specific calibration for valid estimation of breast cancer risk.

Conclusion—PRSs developed in this study, from association data from multiple ancestries, can 

enhance risk stratification for women of Asian ancestry.
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Breast cancer; Genetic; Polygenic risk score; Risk prediction

Introduction

Genetic inheritance is an important risk factor for breast cancer. 1 Rare pathogenic variants 

in several susceptibility genes, including BRCA1, BRCA2 and PALB2, confer increased 

risks of breast cancer 2 ; however, a majority of the genetic variations in risk is polygenic 

owing to the fact that a large number of genetic variants combine, in which each genetic 

variant confers a small increase in risk. The effects of these variants can be summarized 

as polygenic risk scores (PRSs). 3,4 Mavaddat et al 3 developed and validated a 313 variant 

breast cancer PRS (PRS-313), using data from European-ancestry women in the Breast 

Cancer Association Consortium (BCAC). 4,5 The lifetime risk of breast cancer was estimated 

to be 2.6% for women in the lowest 1% of the PRS-313 distribution and approximately 

32% for women in the highest 1%; the latter group would be classified as at high-risk of 

developing breast cancer according to the National Institute for Health and Care Excellence 

and other clinical management guidelines. 3 This shows the potential of PRS to improve 

quantification of risk and consequently optimize breast cancer screening and prevention 

strategies. 6 

Non-European populations are under-represented in genetic studies, and this could limit 

PRS adoption and applicability 7–9 and exacerbate health disparities. 10 This is important 

for ethnic minorities in high income countries, where clinical evaluation of the European 

PRS-313 is already underway but perhaps more so in low- and middleincome countries, 

where there is an urgent need to develop breast cancer screening strategies to address rapidly 

rising breast cancer incidence and high breast cancer mortality. 11 

Asians constitute more than half of the world’s population and are facing a dramatic 

increase in breast cancer incidence 12,13 but make up only 15% of participants in the breast 

cancer genome-wide association studies (GWAS). Efforts to develop breast cancer PRS 

specifically for Asian populations have so far been limited. In our previous work, we showed 

that PRS-313, developed for Europeans, was predictive of breast cancer risk in Asian 

populations, although the effect size was somewhat smaller than that reported in European 

populations. 14 However, an important outstanding question is whether a more predictive 

PRS using Asian data can be developed. Thus far, the largest study to attempt this involved 

23,372 women of Asian ancestry. This study evaluated previously published breast cancer 

risk single-nucleotide variations (SNVs) (formerly singlenucleotide polymorphisms) and 

took forward SNVs that were significantly associated with breast cancer risk in Asians (P < 
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.05) for PRS derivation, resulting in a 44-SNV PRS. 15 Although predictive, we have shown 

in our previous work that the discriminatory power of 44-SNV PRS (area under the receiver 

operating curve [AUC] = 0.586) was much lower than PRS-313 (AUC = 0.617), derived 

from European ancestry women, for predicting breast cancer risk in Asian women. 14 

In this study, our objectives were twofold: (1) to develop improved breast cancer PRSs using 

data from Asian populations and to validate their performance in prospective cohorts using 

the largest available breast cancer genetic study of Asian ancestry and (2) to assess the 

transferability of PRSs across Asian ethnic subgroups.

Materials and Methods

Study populations

The study population was divided into training, validation, and testing data sets. The 

training data sets included (1) set 1, which comprised 22,013 invasive cases and 22,114 

controls of East Asian ancestry from studies participating in BCAC and Asia Breast Cancer 

Consortium (where GWAS summary statistics of SNVs significant up to P < .0001 were 

available); (2) set 2, which comprised 16,680 invasive cases and 83,414 controls of East 

Asian ancestry from studies participating in BCAC together with BioBank Japan (where 

GWAS summary statistics were available); and (3) set 3, which comprised 122,977 invasive 

cases and 105,974 controls of European ancestry participating in BCAC 4 (where GWAS 

summary statistics were available). The validation data set comprised (1) 6392 invasive 

cases and 6638 controls of Chinese or Malay ancestry and (2) 585 invasive cases and 1018 

controls of Indian ancestry participating in 2 multiethnic case-control studies: the Malaysian 

Breast Cancer Genetics study and the Singapore Breast Cancer Cohort study. The testing 

data set comprised 89,898 women (1595 incident cases) from 3 prospective cohorts of East 

Asian ancestry: the Singapore Chinese Health Study, 16 the China Kadoorie Biobank, 17 

and the Korean Cancer Prevention Study Biobank. 18 Supplemental Table 1 summarizes the 

study design, genotyping arrays, and the sample size in each study. Genotype calling, quality 

control procedures, and imputation methods have been described previously. 4,19–23 Ancestry 

informative principal components (PCs) were available for Asian ancestry samples in the 

BCAC and validation data sets generated using methods as previously described. 24 See 

Supplemental Methods for more details.

