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Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous 
disease characterized by persistent inflammation of the 
sinonasal mucosa and tissue remodeling, which can include 
basal/progenitor cell hyperplasia, goblet cell hyperplasia, 
squamous cell metaplasia, loss or dysfunction of ciliated 
cells, and increased matrix deposition. Repeated injuries can 
stimulate airway epithelial cells to produce inflammatory 
mediators that activate epithelial cells, immune cells, or 
the epithelial–mesenchymal trophic unit. This persistent 
inflammation can consequently induce aberrant tissue 
remodeling. However, the molecular mechanisms driving 
disease within the different molecular CRS subtypes remain 
inadequately characterized. Numerous secreted and cell 
surface proteins relevant to airway inflammation and 
remodeling are initially synthesized as inactive precursor 
proteins, including growth/differentiation factors and 
their associated receptors, enzymes, adhesion molecules, 
neuropeptides, and peptide hormones. Therefore, these 
precursor proteins require post-translational cleavage by 
proprotein convertases (PCs) to become fully functional. In 
this review, we summarize the roles of PCs in CRS-associated 
tissue remodeling and discuss the therapeutic potential of 
targeting PCs for CRS treatment.
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INTRODUCTION

Chronic rhinosinusitis (CRS) is an inflammatory disease of the 

nose and paranasal sinuses that lasts longer than 12 weeks 

and is the most common upper respiratory tract disease asso-

ciated with tissue remodeling. CRS has been divided into two 

major subtypes based on the presence (CRSwNP) or absence 

(CRSsNP) of nasal polyps (NPs) (Fokkens et al., 2012; Meltzer 

et al., 2004). CRSsNP comprises more than two-thirds of 

cases and is less likely to be managed by surgical interven-

tion, whereas CRSwNP represents 20%-25% of cases. NPs 

are outgrowths of swollen inflammatory tissue that infiltrate 

the middle or superior meatus. They are the most severe 

form of pathological tissue remodeling in CRS and require 

surgical intervention. Tos et al. (2010) hypothesized that NP 

pathogenesis involves epithelial rupture and necrosis, leading 

to protrusions from the lamina propria and epithelial repair. 

Furthermore, Takabayashi et al. (2013a; 2013b) clarified that 

NP growth is due to the deposition of fibrin mesh within the 

tissue. However, why NPs only develop in some patients with 

CRS remains unclear.

 The recent identification of appropriate CRS biomarkers 

has revealed new classification methods, such as the char-

acterization of the CRS patient immune response, known 

as endotyping. Endotypes are classified according to dis-

tinct subsets of CD4+ T cells, namely T helper (Th)1, Th2, 

and Th17 cells, T cell products, infiltrating eosinophilic and 

noneosinophilic inflammatory cells, and remodeling markers 
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(Schleimer, 2017; Staudacher et al., 2020). Age, as well as 

environmental and genetic factors, also influence CRS patient 

inflammatory endotypes (Mahdavinia et al., 2015; Stevens et 

al., 2019; Wang et al., 2016b; Zhang et al., 2017). However, 

some clusters cannot be classified using currently available 

endotype classification methods, highlighting the necessity 

for more specific biomarkers and indicating that CRS patho-

physiology and pathogenesis remain to be fully understood. 

Comprehensive tissue remodeling processes, in particular, 

require further investigation, highlighting the necessity of elu-

cidating regulatory mechanisms underlying tissue remodeling 

based on endotype classification.

