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Abstract

Protein domains are basic functional units of proteins. Many protein domains are pervasive

among diverse biological processes, yet some are associated with specific pathways.

Human complex diseases are generally viewed as pathway-level disorders. Therefore, we

hypothesized that pathway-specific domains could be highly informative for human dis-

eases. To test the hypothesis, we developed a network-based scoring scheme to quantify

specificity of domain-pathway associations. We first generated domain profiles for human

proteins, then constructed a co-pathway protein network based on the associations between

domain profiles. Based on the score, we classified human protein domains into pathway-

specific domains (PSDs) and non-specific domains (NSDs). We found that PSDs contained

more pathogenic variants than NSDs. PSDs were also enriched for disease-associated

mutations that disrupt protein-protein interactions (PPIs) and tend to have a moderate num-

ber of domain interactions. These results suggest that mutations in PSDs are likely to disrupt

within-pathway PPIs, resulting in functional failure of pathways. Finally, we demonstrated

the prediction capacity of PSDs for disease-associated genes with experimental validations

in zebrafish. Taken together, the network-based quantitative method of modeling domain-

pathway associations presented herein suggested underlying mechanisms of how protein

domains associated with specific pathways influence mutational impacts on diseases via

perturbations in within-pathway PPIs, and provided a novel genomic feature for interpreting

genetic variants to facilitate the discovery of human disease genes.

Author summary

Protein domains are basic functional units of proteins, yet domain-based pathway annota-

tions for proteins are challenging tasks because many domains are pervasive among

diverse pathways. Therefore, we developed a network-based scoring scheme to measure

pathway specificity of domains, and then used it to identify pathway-specific domains.

Surprisingly, we observed substantially more disease mutations in pathway-specific

domains than non-specific domains. We found evidences that mutations of pathway-
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specific domains tend to perturb pathway integrity via disrupting within-pathway

protein-protein interactions. We also demonstrated prediction capacity of pathway-spe-

cific domains for complex diseases with experimental validations. Our study demon-

strated the usefulness of pathway information for protein domains in interpreting non-

random distribution of disease mutations among domains and identification of disease

genes and variants.

Introduction

Protein domains are the structural, evolutionary, and functional units of proteins. Because

domains are the basic building block of protein structure and an evolutionary module [1] that

increases the protein repertoire by duplication, recombination, and divergence [2], domain-

centric annotation of proteins on function, phenotypes and diseases has been one of major

research goals in computational biology [3]. A previous study reported that molecular function

annotation can be transferred by sequence homology with only 35% accuracy for pairs of mul-

ti-domain proteins [4]. Given that majority of the eukaryotic proteins contain multiple

domains, simple homology-based method would not provide reliable functional annotations

for proteins in multi-cellular organisms including humans. Moreover, sequence-based annota-

tion transfer is even less accurate for biological processes than for molecular functions [5].

Although biological processes and pathways are not exactly equivalent, we often refer to both

as pathways. The lower reliability of sequence-based annotation for pathways are partly due to

the fact that many domains are pervasive among diverse pathways. For example, the ‘winged

helix-turn-helix DNA-binding’ domain occurs in many DNA-binding proteins that are

involved in diverse pathways. Nevertheless, some domains may be associated with certain

pathways with high specificity. Therefore, domain-based annotation of pathways requires a

quantitative method which can incorporate not only sequence similarity but also specificity of

domain-pathway associations.

Human complex diseases are generally viewed as pathway-level disorders. Given that a

large portion of disease-associated genes are also strongly associated with specific pathways

[6], protein domains associated with specific pathways may provide functional insights for the

study of human diseases. Genome-wide investigations of disease-associated genetic variations

have recently revealed many disease-associated genes. The observed associations between dis-

eases and pathways triggered a boom in pathway-based analyses of disease-associated variants

derived from genome-wide association studies (GWASs) and whole exome sequencing (WES)

[7, 8]. More recently, domain-level distribution of pathogenic variants revealed high concen-

trations for particular domains [9–13], which implies that particular classes of domains are

highly implicated in human diseases. Therefore, we hypothesized that pathway-specific

domains could be highly informative for human diseases.

Here, we present a network-based scoring scheme to quantify pathway specificity of protein

domains, which can be used to identify domains associated with specific pathways. We first

generated domain profiles for human proteins then constructed a co-pathway protein network

based on the associations between domain profiles. Based on the score, we classified human

protein domains into pathway-specific domains (PSDs) and non-specific domains (NSDs).

Interestingly, we observed a significant enrichment of disease-associated mutations for PSDs,

where mutations tend to disrupt interfacing domains that mediate within-pathway protein-

protein interactions (PPIs) and to have a moderate number of domain interactions. These

results suggest that mutations in PSDs are likely to disrupt within-pathway PPIs, resulting in
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pathway disorders. Finally, we demonstrated the utility of pathway-specific domains in pre-

dicting disease-associated genes with experimental validations in zebrafish.

Results

Identification of pathway-specific domains (PSDs)

We previously found that human protein interactions can be accurately retrieved by associa-

tions between domain profiles with a scoring scheme based on information theory,WMI,
which assigns more weight to rarer domains in calculating theMI [14]. The resultant domain-

based network (Fig 1A) was highly predictive for proteins that operate the same human GOBP

pathways. Using a Bayesian statistics framework, we assigned LLSs [15] to the links of the co-

pathway network.