All studies were approved by the relevant institutional ethics committees and review boards, 

and all participants provided written informed consent.

Statistical methods

PRSs were given by the following equation:

PRS = β1 x1 + β2 x2 + … + βk xk + … + βm xm

where xk is the allele dosage for SNV k, βk is the corresponding weight, and m is the 

total number of SNVs. PRSs were standardized to have unit SD in the control subjects. 

Logistic regression models, adjusted for the first 10 PCs and study, were used to estimate 
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odds ratios (ORs) for association between the standardized PRSs and breast cancer risk in 

the validation set. The studies in the validation set were genotyped in 2 batches and hence 

treated as different strata for the purposes of adjustment. Cox proportional hazard model, 

adjusted for the first 2 PCs for Singapore Chinese Health Study (SCHS) and Korean Cancer 

Prevention Study-II and the first 12 PCs for China Kadoorie Biobank, was used to estimate 

hazard ratios per SD (HRperSD) for the association between the PRS and breast cancer risk 

in the test set. The discrimination of PRS was assessed using AUC. The HRperSD and AUC 

were obtained individually for each study and combined using a fixed-effect meta-analysis. 

Test of heterogeneity between studies were obtained using rma() command in the metafor 
package in R version 3.6.1. 25 

The approaches for SNVs selection to be included in PRS and the corresponding weights 

are described in subsequent sections. Figure 1 and Supplemental Figure 1 summarizes the 

methods and data set. The lists of SNVs and the weights for the PRS computation are given 

in Supplemental Tables 2 to 4.

Clumping and thresholding approach

Training data set 1 was used in these analyses. SNVs clumping (within 1 megabase pair 

windows) was conducted to remove highly correlated SNVs (pairwise correlation r 2 > 

0.9); the SNV with the lowest P value for association in the correlated pairs was retained, 

resulting in 3050 SNVs. SNVs were further clumped within prespecified clumping window 

sizes and threshold of a correlation r 2 . PRSs were then computed using the subset of SNVs 

that were significant at a prespecified P value threshold (set at 5 × 10−8 and then increased 

in steps of 10−10 up to 10−3). The PRS with the highest AUC in the validation data set 

was selected as the best PRS. The clumping and derivation of PRSs were performed using 

PRSice v2.11, 26 whereas the AUCs for PRSs were generated using the pROC package in R 

version 3.6.1.

To account for the joint effect of SNVs used to derive the best PRS, we computed the 

optimal weight, from the summary statistics, for SNV j using the following formula:

γj = γj′/ 2pj 1 − pj (1)

where γ′ = R −1 β′ , R is the correlation matrix between the SNV genotypes, β′ is the 

predicted normalized marginal effect sizes of the SNVs, and pj is the effect allele frequency 

of SNV j (see Supplemental Methods).

Lasso penalized regression

All 3050 SNVs described in clumping and thresholding (C + T) section were included 

in these analyses, together with genotype data from Asian controls in BCAC OncoArray 

studies for calculating linkage disequilibrium among SNVs. The analyses were run using the 

package lassosum in R 27 across different values of the penalty and shrinkage parameters, 

and the PRS giving the highest correlation between PRS and the disease status (default 

metric in the method) in the validation data set was selected.
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Linear combination of European PRS with Asian PRS

Of the 313 SNVs included in PRS developed for European women, 3 only 287 SNVs 

with imputation info score > 0.9 in validation data set were retained for subsequent 

analyses. Reported weights 3 were used to derive the European PRS (hereafter denoted 

as PRS287_EUR). Asian PRSs generated from C + T or lasso penalized regression were 

linearly combined with PRS287_EUR. The relative contribution of each PRS were estimated 

by logistic regression using the validation data set.

Reweighting of European-based PRS

We considered 2 sets of weights for PRS derivation using the 287 SNVs: (1) Asian 

weights estimated from the training data set 1, taking into account the correlation between 

SNVs using equation (1) (hereafter denoted as PRS287_ASN), and (2) weights based on a 

combination of the Asian and European weights using an Empirical Bayes (EB) approach 

(hereafter denoted as PRS287_EB), where the optimal weight is given by the following 

equation:

βj, EB = βjA, EB/ 2pj 1 − pj .

Here, βjA, EB is the estimated posterior effect sizes in Asians given the data and pj is the 

allele frequency for SNV j (see Supplemental Methods). Other approaches to combine 

European- and Asian-specific weights were also explored, including fixed effect meta-

analysis, but only the method that gave the best AUC is presented in this study.

We also considered linear combinations of the reweighted European PRSs with Asian PRSs 

generated from C + T method or lasso penalized regression (as described before).