 Tissue remodeling is a secondary phenomenon, beginning 

in early-stage CRS development due to persistent inflamma-

tion (Bassiouni et al., 2013; Meng et al., 2013; Watelet et al., 

2015). Tissue remodeling in CRS is the reorganization or ren-

ovation of nasal mucosa, which can be either physiological or 

pathological. Nasal mucosal inflammation induces remodel-

ing processes within the mucosa characterized by changes in 

extracellular matrix (ECM) protein deposition, macrophage 

and lymphocyte infiltration, and histological structure. Struc-

tural alterations in the nasal epithelium include goblet cell 

hyperplasia, squamous metaplasia, epithelial–mesenchymal 

transition (EMT), epithelial barrier disruption, epithelial ex-

foliation, and basement membrane thickening. Structural 

changes in the lamina propria include stromal edema, bone 

thickening, fibrosis, angiogenesis, and submucosal gland 

hyperplasia. The various CRS subgroups can be differentiated 

by distinct remodeling features; for example, the eosinophilic 

forms of both CRSwNP and CRSsNP are characterized by 

increased edema, resulting in more severe disease presenta-

tion than the noneosinophilic forms of CRSwNP, which are 

characterized by increased glandular hyperplasia and dense 

collagen deposition (Kountakis et al., 2004). Furthermore, 

fibrosis and collagen deposition, which are Th-1 biased in-

flammatory responses, are commonly observed in CRSsNP 

but not in CRSwNP. However, edema is a prominent feature 

of Th2-biased eosinophilic inflammation (Van Bruaene et al., 

2009; 2012). Eosinophilic CRS shows heightened basement 

membrane thickening compared with noneosinophilic CRS 

(Lee et al., 2021). Previous studies have reported differences 

in tissue remodeling between polyps obtained from white 

and Asian patients (Shi et al., 2013; Van Bruaene and Bach-

ert, 2011). Eosinophilic CRS is typically more common in the 

EU and USA, whereas noneosinophilic CRS is more common 

in Asia. However, the prevalence of eosinophilic CRS has 

increased in Asia due to an increasingly westernized lifestyle. 

Interestingly, a large histopathologic study of CRS in Wuhan, 

China, confirmed the link between eosinophilic infiltration 

and edema and the association of neutrophils with fibrosis 

(Cao et al., 2009).

 Numerous mediators are implicated in airway tissue re-

modeling, including growth factors, enzymes, adhesion mol-

ecules, and ECM components (Ashley et al., 2017; Bassiouni 

et al., 2013; Maxfield et al., 2018; Samitas et al., 2018; Van 

Bruaene et al., 2012; Watelet et al., 2015) (Fig. 1). For exam-

ple, insulin-like growth factor-1 (IGF-1) and its receptor are 

involved in epithelial cell hyperplasia, mucus overproduction, 

and ECM deposition (Chand et al., 2012; Krein et al., 2003). 

Notch signaling plays a critical role in the lineage selection 

of airway basal cells (BCs) during differentiation into either 

secretory or ciliated cells in many adults and embryonic 

tissues (Chiba, 2006; Koch and Radtke, 2010; Rock et al., 

2011). However, the sustained activation of Notch signaling 

promotes the transition of airway BCs to a goblet cell fate 

(Gerovac et al., 2014; Gomi et al., 2015; Guseh et al., 2009; 

Fig. 1. Schematic representation of PC processing resulting in upper airway remodeling. Depicted are proforms of the numerous PC 

substrates that are associated with tissue remodeling, their mature forms, and their effects on upper airway remodeling. 
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Rock et al., 2011). Transforming growth factor β (TGF-β), 

platelet-derived growth factor (PDGF), fibroblast growth fac-

tor 2 (FGF-2), vascular endothelial growth factor (VEGF), and 

matrix metalloproteinase (MMP) all induce the pathological 

conversion of epithelial cells into fibroblasts, resulting in tissue 

fibrosis (Câmara and Jarai, 2010; Davies, 2009; Strutz et al., 

2002). Furthermore, VEGF promotes edema, angiogenesis, 

and epithelial cell growth in NPs (Fruth et al., 2012). Upreg-

ulation of epidermal growth factor (EGF) skews the airway 

BC fate toward the squamous and EMT-like phenotypes with 

decreased epithelial junctional barrier integrity (Shaykhiev 

et al., 2013). Additionally, bone morphogenetic protein 2 

(BMP-2) is associated with both osteitis (Kim et al., 2021) 