Because the network links were based on domain-sharing patterns among proteins for the

same pathway, domains enriched for a pathway also likely connect to other proteins for the

same pathway (Fig 1B). We therefore measured domain-pathway associations (Fig 1C) based

on the network connections from a domain to the member proteins of the pathway. However,

overall strength of the network connections for a domain-pathway association does not guar-

antee their specificity. We thus accounted for the distribution of each domain across pathways

using the Gini Index (GI). In summary, the network-based scoring scheme PS quantifies

pathway-specific associations for each protein domain (Fig 1D).

We calculated PS of human protein domains derived from the InterPro database for GOBP

pathways. To assess accuracy of domain-pathway associations, we compiled gold-standard

domain-pathway associations between InterPro domains and GOBP pathways derived from

InterPro2GO [16] annotations, as these are based on manual curation. We found that only

27% of InterPro domains have annotated GOBP terms by InterPro2GO. We observed strong

positive correlations between PS and the likelihood of gold-standard domain-pathway

associations, in which approximately 16,000 associations between 4,506 InterPro domains and

386 GOBP pathways were more than twice as likely to be gold-standard associations as would

be expected by random chance (S1 Fig). The significance of the agreements with gold-stan-

dard associations was also assessed by Fisher’s exact test. We observed similarly high correla-

tions between PS and gold-standard data, where the top 16,000 domain-pathway associations

significantly overlapped (P� 0.01) with gold-standard data (Fig 2A). We defined 4,506

InterPro domains from the top 16,000 significant domain-pathway associations as pathway-

specific domains (PSDs) and the remaining 3,856 InterPro domains as non-specific domains

(NSDs). The PS threshold for the division between the two domain classes (P� 0.01) was

0.056.

PSDs are enriched for disease-associated variants

Recently, investigations into the protein domain-level landscapes of cancer somatic mutations

have revealed domains that are enriched for somatic and germline mutations, and domain-

level mutational hot spots, which facilitate the identification of novel cancer genes and func-

tional mutations, and provide mechanistic insights regarding mutational consequences [9–

13]. To investigate the relationship between disease susceptibility and pathway specificity at

the domain level, we compared the frequencies of disease-associated germline variants

between PSDs and NSDs derived from the following databases: GWASdb [17], a database of

human genetic variants from GWASs; SwissVar [18]; and ClinVar [19]. We calculated the nor-

malized variation rate (NVR), which represents the probability of a variant occurring in a PSD

or NSD normalized to the number of variants observed in both types of domains. Notably, we

observed an approximately 1.5-fold higher NVR in PSDs than in NSDs for all three pathogenic
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variant sets (Fig 2B). We found that the observed enrichment of PSD for disease-associated

variants was not significantly affected by moderate changes in PS threshold for defining PSDs

(S3A Fig). In contrast, variants with neutral effects derived from the HumVar neutral training

set for PolyPhen-2 [20] exhibited similar NVRs between PSDs and NSDs. We also performed a

similar analysis using cancer somatic mutations from the TCGA for several cancer types

including breast cancer [21], and found no significant differences in NVRs between PSDs and

NSDs. Notably, germline cancer variants from the GWASdb set exhibited an approximately

Fig 1. Overview of scoring pathway specificity of the protein domains. (A) A co-pathway protein network was

constructed based on similarity of the protein domain profiles (0 and 1 represent absence and presence of each domain,

respectively, in the protein). Sub-networks that represent pathway f1, f2, and f3 were enriched for domain d1, d2, and d3,
respectively. Probability operating the same pathway is proportional to the edge thickness. (B) Next, each protein received a

protein-pathway association (PPA) score for a specific pathway f by sum of edge scores to all member proteins of the

pathway f. (C) Domain-pathway association (DPA) score of each domain was assigned by the average PPA of all proteins

that harbor the domain. In this example,DPA of domain d3 for pathway f3,DPA3(f3), was assigned by the average of

PPA8(f3), PPA9(f3), and PPA10(f3). Gini Index (GI) was used to measure the impurity of the data. (D) Subsequently, pathway

specificity (PS) was calculated. In this example, because domain d1, d2, and d3 have high PSs for pathway f1, f2, and f3,
respectively, they were classified as pathway-specific domains (PSDs) for the corresponding pathways. However, domain d4
was classified as a non-specific domain (NSD) due to the low PS for all pathways.

https://doi.org/10.1371/journal.pcbi.1007052.g001
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1.5-fold higher NVR for PSDs than for NSDs (1.5 for PSDs and 0.6 for NSDs). These results

indicate that PSDs are more susceptible to the diseases by inherited genetic variants, but not

by somatic mutations.

Fig 2. Disease implications of PSDs. (A) Regression between pathway specificity (PS) and the significance of overlap with the gold-standard

domain-pathway pairs by sigmoidal curve fitting. Domain-pathway associations were divided into two groups: the top 16,000 associations that

showed significant overlap (p< 0.01 by Fisher’s exact test) with the gold-standard data, and the remaining 33,636 associations. 4,506 domains for

the top 16,000 associations were defined as pathway-specific domains (PSDs) and 3,856 domains for the remaining associations were defined as

non-specific domains (NSDs). (B) Comparison of normalized variation rates (NVRs) for neutral and pathogenic variants between PSDs and NSDs

(�, P< 0.01; n.s., P> 0.05) (C) Comparison of NVRs for three classes of missense disease mutations described by Sahni et al. and nonsynonymous

variants known to affect physical protein interactions by IMEx consortium between PSDs and NSDs (�, P< 0.01; n.s., P> 0.05). (D) Comparison

of the ratios (log base 2) of PSDs to NSDs for groups of human structural interaction network (hSIN) interfacing domains with similar sizes for

different ranges of domain interaction connectivity. (E) Proposed models for the relationships between mutational consequences and the number

of domain interactions. The blue node represents a hub domain that mediates interactions between a large number of proteins that contain

domains with a single or a few, at most, interacting domains (green nodes), and the yellow nodes represent domains with moderate numbers of

domain interactions, which are involved in ‘within-pathways’ (shaded areas).