Bayesian polygenic prediction approach (PRS-CSx)

Training sets 2 and 3 were used as training data sets for PRS-CSx 28 together with 

Asians and Europeans in the 1000 Genomes Phase 3 project as linkage disequilibrium 

reference panels. 29 PRSs generated using European- (hereafter denoted as PRSGW_EUR) and 

Asian-specific posterior weights (hereafter denoted as PRSGW_ASN) were linearly combined 

(hereafter denoted as PRSGW_EUR + PRSGW_ASN) in the validation data set. The analyses 

were repeated across a range of global shrinkage parameter (φ), and the φ that gave the linear 

combination of PRSs with the highest AUC in the validation data set was selected as the 

optimal φ. Analyses were run using the published Python code-based tool in Github. 27 

PRSs for the South Asian population

The predictive performance of PRSs developed for East Asian–ancestry women in Indian-

ancestry women were assessed using AUC and OR per SD (ORperSD). Given the much 

smaller sample size of Indian-ancestry women, we did not attempt to generate a South 

Asian–specific PRS, but we considered estimating the weights in the linear combinations of 

multiple PRSs using the South Asian validation data set.
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Absolute risk of breast cancer by PRS percentiles

The age-specific absolute risks of developing breast cancer in each PRS percentile were 

obtained by constraining to the incidence of overall population breast cancer incidence (see 

Supplemental Methods). The details of these methods have been described previously. 3 We 

calculated lifetime and 10-year absolute risks using Singaporean mortality and breast cancer 

incidence in 2017. 30,31 For birth-cohort specific incidences, age-specific breast cancer 

incidences for the 1960-1969 and 1970-1979 birth cohorts were calculated using the data 

on breast cancer incidence in Singapore from 1968 to 2017. 30 For women born between 

1980 and 1989, incidences could only be calculated up to age 35, and hence, breast cancer 

incidences were projected by assuming an annual increase in breast cancer incidence of 

3.9%. 32 

Results

Genetic diversity within Asian populations

Figure 1 summarizes the data set and methods used in this study. The populations are 

clustered, consistent with geography and population history, with the Chinese-ancestry 

women (Malaysia/Singapore/mainland China/Hong Kong/Taiwan) forming a distinct cluster 

that is genetically closer to Japanese/Koreans women than to Indian-ancestry women 

(Figure 2A). The Malay-ancestry women from Malaysia/Singapore are genetically closer 

to Chinese-ancestry women than to Indian-ancestry women. Given the large genetic distance 

between Indian-ancestry women from the other populations, the primary validation data set 

was based on Chinese-ancestry and Malay-ancestry women, and Indian-ancestry women 

were evaluated separately.

PRSs developed using Asian-specific SNVs

For C + T, SNVs were removed if they were within 250 kb of an SNV already selected and 

correlated at r 2 > 0.1, leaving 1326 SNVs for analysis. For East Asian–ancestry women, the 

best PRS was obtained at a P value threshold of 5.74 × 10−7, resulting in a 46-SNV PRS 

(PRS46) (Supplemental Figure 2), with ORperSD (95% CI) of 1.35 (1.30-1.39; AUC = 0.586) 

(Table 1). Other combinations of clumping size and correlation threshold r 2 did not result in 

PRSs that showed appreciable improvement (Supplemental Figure 3).

For lasso penalized regression, the best PRS was obtained at penalty parameter (λ) = 0.014 

and shrinkage parameter (s) = 0.9, resulting in a PRS that included 2985 SNVs (PRS2985) 

(Supplemental Figure 4), with ORperSD (95% CI) of 1.41 (1.36-1.46; AUC = 0.596), slightly 

more predictive than the PRS46 (Table 1).

Linear combinations of European and Asian PRSs

Combining PRS287_EUR and PRS46 (ORperSD [95% CI] = 1.54 [1.49-1.60]; AUC = 

0.623) yielded markedly higher predictive accuracy in East Asian–ancestry women than that 

achieved using the Asian-specific PRSs alone (Table 1). The improvement was marginal 

when compared with the predictive accuracy obtained using PRS287_EUR alone (ORperSD 

[95% CI] = 1.50 [1.45-1.56]; AUC = 0.615), but relative contribution of PRS46 to the linear 

combination model was approximately 30% (Supplemental Table 5). Compared with PRS46 
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+ PRS287_EUR, combining PRS287_EUR and PRS2985 further increased the ORperSD and 

AUC.

PRSs developed by integrating Asian weights into the European PRS

For East Asian-ancestry women, PRS287_EB (ORperSD [95% CI] = 1.53 [1.47–1.58]; AUC 

= 0.620) was slightly more predictive than PRS287_ASN (ORperSD [95% CI] = 1.50 

[1.45-1.56]; AUC = 0.615) and PRS287_ EUR (ORperSD [95% CI] = 1.50 [1.45–1.56]; 

AUC = 0.614) and markedly more predictive than PRS46 and PRS2985 (Table 1). Compared 

with PRS46 + PRS287_EUR, a linear combination of PRS287_EB with PRS46 further 

improved the PRS performance.