and squamous metaplasia (Lee et al., 2015) in patients with 

refractory CRSwNP. Importantly, numerous secreted and cell 

surface proteins, including the proteins mentioned above, are 

initially synthesized as inactive precursor proteins, requiring 

endoproteolytic cleavage by proprotein convertases (PCs) for 

activation (Fig. 1, Table 1) (Artenstein and Opal, 2011; Seidah 

and Chrétien, 1999). Earlier work by our lab indicated that 

the expression of four PCs (furin, PC1/3, PC5/6, and PACE4) 

is significantly upregulated in CRS patient NP mucosa (Fig. 2). 

These results indicate that these enzymes may play important 

roles in NP pathogenesis. Furthermore, PCs show promise as 

diagnostic markers for CRS and may ultimately be targeted 

by molecular therapy. We summarize the general properties 

and biological relevance of PCs, as well as current discoveries 

regarding the pathophysiological roles of furin, PC1/3, PC5/6, 

and PACE4 in CRS.

PROPROTEIN CONVERTASES

PCs are a family of calcium-dependent serine endoproteases. 

Examples of these enzymes include furin, PC1/3, PC2, PC4, 

PC5/6, PACE4, and PC7 (Artenstein and Opal, 2011). These 

enzymes activate precursor proteins through cleavage at 

doublets of the basic amino acids arginine (R) or lysine (K) or 

at paired basic motifs [R/K-(X)n-R/K-R↓, where the arrow in-

dicates the cleavage site, X represents any amino acid except 

cysteine and n = 0, 2, 4, or 6] (Seidah and Chrétien, 1999; 

Steiner et al., 1967). In various organs, PCs are essential for 

key physiological functions, such as embryonic development 

and tissue homeostasis, due to their involvement in the 

proteolytic activation of many secretory proteins, including 

growth/differentiation factors and their receptors, adhesion 

molecules, enzymes, neuropeptides, and peptide hormones 

(Table 1) (Artenstein and Opal, 2011; Thomas, 2002; Tur-

peinen et al., 2013). Although PC inactivation in mice and 

humans has revealed specific phenotypes caused by unique, 

tissue-specific processing events (Seidah et al., 2013), addi-

tional investigation into the specific physiologic substrates for 

PCs is required. Furthermore, some PCs are associated with 

Table 1. Substrates activated by PCs

Typical substrates

PC1/3 Growth hormone-releasing hormone, insulin, glucagon, 

corticotropin, β-lipotropin, ACTH

PC2 Insulin, glucagon, α-MSH, met-enkephalin, somatostatin

PC4 Pituitary adenylate cyclase-activating polypeptide, IGF-2

Furin Albumin, factor IX, VWF, neurotophins, adhesins, α- and 

β-secretases, TNF-α, TGF-β, IGF-1, IGF-1R, integrins, 

Notchs, PDGF, VEGFs, MMPs, BMPs, bacterial toxins 

(anthrax toxin, dipteria toxin, pseudomonas exotoxin 

A, aerolysin toxin, Shiga toxins, Clostridium specum 

α-toxin), viral glycoproteins (HIV gp160, Evola gp, 

influenza HA, measles, cytomegalovirus, respiratory 

syncytial virus, coronavirus)

PC5/6 GDF11, PTPRM, L1CAM, α4 integrin, BMPs

In vitro and ex vivo redundancy with furin and PACE4

PACE4 Nodal, Lefty, L1CAM, MMPs, BMPs

In vitro and ex vivo redundancy with furin and PC5/6

PC7 Transferrin receptor 1

Partial redundancy with furin, PC5/6, and PACE4

ACTH, adrenocorticotropic hormone; α-MSH, α-melanocyte-

stimulating hormones; IGF, insulin-like growth factor; VWF, 

Von Willebrand factor; TNF-α, tumor necrosis factor α; TGF-β, 

transforming growth factor β; IGF-1R, insulin-like growth factor 

1 receptor; VEGF, vascular endothelial growth factor; HIV gp 

160, human immunodeficiency virus envelope glycoprotein 160; 

HA, hemagglutinin; GDF11, growth differentiation factor 11; 

PTPRM, protein tyrosine phosphatase receptor type M; L1CAM, 

neural cell adhesion molecule L1.