https://doi.org/10.1371/journal.pcbi.1007052.g002
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PSD mutations are likely to disrupt within-pathway PPIs

To provide mechanistic insight for the higher frequency of pathogenic variants in PSDs than

in NSDs, we investigated the relationship among the disease-associated mutations, the path-

way specificity of the domains, and the domain-level interaction network. Our analysis was

motivated by the following three recent observations: (i) the majority of disease-associated var-

iants exert pathogenic effects via perturbations of PPIs rather than on protein folding or stabil-

ity [22]; (ii) disease-associated variants are enriched in PPI-interfacing domains [23–25]; and

(iii) the majority of disease genes are not essential and do not encode hub proteins [26].

For example, a recent large-scale characterization of disease-associated mutations revealed

that most missense disease mutations do not severely altered protein structure or stability, but

rather that they tend to perturb PPIs in the majority of the wildtype proteins [22]. In the study,

missense disease mutations were divided into three classes by the effects on molecular interac-

tions or “edgotype” [27]: no apparent detectable change in interactins (“quasi-WT”), partial

loss of interactions (“edgetic”), and apparent complete loss of interactions (“quasi-null”).

Importantly, two-thirds of the tested disease mutations belonged to the edgetic or quasi-null

classes. These observations suggest that many mutation-disease associations may be under-

stood via mutational effects on PPIs. Thus, we compared the frequencies of each disease muta-

tion class between PSDs and NSDs and found that edgetic and quasi-null disease mutations

exhibited >2.5-fold higher NVR for PSDs than for NSDs (Fig 2C). We also found approxi-

mately 2-fold enrichment of PSD for nonsynonymous variants affecting on physical protein

interactions recently published by IMEx consortium [28]. We confirmed that moderate

changes in PS threshold for defining PSDs did not significantly influence enrichment of PSD

for nonsynonymous variants affecting on physical protein interactions by IMEx (S3B Fig). In

contrast, the NVR of the quasi-WT class of mutations was approximately 1.5-fold higher for

PSDs than for NSDs, which was similar to the fold change for other disease-associated variant

sets (see Fig 2B), indicating that PSDs are enriched for disease mutations that cause loss of

wildtype PPIs. PPIs are mediated by domain-level interactions. Therefore, these results suggest

that PSDs are more important than NSDs for PPIs, whose perturbations can result in pheno-

typic changes.

To further investigate the impact of PSDs on phenotype via PPIs, we next performed

domain-level network analyses based on the human structural interaction network (hSIN)

[25], which mapped 135,166 interactions between 590 interfacing domains, of which 345 and

245 were PSDs and NSDs, respectively. We compared the ratios (log base 2) of PSDs to NSDs

for groups of human structural interaction network (hSIN) interfacing domains for different

ranges of domain interaction connectivity. Given that domain-level network degree is not

evenly distributed, we defined groups of domains for comparisons not by equal degree interval

but by similar group size. We found that PSD is enriched—indicated by positive log2(Domain

Ratio) score—for interfacing domains with a moderate number (2–120) of domain inter-

actions, whereas PSD is depleted—indicated by negative log2(Domain Ratio) score—among

interfacing domains with either a single interaction or more than 121 interactions (Fig 2D).

To explain the observed higher frequency of PSDs among interfacing domains with a moder-

ate number of domain interactions, we proposed a model of mutational consequences via the

disruption of interfacing domains with different degrees of connectivity (Fig 2E). Mutations

on interfacing domains with a single protein interaction (green nodes) may result in the func-

tional failure of a single protein and no detectable pathogenic effect. Consequently, these

mutations are not detected among patients. If mutations occur in a hub-interfacing domain

(blue node), the interactions toward many proteins involved in diverse pathways may be dis-

rupted, which may result in the functional failure of the global system. In this case, mutations

Pathway-specific protein domains
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would generally cause lethal phenotypes, resulting in purifying selection of the mutation. In

contrast, mutations on interfacing domains with a moderate number of domain interactions

(yellow nodes), which likely corresponds to the range of the pathway size, disrupt the interac-

tions of proteins within that pathway, which may result in the functional failure of local sys-

tems. Because the majority of disease genes are enriched for pathways [6], these mutations are

likely to cause the functional failure of disease-associated pathways, and can be detected in

patients. Therefore, the higher frequency of PSDs among domains with a moderate number of

domain interactions suggests that PSDs are more likely involved in heritable diseases via muta-

tions that disrupt within-pathway PPIs.