Continuous shrinkage PRSs (PRS-CSx)

The best combined PRS for East Asian–ancestry women was obtained at φ = 10−4 

(Supplemental Table 6), with ORperSD (95% CI) of 1.62 (1.52-1.68) and AUC of 0.636 

for PRSGW_EUR + PRSGW_ASN, markedly better than all the PRSs described thus 

far (Table 1). This improvement was mainly driven by the contribution of PRSGW_EUR 

(ORperSD [95% CI] = 1.59 [1.53-1.65]; AUC = 0.629). The ORperSD (95% CI) and AUC for 

PRSGW_ASN alone was 1.44 (1.39-1.49) and 0.601, respectively, only slightly better than 

PRS46 (Supplemental Table 6).

PRSs for Indian-ancestry population

The PRSs derived from East Asian–ancestry women (as shown in Table 1) were all 

predictive of risk in South Asian–ancestry women but the ORperSD were less than that 

of East Asian–ancestry women. Although linear combination of Asian-based and European-

based PRSs improved the PRS performance compared with individual PRSs in East Asians, 

the improvement of PRS performance in women of South Asian ancestry was observed 

only when PRS2985 was considered in the linear combination (Table 2). There was no 

improvement in the effect sizes when European-based PRS was combined with PRS46. 

Whereas incorporating Asian weights via the EB approach improved the performance of 

PRSs in East Asians, there was no improvement in performance in women of South Asian 

ancestry. Re-estimating the weights of the combined models using South Asian–ancestry 

women in the validation data set did not lead to an appreciable difference in predictive 

performance (Supplemental Table 7).

Evaluation of PRSs in prospective cohorts

The predictive performance of PRSs in the East Asian–ancestry women was replicated in 

the prospective cohorts (Table 1). Thus, the effect size was smallest for PRS based on 

Asian data alone (HRperSD [95% CI] = 1.40 [1.25-1.56] for PRS46 and 1.45 [1.31-1.61] for 

PRS2985), larger for PRS based on the European PRS (HRperSD [95% CI] = 1.50 [1.35-1.65] 

for PRS287_EB), and still larger for PRS based on combining the Asian and European PRS 

(HRperSD [95% CI] = 1.53 [1.37-1.71] for PRS46 + PRS287_EB). As in the validation data 

set, PRS generated using PRS-CSx showed the strongest association with breast cancer risk 

(HRperSD [95% CI] = 1.62 [1.46-1.80]) and highest AUC (0.635). There was no evidence of 

heterogeneity in the hazard ratios among studies for any PRS (Supplemental Figure 5).
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Absolute breast cancer risk predictions

We used PRS46 + PRS287_EB to show the potential of translating PRS into clinical tool 

for Asian population. Based on East Asian-ancestry women in the validation data set, the 

estimated breast cancer ORs (95% CI) for women in the lowest 1% and highest 1% of the 

PRS distribution were 0.53 (0.33-0.82) and 3.01 (2.25-4.06), respectively, compared with 

middle quintile. The estimated ORs did not differ from those predicted under a theoretical 

polygenic model in which the log OR increases linearly with the PRS (Supplemental 

Table 8). The corresponding lifetime risks of developing breast cancer by age 80 years, 

on current incidence rates, were approximately 2% and approximately 19% for women in 

the lowest 1% and highest 1% of the PRS distribution, respectively, respectively (Figure 

3A). Assuming that a 10-year absolute risk threshold of 2.3% 33 is used to define women at 

sufficient risk to justify screening, approximately 12% of Chinese women would reach the 

risk threshold before or at age 40 (Figure 3B). Supplemental Figure 6 shows the distribution 

of the 10-year absolute risk at age 40 for women who were born between 1980 and 1989 

using projected incidence rates (see Methods). It is projected that the proportion of women 

who would reach the risk threshold would rise to 29%.

Generalizability of PRS across Asian ethnic subgroups

We showed the generalizability of PRS across Asian ancestry population using the 3 ethnic 

groups in the validation set and PRS46 + PRS287_EB as an example. This combined PRS was 

predictive of risk in all ethnic groups, with the effect size being higher in Chinese-ancestry 

women than in Malay and Indian-ancestry women (ORperSD [95% CI] = 1.56 [1.50-1.63] for 

Chinese vs 1.51 [1.39-1.64] for Malays and 1.49 [1.33-1.66] for Indians, heterogeneity P = 

.983) (Supplemental Figure 7, Supplemental Table 9). The PRS distribution was, however, 

different among the 3 ethnic groups. Although there was only a marginal difference in the 

SD, the means differed markedly, being highest in Chinese and lowest in Indians (mean [SD] 

in Chinese, Malay, and Indian controls were −0.118 [0.439], −0.197 [0.556], and −0.328 

[0.455], respectively, P-values for pair-wise comparison of means < .0001) (Supplemental 

Table 9). Figure 3C shows that if the Chinese PRS distribution was applied to Indians 

without adjustment, the 95th percentile in Indians corresponds, approximately, to the 90th 

percentile in the Chinese population, resulting in underestimation of risk in Indian women. 