Fig. 2. PC expression in control nasal mucosa and nasal polyps. 

Western blot analysis reveals that furin, PC1/3, PC5/6, and PACE4 

are expressed in both control nasal mucosa and nasal polyps, 

and the expression of four PCs is significantly upregulated in 

nasal polyps compared to the control mucosa. Right panel shows 

densitometric analysis of furin, normalized to β-actin and relative 

to control mucosa. Data represent the mean ± SEM. *P < 0.05.
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various pathophysiological states, including endocrinopa-

thies, cancer, viral/bacterial/parasitic infection, atherosclero-

sis, and neurodegenerative (Table 2) (Artenstein and Opal, 

2011; Chrétien et al., 2008; Seidah and Prat, 2012; Thomas, 

2002; Turpeinen et al., 2013). These PCs therefore, represent 

potential therapeutic targets for the treatment of various hu-

man diseases. We summarize the reported PC inhibitors that 

are expected to affect human pathologies (Table 2). It should 

be noted that none of these PC inhibitors is highly specific to 

only one PC.

INHIBITION OF FURIN-MEDIATED NOTCH1 
PROCESSING IN AIRWAY BASAL CELLS PROMOTES 
CILIATED CELL DIFFERENTIATION

Airway BCs are a long-lived, multipotent stem cell population 

responsible for normal epithelium homeostasis and regen-

eration after injury, which is accomplished through their ca-

pacities for self-renewal and differentiation into multiple cell 

types, including secretory and ciliated cells (Rock et al., 2010). 

However, chronic repetitive injuries disrupt the balance be-

tween BC proliferation and differentiation and ultimately lead 

to pathological tissue remodeling, such as BC hyperplasia, 

goblet cell hyperplasia, squamous cell metaplasia, loss or 

dysfunction of ciliated cells, and increased matrix deposition 

(Araya et al., 2007; Rock et al., 2010; Samitas et al., 2018). 

These dramatic structural and functional changes contribute 

to disease susceptibility, initiation, and progression in the air-

way. Therefore, clarifying the fundamental mechanisms un-

derlying BC lineage choice and differentiation during airway 

inflammation and remodeling is clinically relevant.

 The Notch signaling pathway plays an essential role in reg-

ulating the differentiation of airway BCs into secretory and cil-

iated cells in both the developmental and adult phases (Chi-

ba, 2006; Koch and Radtke, 2010; Rock et al., 2011). Four 

mammalian Notch receptors (Notch1-4) have been identified 

(Chiba, 2006). Steady-state Notch signaling is present in rela-

tively few BCs due to low epithelial turnover. However, Notch 

signaling is greatly increased during repair after epithelial inju-

ry (Rock et al., 2011). In vivo studies have shown that the sus-

tained activation of Notch1 signaling promotes luminal differ-

entiation of airway BCs, primarily toward goblet cell lineages 

Table 2. Therapeutic potential of PCs

Diseases Proposed therapies References

PC1/3 Neuroendocrine tumors  

(pheoch-romocytoma, pituitary  

adenoma, carcinoids, pancreatic cancer, 

small-cell lung carcinoma)

Small-molecule inhibitors (2,5-dideox-

ystreptamine derivatives, peptidomimetic 

analogs, temozolomide), PC1/3 propeptide

Becker et al., 2012;  

Boudreault et al., 1998;  

Chrétien et al., 2008;  