PSDs are predictive features for human diseases

Given that PSDs are more susceptible to the heritable diseases, we hypothesized that PSDs

could be predictive genomic features for human diseases. Even their modest prediction power

could be highly useful if integrated with other disease-associated genomic information. For

example, GWASs generally test for associations of more than a million single-nucleotide poly-

morphisms (SNPs) for each disease phenotype, but identify only a few candidates due to highly

stringent significance thresholds (e.g., p� 10−7). However, GWASs usually detect a large num-

ber of candidate genes with moderate associations that have p-values above this stringent

threshold (e.g. 10−7 < p� 10−3). Additional candidate genes, i.e., those with moderate GWAS

significance, may be rescued by meta-analyses with larger sample sizes, but such studies are

costly to conduct. We hypothesized that an additional disease-associated feature would enable

us to distinguish disease genes from non-disease genes among those with moderate GWAS sig-

nificance. Therefore, we tested whether disease-associated PSDs could identify disease genes

among candidates with moderate GWAS significance derived from two publicly available data

sets: CARDIoGRAM [29], a study of coronary artery disease (CAD); and the Psychiatric Geno-

mic Consortium (PGC) [30], a study of schizophrenia (SCZ) (Fig 3A). To conduct gene-cen-

tric analyses, we identified SNPs with moderate GWAS significance that were located within

10 kb upstream or downstream of the gene, resulting in 204 and 1,044 genes moderately asso-

ciated with CAD and SCZ, respectively. We then identified PSDs associated with CAD or SCZ.

PSD-pathway relationships were converted into PSD-disease relationships based on significant

overlap (P< 0.01 by Fisher’s exact test) between disease-associated genes and pathway-associ-

ated genes. We compiled 212 disease-associated genes for CAD and 233 disease-associated

genes for SCZ from OMIM [31] and DO [32]. Based on Fisher’s exact test (p< 0.01), we iden-

tified 2,664 PSDs for CAD (S2 Table) via 97 CAD-associated GOBP pathways (S3 Table), and

2,517 PSDs for SCZ (S4 Table) via 61 SCZ-associated GOBP pathways (S5 Table). For GOBP

pathways, we considered only those that contained at least five member genes. We further

selected CAD and SCZ candidate genes with moderate GWAS significance based on the num-

ber of disease-associated PSDs in each gene (S6 and S7 Tables). We selected candidate genes

with moderate GWAS significance in which at least three disease-associated PSDs occurred

(GWAS\PSD set), resulting in 38 genes for CAD and 157 genes for SCZ.

Next, disease predictions made by PSDs were validated using independent disease annota-

tions from two disease-specific databases: 604 CAD-associated genes from CADgene V2.0 [33]

and 936 SCZ-associated genes from SZdatabase [34]. To further ensure the independence of

the validation gene set, we excluded 212 CAD genes and 233 SCZ genes that overlapped with

genes that were used to identify disease-associated PSDs, resulting in 466 CAD genes and 767

SCZ genes for the final validation sets. To compare the predictions with GWAS significance

only or PSD significance only, we also prepared similar sets that included predictions based on

p-values among genes with moderate GWAS significance (GWAS set) and on the number of

Pathway-specific protein domains
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Fig 3. PSDs can predict disease genes. (A) A summary of candidate gene selection for coronary artery disease (CAD) and

schizophrenia (SCZ) by integration of GWAS significance and PSD occurrence data. SNPs from GWASs were divided into

three groups: (i) SNPs with high significance that indicate confident candidate genes; (ii) SNPs with low significance that are

generally discarded; and (iii) SNPs with moderate significance that were considered for further selection in this study. Based

on the overlap between disease genes and pathway genes, we converted domain-pathway associations into domain-disease

associations to identify disease-associated PSDs. Candidate disease genes of the GWAS\PSD set were selected based on the

occurrence of disease-associated PSDs of the genes with moderate GWAS significance. (B) The precision of CAD gene

predictions was assessed based on CADgeneDB annotations. The precision by random expectation (i.e., the number of disease

genes / the number of all human genes) is indicated by the blue line (~2.5%). (C) The precision of SCZ predictions was

assessed based on SZdatabase annotations. The precision by random expectation is indicated by the blue line (~4.1%).

https://doi.org/10.1371/journal.pcbi.1007052.g003
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disease-associated PSDs among genes with both moderate and low GWAS significance (PSD

set). A clear benefit of using PSDs was observed for CAD, as approximately 30% more CAD

genes were identified in the GWAS\PSD set than in the GWAS set (Fig 3B). An even greater

benefit was observed for SCZ (Fig 3C). Interestingly, the PSD set was more predictive for SCZ

than the GWAS set. For both CAD and SCZ, the combination of GWASs and PSDs outper-

formed GWASs only and PSDs only, indicating that GWASs and PSDs contributed largely

complementary information about the diseases.

PSD-based identification of novel heart disease genes with experimental

validation in zebrafish

Next, we experimentally validated the predictions of a GWAS\PSD set using a morpholino-

based loss-of-function phenotype analysis in zebrafish. Although the majority of human dis-

ease genes have zebrafish orthologs [35], some disease phenotypes, such as those of psychiatric

diseases, are not readily classified in zebrafish. Therefore, we tested predictions for CAD genes

only. We found 23 zebrafish orthologs for the 38 human candidate CAD genes from the

GWAS\PSD set. After excluding genes that were already known to be involved in CAD or

that were highly ranked by GWAS, we selected the following four testable candidate genes in

zebrafish for further analysis: tram1, apod, cypna1, and slc22a2. Unfortunately, the zebrafish

model for CAD has not been well established. However, we found that 207 human orthologs

of zebrafish genes for heart or blood vessel development by GO annotations were significantly

associated with CAD genes indicated by OMIM or DO annotations (p< 1.29 × 10−4, Fisher’s

exact test) or by CADgeneDB annotations (p< 7.46 × 10−3, Fisher’s exact test), indicating sig-

nificant associations between CAD and heart/vessel development at the pathway level. These

results indicate that zebrafish genes validated by abnormal heart or blood vessel phenotypes

during embryonic development may have implications for human CAD. To confirm the feasi-

bility of CAD gene validation based on heart/vessel phenotype, atp2a2b, which has been impli-

cated in CAD [36], was included as a positive control. After microinjection of test gene

morpholinos into zebrafish embryos, heart and blood vessel phenotypes were examined using

a fluorescent stereomicroscope (Fig 4A and S2 Fig). We found that the majority of embryos

with morpholino injections exhibited abnormal heart or blood vessel phenotypes, not only in

the CAD-associated atp2a2b group, but also in three of the four candidate gene groups, includ-

ing the tram1, cypna1, and slc22a2 groups (Fig 4B and 4C), strongly implicating the associa-

tion of these genes with CAD.