The difference in the PRS distributions is even more apparent when women of European 

ancestry is used as reference (Figure 3D).

The patterns of PRS distribution by population (Figure 2B) are mirrored in the genetic 

clusters shown in Figure 2A. The largest differences in the means of the standardized PRS46 

+ PRS287_EB were observed between the Indian-ancestry women and Japanese/Korean 

women (with Indians being the biggest outlier).

Discussion

Personalized risk stratification for prevention and early detection of breast cancer has 

gained increasing interest; however, it is important to recognize the need to study women 

representing diverse ancestries to lessen health disparities. Our study provides essential 

information about the utility of PRSs for breast cancer risk prediction in women of Asian 
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ancestry. We developed and validated different PRSs for East Asian–ancestry women. 

The key observations were (1) PRSs generated by integrating information from European 

ancestry and Asian ancestry GWAS data sets performed better than PRSs based purely on 

weights derived from single-ancestry GWAS data, and (2) there were substantial differences 

in PRS distributions across ethnic groups.

Based on the largest available breast cancer GWAS data sets, the best PRS for East 

Asian–ancestry women was based on PRS-CSx approach 28 (PRSGW_EUR + PRSGW_ASN). 

This PRS had a notably larger effect size than the European PRS (PRS287_EUR) that we 

had previously shown to be the best breast cancer PRS for women of Asian ancestry 14 

(HRperSD in prospective cohorts: 1.62 vs 1.46; Table 1). It is noteworthy that the predictive 

performance of this PRS was similar to that achieved in European populations (HRperSD 

[95% CI] of 313-SNV PRS: 1.59 [1.54-1.64] as reported in Mavaddat et al 3 ). However, 

despite the rapid drop in cost associated with next-generation sequencing, implementation of 

PRS comprising approximately 1 million SNVs can be practically more challenging than the 

implementation of the European PRS that included only 313 variants.

We showed that adaptions based on the European 313-SNV PRS can improve risk prediction 

in women of East Asian ancestry. First, incorporating SNVs identified in the Asian 

populations (PRS46) improved predictive power. This approach of linearly combining PRSs 

may reduce the gap in prediction accuracy between European and non-European populations 

as described previously. 34 Second, incorporating Asian weights further improved predictive 

power (PRS46 + PRS287_EB) but to a lesser extent. The 313-SNV PRS is being used in 

several clinical studies in European populations, including the MyPeBs (My Personal Breast 

Screening) 8 and WISDOM (Women Informed to Screen Depending On Measures of risk) 7 

trials, and the PRS46 + PRS287_EB PRS would be relatively easy to implement in clinical 

settings.

The PRS generated for women of East Asian ancestry were also predictive for women 

of South Asian ancestry, but the effect sizes were smaller. When combining East Asian–

derived genome-wide PRS with European-derived genome-wide PRS in women of South 

Asian ancestry using the PRS-CSx approach, it was noticeable that the East Asian 

component made a smaller contribution to the linear combination (relative contribution of 

approximately 14%, Supplemental Table 5). These results suggest the need for larger studies 

of women of South Asian ancestry both to optimize the PRS and validate in prospective 

cohorts.

One of the challenges of moving PRS into clinical implementation is transferability across 

different ethnic groups. Several studies have evaluated the population-level applicability 

of European PRSs to non-European populations for various diseases. 10,35–37 Similar 

to these studies, we showed that the mean of the PRS distribution differ substantially 

between European and Asian ethnic subgroups. We showed that if the European PRS 

(PRS287_EUR) was applied to an Asian population without adjustment, the 60th percentile 

in Chinese-ancestry and Malay-ancestry women and 80th percentile in Indian-ancestry 

women correspond, approximately, to the 90th percentile in the European population, 

resulting in overestimation of risk in these women (Figure 3D). To our knowledge, no 
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studies thus far have considered the transferability of breast cancer PRS within diverse 

Asian ethnic subgroups. Our results showed that although the effect sizes appeared to be 

similar across ethnic groups (Supplemental Table 8), the mean PRS distribution differed 

substantially across Asian populations (Supplemental Table 7, Figure 2B). For example, 

although Japanese, Koreans, and Han Chinese are conventionally classified as East Asians 

in genetic analyses, the mean PRSs were markedly different between these ethnic groups 