Rose et al., 2020; Vivoli et al., 2012

PC2 Neuroendocrine tumors, liver colorectal 

metastases

Small-molecule inhibitors (bicyclic guanidines, 

pyrrolidine bis-piperazines, 2,5-dideox-

ystreptamine derivatives), PC2 propeptide

Chrétien et al., 2008;  

Kowalska et al., 2009;  

Muller et al., 2000;  

Tzimas et al., 2005;  

Vivoli et al., 2012

PC4 Male contraceptive Small-molecule inhibitors (flavonoid deriva-

tives)

Becker et al., 2012;  

Majumdar et al., 2010

Furin Cancer and metastasis, viral,  

bacterial and parasitic infections

Bi: shRNA-Furin GMCSF, locked nucleic acid 

(LNA), neutralizing antibodies, small-mol-

ecule inhibitors (2,5-dideoxystreptamine, 

dicoumarol derivatives, B3, phenylace-

tyl-Arg-Val-Arg-4-amidinobenzylamide, 

decarboxylated P1 arginine peptide mimet-

ics, guanidilated streptamine derivatives, 

peptidomimetic analogs, temozolomide, 

dicoumarol derivatives), alpha-1-antitrypsin 

derivatives, nanobodies, furin propeptide

Becker et al., 2010; 2012;  

Coppola et al., 2008;  

Couture et al., 2012;  

Dahms et al., 2021;  

Jiao et al., 2006;  

Klein-Szanto and Bassi, 2017;  

Komiyama et al., 2009;  

Rose et al., 2020; 2021;  

Senzer et al., 2012

PC5/6 Atherosclerosis, cancer, viral infections, 

reproduction, dyslipidemia

Small-molecule inhibitors (guanidilated 

streptamine derivatives, peptidomimetic an-

alogs, dicoumarol derivatives), alpha-1-anti-

trypsin derivatives), PC5/6 propeptide

Becker et al., 2012;  

Dahms et al., 2021;  

Klein-Szanto and Bassi, 2017;  

Rose et al., 2021

PACE4 Cancer and metastasis, arthritis,  

viral and pathogenic infections

shRNA, Small-molecule inhibitors (Multi-Leu 

peptide, peptidomimetic analogs, temozolo-

mide, guanidilated streptamine derivatives, 

dicoumarol derivatives), alpha-1-antitrypsin 

derivatives

Becker et al., 2012;  

Byun et al., 2010;  

Couture et al., 2012;  

Klein-Szanto and Bassi, 2017;  

Levesque et al., 2012;  

Rose et al., 2020; 2021

PC7 Anxiety Small-molecule inhibitors (guanidilated 

streptamine derivatives, dicoumarol deriva-

tives), PC7 propeptide

Dahms et al., 2021;  

Klein-Szanto and Bassi, 2017;  

Rose et al., 2021
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(Gerovac et al., 2014; Gomi et al., 2015; Guseh et al., 2009; 

Rock et al., 2011). A similar result was obtained from in vitro 

experiments using Notch signaling agonists and antagonists 

in air-liquid interface (ALI)-human bronchial epithelial cell 

cultures initiated with BCs (Guseh et al., 2009). Importantly, 

the Notch receptor is activated after cleavage by a furin-like 

convertase (Logeat et al., 1998; Rand et al., 2000). Using an 

in vitro ALI-human nasal epithelial (HNE) cell culture model 

of airway injury (Puchelle et al., 2006; Whitcutt et al., 1988), 

we found that inhibiting PC activity during BC differentiation 

using decanoyl-RVKR-chloromethylketone (CMK) treatment 

(Hallenberger et al., 1992) skews differentiation toward 

the ciliated cell phenotype. This skewed differentiation was 

evidenced by increased numbers of ciliated cells and the 

upregulation of various genes associated with ciliated cell dif-

ferentiation (Lee et al., 2017). Furthermore, furin knockdown 

resulted in suppressed Notch1 processing and increased cili-

ated cell numbers in ALI-HNE cell culture, indicating that furin 

is the enzyme responsible for Notch1 activation in HNE cells. 