Discussion

The network-based quantitative method of modeling domain-pathway associations presented

herein suggested underlying mechanisms of how protein domains associated with specific

pathways influence mutational impacts on diseases via perturbations in within-pathway PPIs,

and provided a novel genomic feature for interpreting genetic variants to facilitate the discov-

ery of human disease genes.

Stratification of coding regions by different susceptibilities to heritable pathogenic varia-

tions may improve the assessment of genomic risk for complex human diseases based on

exonic variations. For example, if we can identify PSDs for a particular disease as described in

this work, more weight may be assigned to the mutations located in the PSDs for the disease

than those located in the NSDs in assessing disease risk. Additionally, disease-associated PSDs

would be useful predictors for disease gene candidates. The insufficient statistical power of

GWASs often omits a large number of SNPs with moderately significant disease associations.

Thus, in theory, we may apply the demonstrated procedure of candidate gene selection with

Pathway-specific protein domains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007052 May 10, 2019 9 / 19

https://doi.org/10.1371/journal.pcbi.1007052


moderate significance based on disease-associated PSDs to all GWASs, which may reveal

many disease gene candidates that are missed during conventional GWAS analyses. Therefore,

PSDs will significantly contribute to the genetic dissection of human diseases.

In this study, we present a scoring scheme PS, which quantifies specificity of domain-path-

way associations. Although the given quantification strategy was demonstrated in human only,

its application to other organisms is conceptually straightforward: (i) generate domain profiles

for proteins using InterPro databases, (ii) construct a co-pathway protein network based on

the associations between domain profiles, (iii) calculate PS and identify PSDs using gold-stan-

dard domain-pathway pairs, (iv) infer GOBP pathway terms of proteins or predict proteins

with phenotypic effects using the identified PSDs.

This network-based scoring scheme to quantify specificity of domain-pathway associations

may be a significant addition to our current computational tool box for pathway annotation of

domains and proteins. For example, PS can prioritize GOBP terms for an InterPro domain,

which may facilitate manual curation for novel entries in the InterPro2GO database.

Furthermore, probabilistic models of pathway involvement of proteins could be developed

based on PS.

Fig 4. Experimental validation of novel genes for heart development in zebrafish. (A) Tg(flk1:EGFP) zebrafish embryos injected with

morpholinos (MOs) for novel candidate genes for CAD showed morphological heart abnormalities, such as peripheral edema at 3 days post-

fertilization (arrows in the left panel, scale bar = 500 μm). Zebrafish embryos normally have hearts with a left ventricle (V) and right atrium (A),

whereas the embryos injected with MOs related to CAD genes exhibited either no asymmetry or reversed V and A orientation (middle panels,

scale bar = 200 μm). These embryos also exhibited malformed blood vessels in the trunk (asterisks in the right panel, scale bar = 200 μm). (B) MO-

injected Tg(flk1:EGFP) zebrafish embryos were counted to quantify those that exhibited heart asymmetry. (C) MO-injected Tg(flk1:EGFP)

zebrafish embryos were counted to quantify those that exhibited vascular defects. Over 20 MO-injected embryos per gene were counted for each

analysis (A-C).

https://doi.org/10.1371/journal.pcbi.1007052.g004
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Methods

Generation of domain profiles

Information regarding domain occurrence for human proteins was downloaded using the

BioMart search tool (http://www.ensembl.org/biomart/martview) from the InterPro [37] data-

base (v38). We generated domain profiles, which were represented as an array of Boolean val-

ues for each protein with 1 and 0 indicating the presence and absence of a given domain in the

protein, respectively. We generated domain profiles for 17,013 human protein coding genes

using a total of 8,362 InterPro domains.

Construction of a domain-based co-pathway network

A co-pathway protein network was constructed based on the association between domain pro-

files as described in our previous study [14] and summarized as follows. Most domain profiles

are sparse, because most proteins have few domains only. Domain profiles for proteins with

more complex domain compositions were considered more informative than those with sim-

pler compositions. To take into account the non-uniformity of information across profiles, we

employed mutual information (MI), which considers the entropy (i.e. complexity) of profiles.

TheMI does not require an a priori model, and has high robustness and accuracy for a wide

variety of applications. Additionally, the amount of information across individual domains

seemed to vary. We observed a power-law distribution of domain occurrence among proteins,

from which we hypothesized that rare domains were associated with relatively specific biologi-

cal processes and prevalent domains contributed to diverse functions. Therefore, we assigned

higher weights to rarer domains during theMI calculation, resulting in weighted mutual infor-

mation (WMI). The weight for each domain was calculated as described in the following

definitions.

Definition 1. Domain-specific weight ωj
Given n proteins andm domains, the domain-specific weight ωj for each domain j (1� j�

m) is defined as:

oj ¼

Pn
k¼1

Pm
l¼1
cklPn

k¼1
ckj

where ckl represents the occurrence value (0 or 1), assigned by whether kth protein contains lth

domain.