(Figure 2B). The differences are sufficiently large to affect risk classification, and thus, 

comparing the PRS for an individual woman with the correctly calibrated ethnic-specific 

distribution is crucial for valid risk prediction. This however can be problematic for admixed 

individuals, where the genomes composed from multiple ancestries that may be closely or 

distantly related to the reference population. As more samples of Asian ancestry become 

available, it may be possible to combine ethnic-specific PRSs with ancestry components to 

derive better multiethnic PRSs. 32 

Our work is subject to several limitations. First, although we have showed that the predictive 

performance of European PRS can be improved by integrating weights from Asians using an 

EB approach, the absolute increase in predictive accuracies is marginal. Second, our studies 

focus on developing PRS without using individual-level training data. When such data are 

available, it may be possible to develop PRS with higher accuracy using methods that fit 

all variants simultaneously, such as the step-wise hard-thresholding method as described in 

Mavaddat et al 3 or considering subtype-specific disease analyses to retain more informative 

variants. Third, our results showed that PRSs developed using Asian-derived GWAS data 

set showed significantly poorer performance than the European PRS, indicating that further 

improvement is likely to require much larger Asian discovery data set. Finally, PRSs were 

linearly combined using the validation data set, and hence, the reported performance is 

likely subject to overfitting. Although we have shown that performance of the combined 

PRSs in East Asians were replicated in the prospective cohorts, we did not have a similar 

independent data set for South Asian women for such replication.

In summary, we have shown that genome-wide PRS derived from trans-ancestry method had 

significantly higher predictive accuracy for women of Asian ancestry than existing breast 

cancer PRSs. We also showed that European-based PRS can be improved for use in Asian 

populations by integrating population-specific weights and combined with Asian-specific 

PRS. Importantly, the differences in distribution of the same PRS across different ethnic 

groups (among Asians, and between Asian and Europeans) emphasize the need for ethnic-

specific calibration before translating PRS into practice for diverse Asian populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of methods for PRSs development.
Inputs are summary statistics from the meta-analysis of multiple GWAS data sets—BCAC 

ASN + ABCC denotes training data set 1, BCAC ASN + BBJ denotes training data 

set 2, and BCAC-EUR denotes training data set 3 as described in the method section. 

LD ref: BCAC ASN denotes OncoArray studies in which BCAC Asian studies were 

used as reference panel; LD ref: BCAC EUR denotes BCAC studies in which European 

ancestries were used as reference panel; 1000G ASN and 1000G EUR denote the Asian 

and European samples, respectively, in 1000 Genomes Project. Figure 1 shows methods 

using East Asian–ancestry women (Chinese and Malays), and as an example, same methods 

were applied to South Asian–ancestry women in the validation data set. ABCC, Asia Breast 

Cancer Consortium; ASN, Asian; BBJ, The BioBank Japan Project; BCAC, Breast Cancer 

Association Consortium; C + T, clumping and thresholding; EUR, European; GWAS, 

genome-wide association study; LD ref, reference panel for linkage disequilibrium; PRS, 

polygenic risk score; SNV, single-nucleotide variation.
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Figure 2. Principal components analysis and mean of PRS46 + PRS287_EB according to country 
and ethnicity.
(A) PC plotted according to country. PCs analysis of samples genotyped with OncoArray as 

listed in Supplemental Table 1. The samples were grouped according to country (Thailand, 

Taiwan, Hong Kong, China, Korea, and Japan). For M + S, the samples were further 

categorized by their self-reported ethnic origin (Chinese, Malay, and Indian). (B) Mean of 

standardized PRS46 + PRS287_EB in controls according to country. PRS was standardized 

according to the control SDs of each study. Error bars represent 95% CI. The mean of 

standardized PRS46 + PRS287_EB in European controls were included for reference. EB, 

Empirical Bayes; M + S, Malaysia and Singapore; PC, principal component; PRS, polygenic 

risk score.

Ho et al. Page 21

Genet Med. Author manuscript; available in PMC 2022 March 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Absolute breast cancer risk by percentiles of PRS and PRS distribution by ancestry.
(A) Lifetime and (B) 10-year absolute risk of developing breast cancer for Chinese women 

calculated using Singaporean incidence and mortality data and odds ratio per SD of PRS46 

+ PRS287_EB in Chinese (1.56 as reported in Supplemental Table 9). The gray dashed lines 

in the (A) and (B) represent the average lifetime risk and absolute 10-year risk, respectively, 

for Singaporean Chinese women. The red horizontal dashed line (2.3%) in the (B) represents 

the 10-year absolute risk for a 50-year old EUR women where screening is recommended; 

(C) the distribution of PRS46 + PRS287_EB in Chinese-ancestry, Indian-ancestry and Malay-

ancestry women, generated using ethnic-specific mean and SD of controls as reported in 

Supplemental Table 9, and the corresponding cumulative breast cancer risk by age 80, 

generated using calendar-specific breast cancer incidence and mortality rates for Chinese, 