These observations and previous studies collectively suggest 

that furin may play a critical role in BC lineage choice toward 

goblet cell lineages, as well as the pathogenesis of goblet cell 

hyperplasia during chronic injury. Therefore, targeting furin 

has potential as an attractive therapeutic approach for airway 

epithelial repair and regeneration after injury.

OVEREXPRESSED PC1/3 CONTRIBUTES TO NASAL 
POLYPOGENESIS THROUGH EMT INDUCTION

EMT is a process for an epithelial cell to undergo profound 

biochemical changes to acquire a mesenchymal phenotype, 

which includes the loss of epithelial cell–cell junctions, the 

generation of apicobasal polarity, interactions with the base-

ment membrane, and the upregulation of mesenchymal 

markers, such as α-smooth muscle actin (α-SMA), vimentin, 

MMPs, collagen I, and epithelial transcriptional suppressors 

(Snail and Twist) (Câmara and Jarai, 2010; Davies, 2009; 

Kalluri and Neilson, 2003; Willis and Borok, 2007). Disrupt-

ing cell–cell adhesions during EMT allows contact between 

ligand/receptor pairs that do not typically interact due to 

segregation into either the apical or basolateral membrane 

domains. Additionally, this disruption initiates signal trans-

duction cascades that affect epithelial cell activation and 

differentiation, resulting in tissue remodeling (Georas and 

Rezaee, 2014; Gibson and Perrimon, 2003; Vermeer et al., 

2003). Furthermore, airway epithelial injury and abnormal 

epithelial repair responses induce persistent epithelial cell 

activation by undergoing EMT, leading to a pathological 

process associated with fibrogenesis (Hackett, 2012; Hackett 

et al., 2009; Shin et al., 2012; Willis and Borok, 2007). Thus, 

understanding the precise molecular interactions underlying 

EMT could lead to the identification of novel therapeutic 

targets to treat tissue fibrosis in chronic inflammatory airway 

diseases. Hackett et al. (2009) demonstrated that TP63+ 

KRT5+ BCs in a multilayered, differentiated ALI-airway epithe-

lial cell culture derived from asthmatic subjects undergo EMT 

after exposure to TGF-β1, which is a known major inducer of 

EMT. EMT was evidenced by the loss of epithelial markers, 

E-cadherin and zonular occludin-1, and the upregulation of 

mesenchymal markers, EDA-fibronectin, vimentin, α-SMA, 

and collagen-1 (Hackett et al., 2009). Another study reported 

that hypoxic conditions present in inflamed sinus tissue drive 

EMT through a Smad3-dependent mechanism (Shin et al., 

2012). Importantly, results from our lab revealed that both 

NP epithelium and ALI-HNE cell cultures undergoing TNF-α/

IL-1β–induced EMT highly express PC1/3, together with the 

mesenchymal marker proteins N-cadherin, collagen I, and 

MMP-2 (Lee et al., 2013). Specifically, PC1/3 expression was 

mostly confined to the basal and suprabasal layers in healthy 

control nasal epithelium but was upregulated in the entire NP 

epithelial layer (Lee et al., 2013). Because EMT is intimately 

linked with the acquisition of epithelial stem cell properties 

with greater phenotypic plasticity (Mani et al., 2008), differ-

entiated epithelial cells may dedifferentiate into regressed 

basal/progenitor cells in disease states (Tata et al., 2013). 