Definition 2. Weighted mutual information Iω
Given two proteins X and Y,

IoðX;YÞ ¼ HoðXÞ þ HoðYÞ � HoðX;YÞ

whereHω(X) and Hω(Y) represent the weighted entropy of protein X and protein Y,

respectively, and can be calculated as follows:

Ho Xð Þ ¼ �
P

t2f0;1gfpoðX; tÞ � logpoðX; tÞg; po X; tð Þ ¼

P
j2fjjcXj¼tg

oj
Pm

j¼1
oj

where t represents domain profile value of protein X, which can be {0,1} because we adopt

Boolean domain profile.
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Additionally, Hω(X,Y) represents the weighted joint entropy between X and Y, and can be

calculated as follows:

HoðX;YÞ ¼ �
P

t1t22fð00;01;10;11g
fpoðXY; t1t2Þ � log poðXY; t1t2Þg;

po XY; t1t2ð Þ ¼

P
j2fjjcXj is t1 and cYj is t2g

oj
Pm

j¼1
oj

where t1 and t2 represents domain profile value of protein X and protein Y, respectively.

Log likelihood score

The weight of a protein-protein link or a domain-pathway link was measured by a log likeli-

hood score (LLS), which was based on a Bayesian statistical framework as previously described

[15].

Definition 3. Log likelihood score of a protein-protein link or a domain-pathway link

LLS ¼ ln
PðLjEÞ=Pð⌐LjEÞ
PðLÞ=Pð⌐LÞ

� �

; if P Lð Þ 6¼ 0 and P ⌐LjEð Þ 6¼ 0

where P(L|E) and P(⌐L|E) represent the frequencies of positive (L) and negative (⌐L) gold-

standard links observed in the given evidences (E), while P(L) and P(⌐L) represent the prior

expectations (i.e. the total frequencies of all positive and negative gold-standard links,

respectively). In Bayesian words, P(L)/P(⌐L) is prior odds and P(L|E)/P(⌐L|E) is posterior odds.
The posterior odds are the prior odds times the Bayes factor, likelihood. For protein-protein

links, we first sorted them by confidence score (e.g.WMI), then computed LLS for each bin of

1000 protein pairs. For the given size of binning, we hardly encountered with P(L) = 0 or P(⌐L|

E) = 0. However, if so, we could avoid the problem by taking larger bin size. Protein-protein

pairs or domain-pathway pairs with positive LLS values are more likely to be associated with

each other for the given evidence than those by random chance. For this study, the positive

gold-standard protein-protein links were generated by pairing two proteins annotated for the

same GOBP terms [38] and negative gold-standard protein-protein links were generated by

pairing two proteins annotated for different GOBP terms. The positive gold-standard domain-

pathway links were compiled from the InterPro2GO database and negative gold-standard

domain-pathway links were generated by pairing a domain and a pathway that belong to the

database but are not associated with each other.

Pathway specificity (PS) score

We developed a metric, Pathway Specificity (PS), to quantify the specificity of domain-path-

way associations, based on the combination of connectivity from a domain to the member pro-

teins of the pathway and domain-specific weights. For the computing PS, we defined a

domain-based co-pathway network by taking protein-protein links with only positive LLS. As

a first step in the PS calculation, the protein-pathway association (PPA) score of each protein

for a specific pathway was calculated via summation of LLSs to the protein in the domain-

based co-pathway network. Subsequently, we transformed the association score based on the

LLS into the probability score. We observed that the sum of LLSs of protein pairs followed a

power-law distribution. Thus, we modeled the sum of the LLSs as a Pareto distribution, which

is a power-law probability distribution that coincides with social, scientific, geophysical, and

many other types of observable phenomena. The p-value of the Pareto distribution is
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calculated as follows:

PPareto X > xið Þ ¼
xmin
xi

� �a

where xi is sum of LLS of protein i and xmin is the scale parameter empirically plugged in by

the minimum of sum of LLS values and α is the shape parameter that determines the steepness

of the slope. As α increases, the p-value of the Pareto distribution is exponentially distributed

with intensity α. We wanted to reduce the skewness of sum of LLS distribution by transforma-

tion into PPareto, which is subsequently used to compute pathway association of each protein.

The number of proteins with sum of LLS is subject to the size of pathways. If a pathway has a

small number of member proteins, α tends to be very small. We found that if α< 1, the skew-

ness of the sum of LLS distribution did not significantly improved. Therefore, we empirically

take 1 as the minimum value of α to calculate protein-pathway association score as in Defini-

tion 4.

Definition 4. Protein-pathway association (PPA) score for a specific pathway f
For a given protein i, the PPA score PPAi (f) is defined as follows:

PPAi fð Þ ¼ 1 � PPareto X > siðf Þð Þ ¼ 1 �
sminðf Þ
siðf Þ

� �aðf Þ

scale parameter sminðf Þ : minimum value ofsiðf Þ for a specific pathway f

shape parameter aðf Þ ¼ 1þ n
Xn

i¼1

ln
siðf Þ
sminðf Þ

� �" #� 1

8
>><

>>:

Here, si (f) was calculated via summation of the LLSs as follows:

siðf Þ ¼
P

k¼fxjx2Gi and Fg
llsik;

where llsik denotes the LLS of a link between protein i and protein k, Gi indicates a set of all

proteins connected to gene i in the network, and F indicates a set of proteins annotated for

pathway f. We have assigned probability scores on edges of protein-protein interaction net-

work using Pareto distribution. The si(f) for each protein was calculated based on degree of

association to each pathway by summation of the assigned probability scores of all links to

known proteins for the pathway. Using the PPA score and domain profile matrix, we then

defined the domain-pathway association (DPA) score as in Definition 5.