Malay, and Indian women in Singapore. 30 Area under the curves represent the percentiles 

of PRS287_EB. The right vertical dashed line represents the 90th percentile cutoff for PRS 

distribution in Chinese-ancestry women; eg, the 95th percentile in Indians (lifetime risk 
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= 11%) corresponds, approximately, to the 90th percentile in the Chinese population. If 

Chinese PRS distribution was used as a reference, these Indian women would be categorized 

as 90th percentile and hence would be told that their corresponding lifetime risk was 

9% instead of 11%; (D) the distribution of EUR PRS (PRS287_EUR) for women of EUR 

ancestry, Chinese ancestry, Malay ancestry, or Indian ancestry. The right vertical dashed 

line represents the 90th percentile cutoff for PRS distribution in EUR-ancestry women. EB, 

Empirical Bayes; EUR, European; PRS, polygenic risk score.
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Table 1
Mean, SD, and the association of PRSs with breast cancer risk in women of East Asian 
ancestry

Method PRS

Validation Set a 
Test Set b 

Cases Control OR Per SD c Cases Control HR Per SD d 

Mean 
(SD)

Mean 
(SD)

(95% CI) AUC Mean 
(SD)

Mean 
(SD)

(95% CI) AUC d 

(1) Clumping 
and thresholding

e PRS46
−0.387 
(0.446)

−0.538 
(0.443)

1.37 
(1.32-1.42)

0.589 −0.299 
(0.433)

−0.444 
(0.438)

1.40 
(1.25-1.56)

0.600

(2) Penalized 
regression

e PRS2985
  0.075 
(0.455)

−0.082 
(0.452)

1.41 
(1.37-1.47)

0.598   0.107 
(0.460)

−0.059 
(0.458)

1.45 
(1.31-1.61)

0.608

(3) EUR SNVs 
+ EUR weights

e PRS287_EUR
  0.865 
(0.548)

  0.640 
(0.549)

1.50 
(1.45-1.56)

0.615   0.876 
(0.549)

  0.679 
(0.541)

1.46 
(1.34-1.60)

0.609

(4) EUR SNVs 
+ ASN weights

e PRS287_ASN
−0.533 
(0.445)

−0.714 
(0.447)

1.50 
(1.45-1.56)

0.614 −0.552 
(0.448)

−0.731 
(0.441)

1.49 
(1.33-1.66)

0.608

(5) EUR SNVs 
+ EB weights

e PRS287_EB
  0.343 
(0.491)

  0.135 
(0.492)

1.53 
(1.47-1.58)

0.620   0.341 
(0.493)

  0.153 
(0.485)

1.50 
(1.35-1.65)

0.609

Combine (1) + 
(3)

f PRS46 + 
PRS287_EUR

  0.058 
(0.440)

−0.134 
(0.437)

1.54 
(1.49-1.60)

0.623   0.103 
(0.442)

−0.075 
(0.436)

1.52 
(1.36-1.70)

0.620

Combine (2) + 
(3)

f PRS2985 + 
PRS287_EUR

  0.062 
(0.447)

−0.139 
(0.444)

1.56 
(1.50-1.61)

0.626   0.080 
(0.454)

−0.106 
(0.447)

1.54 
(1.38-1.72)

0.622

Combine (1) + 
(4)

f PRS46 + 
PRS287_ASN

  0.052 
(0.425)

−0.127 
(0.423)

1.52 
(1.47-1.58)

0.619   0.070 
(0.425)

−0.113 
(0.421)

1.52 
(1.35-1.70)

0.621

Combine (2) + 
(4)

f PRS2985 + 
PRS287_ASN

  0.055 
(0.430)

−0.130 
(0.430)

1.54 
(1.48-1.60)

0.621   0.057 
(0.435)

−0.135 
(0.427)

1.53 
(1.37-1.72)

0.623

Combine (1) + 
(5)

f PRS46 + 
PRS287_EB

  0.061 
(0.446)

−0.137 
(0.443)

1.55 
(1.50-1.61)

0.625   0.089 
(0.447)

−0.089 
(0.441)

1.53 
(1.37-1.71)

0.621

Combine (2) + 
(5)

f PRS2985 + 
PRS287_EB

  0.063 
(0.451)

−0.139 
(0.449)

1.56 
(1.51-1.62)

0.627   0.077 
(0.455)

−0.120 
(0.447)

1.55 
(1.39-1.72)

0.623

(6) PRS-CSx f PRSGW_EUR + 
PRSGW_ASN

  0.082 
(0.493)

−0.159 
(0.489)

1.62 
(1.52-1.68)

0.636 −0.145 
(0.511)

−0.388 
(0.511)

1.62 
(1.46-1.80)