Moreover, overexpressing PC1/3 in stably transfected human 

lung mucoepidermoid carcinoma HCI-H292 cells resulted in 

decreased E-cadherin expression and increased mesenchymal 

marker expression (N-cadherin, vimentin, collagen I, α5 inte-

grin, fibronectin, MMP2, Snail, and Twist), concurrent with 

the transition to a fibroblast-like morphology driven by actin 

cytoskeleton remodeling (Lee et al., 2013). Taken together, 

these observations suggest that PC1/3 contributes to tissue 

remodeling and CRSwNP pathogenesis and play crucial roles 

in EMT and fibrosis. PC1/3 likely contributes to CRSwNP 

pathogenesis due to altered processing of integrins, collagen 

I, fibronectin, neuropeptides, and MMPs (Artenstein and 

Opal, 2011; Cheng et al., 2001). Further research is required 

to fully define the precise molecular mechanisms underlying 

PC1/3-mediated EMT. Greater clarification is also needed to 

identify the physiological PC1/3 substrates that could provide 

new therapeutic targets for CRSwNP treatment.

PC5/6A PROMOTES THE SQUAMOUS 
DIFFERENTIATION OF HUMAN NASAL EPITHELIAL 
CELLS BY ACTIVATING BMP-2

Squamous metaplasia of the airway is a pathologic process by 

which normal, pseudostratified epithelium transdifferentiates 

into stratified epithelium consisting of flattened, squamous 

cells (Auerbach et al., 1961; Puchelle et al., 2006; Rock et al., 

2010). Thus, squamous differentiation in airway epithelial 

cells and epidermal differentiation share many morphological 

and biochemical characteristics (Jetten, 1989). Chronic repet-

itive injuries to the airway epithelium induce tissue remodel-

ing, such as epithelial cell hyperproliferation and squamous 

metaplasia, resulting in impaired mucociliary clearance (Pu-

chelle et al., 2006). Interestingly, results from our lab revealed 

the significant upregulation of PC5/6A and BMP-2 in both 

the metaplastic squamous epithelium of NPs and a retinoic 

acid (RA) deficiency–induced squamous metaplasia model of 

ALI-HNE cells (Lee et al., 2015). RA deficiency is well-known 

to induce conversion from normal pseudostratified epithe-

lium into stratified squamous airway epithelium (McDowell 

et al., 1984; Wolbach and Howe, 1925; Yoon et al., 2000). 

In a study by Pearton et al. (2001), four PCs, including furin, 

PACE4, PC5/6, and PC7, had significant roles in terminal ke-

ratinocyte differentiation in the epidermis. Additionally, BMP 
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signaling is implicated in pathophysiological processes includ-

ing wound-healing, fibrosis, and allergic inflammation in the 

skin and lungs (Botchkarev, 2003; Rosendahl et al., 2002; 

Sountoulidis et al., 2012; Yan et al., 2010). BMP signaling 

is also known to be involved in the regulation of embryonic 

development and adult homeostasis (Botchkarev, 2003; 

Hogan, 1999; Sountoulidis et al., 2012). Yan et al. (2010) 

demonstrated that TNF-α–induced EMT is mediated by the 

BMP-2 signaling pathway in wound-healing and fibrosis of 

human skin. A study from the Zou lab revealed the induction 

of a smoking-related abnormal phenotype in human airway 

BCs mediated by exaggerated BMP-4/BMPR1A/Smad sig-

naling, generating squamous metaplasia (Zuo et al., 2019). 