Definition 5. Domain-pathway association (DPA) score for a specific pathway f
Given a specific domain j, the DPA score DPAj (f) is defined as follows:

DPAj fð Þ ¼
1

jKj

X

i2K
PPAiðf Þ � cij

K : a set of proteins containing domain j

jKj : size of the set K

cij : occurrence value of the ith protein and the jth domain; mentioned in Definition 1

PPAiðf Þ : PPA score of protein i for a specif ic pathway f

8
>>>><

>>>>:

Then, we finally calculate PS as described in Definition 6.
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Definition 6. Pathway Specificity (PS) for a domain j and a pathway f

PSjðf Þ ¼ ð1 � GIjÞ � DPAjðf Þ;

where DPAj(f) is the association score of domain j for a specific pathway f, and GIj is the Gini

Index of a domain j over all pathways, and is defined as following:

GIj ¼ 1 �
X

8f

DPAjðf Þ
P
8f DPAjðf Þ

( )2

GI, which is a common impurity measure for classification-type problems, is maximized

when the DPA of a domain for all pathways are equal, and is equal to zero when a domain has

a DPA for only one pathway.

Classification between pathway-specific domain (PSD) and non-specific

domain (NSD)

We calculated PSs for a total of 49,636 domain-pathway associations between 5,253 InterPro

domains and 407 GOBP pathways (S1 Table). Using manually curated associations between

InterPro domains and GOBP pathways derived from InterPro2GO [16] as gold standard data, we

measured likelihood of true domain-pathway association for given PS scores. We observed strong

positive correlations between PS and the likelihood of gold standard domain-pathway association.

The significance of the agreements with gold-standard associations was also assessed by Fisher’s

exact test. We divided domain-pathway associations into two classes by high significance of agree-

ment with gold-standard associations (P� 0.01), by which 4,506 InterPro domains from the top

16,000 significant domain-pathway associations were defined as pathway-specific domains (PSDs)

and the remaining 3,856 InterPro domains as non-specific domains (NSDs).

Analysis of disease-associated variants

We compared the occurrence of disease-associated variants between PSDs and NSDs using

pathogenic germline variants compiled from three independent sources: (i) SNPs from the

GWASdb [17]; (ii) OMIM disease gene variants [31, 39]; and (iii) variants from the ClinVar

database [19]. We mapped protein domain regions in the human genome using Ensembl-API.

We compiled SNPs that were significantly (p< 10−7) associated with nearly 1,610 GWAS traits

from GWASdb, which mapped them to dbSNP Build 142 and Genome Assembly, GRCh37/

hg19, resulting in 26,342 disease-associated SNPs. Only 966 of these SNPs (~3.6%) were

located in the protein-coding regions, and of these, 569 SNPs were located in InterPro domain

regions. For the analysis of cancer germline variants, we compiled 51 germline variants associ-

ated with cancer studies from GWASdb, and 20,945 somatic variants from breast cancer

patients from The Cancer Genome Atlas (TCGA) consortium. We also compiled 1,779 and

10,778 variants for OMIM disease genes from SwissVar (http://swissvar.expasy.org) and

dbSNP (http://www.ncbi.nlm.nih.gov/snp, OmimVarLocusIdSNP.bcp file), respectively, to

generate an OMIMVar set of 11,024 OMIM disease-associated variants. We found that 9,050

of these variants were located in protein domain regions. ClinVar is another major public

archive of relationships among human variants and phenotypes. We obtained 13,465 ClinVar

variants for the clinical significance term of ‘pathogenic’, and found that 10,680 of them were

located in protein domain regions. To generate the null model, we employed variants expected

to have a neutral effect, which were derived from the HumVar neutral training set from

Polyphen-2 [20]. The HumVar neutral training set was constructed of common human

nsSNPs (minor allele frequency > 1%) without annotated involvement in disease, which were
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considered to be non-damaging variants. Three classes of missense disease mutations were

designated as described by Sahni et al. [22]: (i) quasi-WT that shows no change in wildtype

interactions, (ii) edgetic that shows loss of some wildtype interactions, (iii) quasi-null that

shows complete loss of wildtype interactions. We used 40, 27, and 32 missense mutations

located in PSDs and 24, 15, and 36 missense mutations located in NSDs for the edgetic, quasi-

null, and quasi-WT classes, respectively.

To compare occurrence of neutral or disease-associated variants between PSDs and NSDs,

the total number of variants in the entire genomic region for each domain class, i.e. the varia-

tion rate (VR), was calculated as follows:

VR ¼
# of test variants for the given domain region ðPSD or NSDÞ

Total # of nucleotides for the given domain region ðPSD or NSDÞ

The background variation rate (BVR) for all domain regions, including both PSDs and

NSDs, was calculated as follows:

BVR ¼
# of test variants for all domain regions ðPSDs and NSDsÞ

Total # of nucleotides for all domain regions ðPSDs and NSDsÞ

VRs for the test variant sets were then normalized to the background variation rate (BVR)

to calculate the normalized variation rate (NVR) as follows:

NVR ¼
VR
BVR

Statistical significance of NVR differences between PSDs and NSDs were evaluated by bino-

mial tests.

Domain-level network analysis

Wang et al. [25] provided information on 590 interfacing domains (IFD) and 135,166

domain-domain interactions in a structural level human protein interaction network (hSIN).

Among the 590 interfacing domains, 345 domains were PSDs and 245 domains were NSDs.