0.635

ASN, Asian; AUC, area under the receiver operating curve; CKB, China Kadoorie Biobank; EB, Empirical Bayes; EUR, European; HR, hazard 
ratio; KCPS-II, Korean Cancer Prevention Study-II Biobank; MYBRCA, Malaysian Breast Cancer Genetic Study; OR, odds ratio; PRS, polygenic 
risk score; SCHS, Singapore Chinese Health Study; SGBCC, Singapore Breast Cancer Cohort; SNV, single-nucleotide variation.

a
Validation cohort that consisted of 6392 breast cancer cases and 6638 control of Chinese- and Malay-ancestry from MYBRCA and SGBCC 

(Supplemental Table 1).

b
Prospective cohorts that consisted of 89,898 control and 1592 breast cancer cases from 3 prospective cohorts, SCHS, China Kadoorie Biobank 

(CKB), and KCPS-II (Supplemental Table 1).

c
Adjusted for the first 10 principal components and study, and standardized to SDs in controls of each PRS.

d
Fixed effect meta-analysis of 3 prospective cohorts, SCHS, CKB and KCPS-II. HR per SD and AUC of individual studies can be found in 

Supplemental Figure 5.

e
PRSs were derived using 46, 2985 and 287 selected SNVs respectively as described in the Method section.
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f
Combined PRSs were generated using the formula α 0 + α 1 PRS 1 + α 2 PRS 2 where α 0, α 1 and α 2 are the weights obtained by fitting a 

logistic regression model with breast cancer as outcome, PRS 1 and PRS 2 as explanatory variables using the validation data set. The weights for 

the considered combination of PRSs can be found in Supplemental Table 5.
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Table 2
Mean, SD, and the association of PRSs with breast cancer risk in women of South Asian 
ancestry

Method

PRS Developed on the basis of East 

Asians’data set a 

Validation Set b 

Cases Control OR Per SD c 

Mean (SD) Mean (SD) (95% CI) AUC

(1) Clumping and thresholding a PRS46
−0.490 (0.388) −0.548 (0.387) 1.18 (1.06-1.31) 0.546

(2) Penalized regression a PRS2985
  0.059 (0.381) −0.048 (0.376) 1.32 (1.19-1.46) 0.581

(3) EUR SNVs + EUR weights a PRS287_EUR
  0.482 (0.570)   0.251 (0.608) 1.49 (1.34-1.67) 0.614

(4) EUR SNVs + ASN weights a PRS287_ASN
−0.552 (0.493) −0.720 (0.479) 1.43 (1.28-1.58) 0.592

(5) EUR SNVs + EB weights a PRS287_EB
  0.084 (0.521) −0.127 (0.545) 1.50 (1.35-1.67) 0.613

Combine (1) + (3) d PRS46 + PRS287_EUR
−0.212 (0.420) −0.376 (0.444) 1.48 (1.33-1.65) 0.611

Combine (2) + (3) d PRS2985 + PRS287_EUR
−0.166 (0.419) −0.347 (0.441) 1.53 (1.37-1.71) 0.620

Combine (1) + (4) d PRS46 + PRS287_ASN
  0.008 (0.431) −0.135 (0.420) 1.42 (1.28-1.57) 0.591

Combine (2) + (4) d PRS2985 + PRS287_ASN
  0.036 (0.425) −0.121 (0.413) 1.46 (1.32-1.62) 0.602

Combine (1) + (5) d PRS46 + PRS287_EB
−0.157 (0.438) −0.328 (0.455) 1.49 (1.33-1.66) 0.610

Combine (2) + (5) d PRS2985 + PRS287_EB
−0.119 (0.434) −0.304 (0.449) 1.52 (1.37-1.70) 0.618

(6) PRS-CSx d PRSGW_EUR + PRSGW_ASN
−0.308 (0.501) −0.546 (0.502) 1.62 (1.46-1.81) 0.633

ASN, Asian; AUC, area under the receiver operating curve; EB, Empirical Bayes; EUR, European; MYBRCA, Malaysian Breast Cancer Genetic 
Study; OR, odds ratio; PRS, polygenic risk score; SGBCC, Singapore Breast Cancer Cohort; SNV, single-nucleotide variation.

a
PRSs developed on the basis of Chinese and Malay-ancestry women in the validation data set as described in Table 1. Cohort from Chinese- and 

Malay-ancestry of MYBRCA and SGBCC as in Table 1.

b
Evaluation of PRSs performance in 585 breast cancer cases and 1018 controls of Indian-ancestry women in the validation dataset (Supplemental 

Table 1).

c
Adjusted for the first 10 principal components and study, and standardized to SDs in controls of each PRS.

d
Combined PRSs were generated using the formula α 0 + α 1 PRS 1 + α 2 PRS 2 where α 0, α 1 and α 2 are the weights estimated from East 

Asian ancestry women as described in Table 1. The weights for the considered combination of PRSs can be found in Supplemental Table 5.
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