Importantly, BMPs are known to be physiological substrates 

for PACE4 and PC5/6A (Table 1) (Constam et al., 1996; Tsuji 

et al., 2003). Our lab demonstrated that PC5/6A knockdown 

and pharmacological inhibition of PC activity in RA-deficient 

ALI cultures resulted in significant reductions in BMP-2 pro-

tein expression and processing, accompanied by the down-

regulation of squamous cell marker genes (cornifin/SPRR1 

and involucrin) and the upregulation of secretory (MUC5AC, 

TFF3, and MUC5B) and ciliated cell marker genes (Tektin and 

DNAI1) (Lee et al., 2015). Conversely, PC5/6A overexpres-

sion using adenoviral-mediated transduction and exogenous 

BMP-2 resulted in the upregulation of squamous cell marker 

genes and the broad downregulation of ciliated and secreto-

ry cell differentiation genes (Lee et al., 2015) under RA-suf-

ficient culture conditions for the mucociliary differentiation 

of HNE cells (Yoon et al., 2000). These observations suggest 

that PC5/6A-mediated BMP-2 maturation contributes to 

squamous metaplasia on the NP mucosal surface. Further-

more, Kim et al. (2021) reported that in CRSwNP, BMP-2 is 

upregulated in NP tissues, associated with osteitis severity, 

advanced disease extent, and disease refractoriness after sur-

gery. Taken together, these results indicate that PC5/6A can 

serve as a new CRSwNP biomarker reflecting the pathophys-

iology of nasal mucosa with squamous metaplasia. Targeting 

PC5/6A may, therefore, be a viable therapeutic strategy for 

treating refractory CRSwNP.

PACE4 UPREGULATION IS ASSOCIATED WITH 
AIRWAY GOBLET CELL HYPERPLASIA

Goblet cell hyperplasia is a common feature of chronic airway 

diseases, which include asthma, allergic rhinitis, and CRSwNP 

(Jackson, 2001; Jiao et al., 2020; Tomazic et al., 2020). Re-

cent unpublished results from our lab revealed that in the 

human nasal epithelium within a Th2 milieu, PACE4 upreg-

ulation is associated with goblet cell hyperplasia and mucus 

overproduction. In both NP epithelium and ALI-HNE cells 

treated with the Th2 cytokine IL-4, which induces goblet cell 

hyperplasia (Park et al., 2007), PACE4 expression was mostly 

confined to the basal and suprabasal layers. Furthermore, 

PACE4 knockdown in ALI-cultured BCs inhibited IL-4–induced 

goblet cell differentiation, which implies this enzyme is an at-

tractive therapeutic target for CRSwNP treatment. Supporting 

this finding, a microarray-based study of the transcriptomes 

of eosinophilic CRSwNP (ECRSwNP) and noneosinophilic 

CRSwNP (non-ECRSwNP) showed that mRNA levels of Th2 

cytokines and PCSK6, which is the gene PACE4, are signifi-

cantly increased in ECRSwNP (Wang et al., 2016a). These 

results suggest PACE4 involvement in Th2 inflammation in 

ECRSwNP. ECRSwNP exhibits a poorer outcome compared to 

non-ECRSwNP. Indeed, ECRSwNP exhibits greater objective 

disease severity and a high recurrence rate after surgery (Na-

kayama et al., 2011; Szucs et al., 2002). Therefore, PACE4 

may increase the risk of ECRSwNP, making it a potential 

diagnostic and prognostic biomarker and treatment target. 

Further investigation into the mechanism of how PACE4 is 

involved in ECRSwNP and the potential therapeutic benefits 

of targeting PACE4 in ECRSwNP is required.

CONCLUSION

There is still much more to learn about pathological endo-

typing or subphenotyping of tissue remodeling features in 

CRS patients, which has the potential to identify patients at a 

higher risk of recurrent or persistent disease. Here, we assert 

that PCs have crucial impacts on various types of CRS patho-

logical tissue remodeling, including goblet cell hyperplasia, 

fibrosis, and squamous metaplasia. Therefore, PCs could be 

considered promising diagnostic and prognostic biomarkers 

in CRS patients. Targeting PCs has great potential to treat 

CRS. However, PC substrate specificity remains unknown 

in both the physiological and pathophysiological context. 

This lack of knowledge is largely due to substantial redun-

dancies in the substrates and functions among PCs and the 

co-expression of some PCs in cells. Therefore, further studies 

to elucidate the precise mechanisms of PC activity and PC 

substrate specificity in tissue remodeling and CRS patho-

genesis will enable the development of specific biomarkers 

for disease progression and more individualized treatment 

strategies. The challenge of identifying potent and safe PC 

inhibitors has great potential to yield an alternative CRS ther-

apeutic option that could ultimately improve human health.
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