Therefore, there were ~1.4-fold more PSDs than NSDs. To evaluate the difference in IFD

enrichment between the two domain groups, we measured the ratio of PSDs to NSDs, i.e. the

domain ratio, for several groups of IFDs with different numbers of domain interactions (i.e.

domain interaction connectivity) as follows:

Domain Ratio ¼
jPSD \ IFDj
jPSDj

=
jNSD \ IFDj
jNSDj

GWAS data for diseases

We used GWAS data for coronary artery disease (CAD) and schizophrenia (SCZ), which were

publicly available from the CARDIoGRAM consortium [29] and Psychiatric Genomic Con-

sortium (PGC) [30], respectively. The CARDIoGRAM consortium performed a meta-analysis

on 22 GWASs of individuals of European descent imputed by HapMap 2, which included

22,233 cases and 64,762 controls. The PGC included a multi-stage schizophrenia GWAS for

36,989 cases and 113,075 controls. From these GWASs, we found that 3,188 (out of 2,420,360)

and 54,688 (out of 9,444,230) SNPs with moderate significance (10−7 < p� 10−3) were associ-

ated with CAD and SCZ, respectively. We assigned each SNP to genes that were located within

10 kb of the gene (downstream or upstream), resulting in the assignment of 3,188 SNPs to 204

genes for CAD and 54,688 SNPs to 1,044 genes for SCZ. These genes were further filtered by
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the number of PSDs relevant to the diseases.

Zebrafish housing and manipulation

Adult zebrafish were maintained at 28.5˚C with a 13:11 h light:dark cycle in the Zebrafish

Auto System (pH 7.0–7.9, Genomic-Design, Korea). Zebrafish embryos were collected after

natural breeding and incubated in clean petri dishes with E3 medium (297.7 mM NaCl, 10.7

mM KCl, 26.1 mM CaCl2, and 24.1 mM MgCl2) containing 1% methylene blue (Sigma-

Aldrich, St. Louis, MO, USA) at 28.5˚C. For observation and photography, the embryos were

raised (24 hours after fertilization) in the E3 medium containing 0.2 mM N-phenylthiourea

(PTU; Sigma-Aldrich Chemistry, cat. # P7629) to block melanin formation.

Microinjection with morpholino oligomers (MOs)

Translation-blocking MOs targeting coronary artery disease (CAD) candidate genes were

designed and synthesized by Gene Tools (Philomath, OR 97370, USA). Each MO was diluted

in distilled water at a concentration of 2 μg/μL and then injected into the yolk of zebrafish

embryos at 1–4 cell stages using a gas-based microinjection system (Genomic-Design, Korea).

Imaging the cardiovascular system of zebrafish

Overall morphology, heart asymmetry, and vascular phenotypes of the Tg(flk1:EGFP) zebra-

fish were observed using a fluorescent stereomicroscope (SMZ1270, Nikon, Tokyo, Japan).

Images were captured using a camera (DS-Qi2, Nikon, Tokyo, Japan) and analyzed using

NIS-Elements imaging software (Nikon, Tokyo, Japan).

Supporting information

S1 Fig. Regression analysis between Pathway Specificity (PS) and the log likelihood of

human InterPro domains and GOBP pathways by InterPro2GO database.

(TIF)

S2 Fig. In vivo validation of candidate coronary artery disease (CAD) genes. (a) The

sequence of translation-blocking MOs targeting candidate CAD genes used for this study. (b)

Tg(flk1:EGFP) zebrafish embryos were injected with morpholinos (MOs) for candidate CAD

genes and compared with control MO-injected embryos (morphants). The majority of

morphants, except for apodmorphants, exhibit gross morphological abnormalities, including

a small brain, heart edema, and curved tail, at 3 days post-fertilization (scale bar = 500 μm). (c)

Diagrams show the representative heart defects, such as no asymmetry (midline) and reversed

asymmetry between ventricle and atrium, at 3 days post-fertilization.

(TIF)

S3 Fig. Robustness of observed enrichment of PSD for disease-associated variants and for

variants affecting physical protein interactions. In addition to the set of PSDs used for the

analysis (4506 PSDs with 16k DPAs by PS threshold of 0.056), we also tested a smaller set of

PSDs by more stringent PS threshold (0.066) resulting in 14k DPAs and 4341 PSDs and a

larger one by more loose PS threshold (0.05) resulting in 18k DPAs and 4654 PSDs. We found

that moderate changes in PS threshold for defining PSDs did not significantly affect enrich-

ment of PSD for disease-associated variant by GWASdb (a) and for nonsynonymous variant

affecting physical protein interactions by IMEx (b).

(TIF)
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S1 Table. The list of 49636 associations between 5253 human InterPro domains and 407

GOBP pathways with pathway-specificity (PS) scores.

(XLSX)

S2 Table. Pathway-specific domains for coronary artery disease (CAD).

(XLSX)

S3 Table. Pathways associated with coronary artery disease (CAD) (P< 0.01 by Fisher’s

exact test and # pathway member genes > = 5).

(XLSX)

S4 Table. Pathway-specific domains for schizophrenia (SCZ).

(XLSX)

S5 Table. Pathways associated with schizophrenia (SCZ) (P< 0.01 by Fisher’s exact test

and # pathway member genes > = 5).

(XLSX)

S6 Table. Priorized genes for coronary artery disease (CAD) by # of PSD (GWAS\PSD set

is highlighted).

(XLSX)

S7 Table. Priorized genes for schizophrenia (SCZ) by # of PSD (GWAS\PSD set is high-

lighted).

(XLSX)
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