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Abstract

Aims

This study aimed to develop and validate deep-learning-based artificial intelligence algo-

rithm for predicting mortality of AHF (DAHF).

Methods and results

12,654 dataset from 2165 patients with AHF in two hospitals were used as train data for

DAHF development, and 4759 dataset from 4759 patients with AHF in 10 hospitals enrolled

to the Korean AHF registry were used as performance test data. The endpoints were in-hos-

pital, 12-month, and 36-month mortality. We compared the DAHF performance with the Get

with the Guidelines–Heart Failure (GWTG-HF) score, Meta-Analysis Global Group in

Chronic Heart Failure (MAGGIC) score, and other machine-learning models by using the

test data. Area under the receiver operating characteristic curve of the DAHF were 0.880

(95% confidence interval, 0.876–0.884) for predicting in-hospital mortality; these results sig-

nificantly outperformed those of the GWTG-HF (0.728 [0.720–0.737]) and other machine-

learning models. For predicting 12- and 36-month endpoints, DAHF (0.782 and 0.813) sig-

nificantly outperformed MAGGIC score (0.718 and 0.729). During the 36-month follow-up,
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the high-risk group, defined by the DAHF, had a significantly higher mortality rate than the

low-risk group(p<0.001).

Conclusion

DAHF predicted the in-hospital and long-term mortality of patients with AHF more accurately

than the existing risk scores and other machine-learning models.

Introduction

Approximately 26 million adults worldwide have heart failure, and acute heart failure (AHF) is

the leading cause of hospitalization in Europe and the United States, resulting in more than 1

million admissions, and representing 1%–2% of all hospitalizations.[1,2] In the past decades,

the mortality rate of AHF has improved with advances in treatment, but AHF is still a leading

cause of mortality worldwide.[1–3] Risk stratification and prognosis prediction are critical in

identifying high-risk patients and decision making for the treatment of patients with AHF.

There are several mortality prediction models for heart failure, such as Get with the Guide-

lines-Heart Failure (GWTG-HF) score, Meta-Analysis Global Group in Chronic Heart Failure

(MAGGIC) score.[4,5] However, these prognostic models have limitations for the current

daily practice. First, GWTG-HF and MAGGIC are limited in specific situations. GWTG-HF

and MAGGIC were developed only for in-hospital and long-term mortality, respectively.[4,5]

Second, because the accuracies of these methods are unsatisfactory, these methods cannot be

used to decide the treatment of the patient. Third, these models use only limited information

that is based on a conventional statistical approach, such as multivariate analysis by the logistic

regression model that has a potential limitation of information loss.[6–8]

Recently, artificial intelligence algorithm has achieved a high performance in several medi-

cal domains, such as image detection and clinical outcome prediction.[9–11] An advantage of

deep-learning is the automatic learning of the feature and relationship from a given data.[12]

In this study, we developed and validated a deep-learning-based artificial intelligence algo-

rithm for predicting mortality of patients with acute heart failure (DAHF) by using a large data

from 12 hospitals.

Methods

Study population

We conducted a retrospective observational cohort study using AHF patient data from 10 uni-

versity hospitals of the Korean Acute Heart Failure (KorAHF) registry and 2 hospitals (hospital

A: cardiovascular teaching hospital and hospital B: community general hospital), as shown in

Fig 1. We defined patients with AHF as patients with signs or symptoms of heart failure and

those who met either of the following criteria: 1) lung congestion or 2) objective left ventricular

systolic dysfunction or structural heart disease findings.

First, we collected the algorithm train data of patients with AHF admitted in hospitals A

and B from October 2016 to December 2017. The data obtained through the electronic health

records of the two hospitals were demographic information, treatment and medication, labo-

ratory results, electrocardiography (ECG) and echocardiography findings, final diagnosis, clin-

ical outcome during their hospital stay, and 12-month prognosis after discharge.
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Second, we used the data of patients with AHF enrolled in KorAHF as performance test

data. KorAHF is a prospective multicenter registry of AHF in Korean patients. All cardiovas-

cular centers in 10 tertiary university hospitals were included in KorAHF from March 2011 to

January 2014. The full details of the KorAHF registry’s aims and protocols have been published

elsewhere.[13] The data obtained through KorAHF demographic information, treatment and

medication, laboratory results, electrocardiography (ECG) and echocardiography findings,

final diagnosis, clinical outcome during their hospital stay, 12-month prognosis, and

36-month prognosis.

Because hospitals A and B were not university hospitals, they were excluded in KorAHF.

Moreover, the periods of the train data were different with the test data. Therefore, train and

test data were completely separated. We excluded patients with missing values of predictor

variables and endpoints as shown in Fig 1.

This study was conducted in accordance with the Declaration of Helsinki and the relevant

guidelines and regulations. The institutional review boards (IRBs) of Sejong General Hospital

(2018–0839) and Mediplex Sejong Hospital (2018–073) approved this study protocol and

granted waivers of informed consent based on general impracticability and minimal harm.

Patient information was anonymized and de-identified before the analysis. KorAHF data were

collected by each site and approved by the IRB at each hospital. The KorAHF committee

approved and provided data for the present study.

Fig 1. Study flowchart. KorAHF denotes Korean Acute Heart Failure registry.

https://doi.org/10.1371/journal.pone.0219302.g001
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Data management

We used the data of hospital A and B as train data for prediction algorithm development. And

we used the data of KorAHF as test data to confirm whether the DAHF can be applied to other

hospitals after development. These two data were completely separated.

The DAHF is a risk stratification model for predicting in-hospital mortality and long-term

mortality of patients with AHF at the time of admission. We used the demographic informa-

tion, ECG, echocardiography, and laboratory data of patients with AHF, including age (years),

sex (male or female), body mass index (BMI, kg/m2), systolic blood pressure (SBP, mmHg),

diastolic blood pressure (DBP, mmHg), heart rate (HR, bpm), present atrial fibrillation (Afib,

yes or no), QRS duration (QRS, ms), corrected QT interval (QTc, ms), left atrial dimension

(LAD, mm), left ventricular dimension end-diastole (LVDd, mm), left ventricular dimension

end-systole (LVDs, mm), ejection fraction (EF, %), white blood cell (WBC, /mL), hemoglobin

(g/dL), platelet (/mL), albumin (g/dL), sodium (mmol/L), potassium (mmol/L), blood urea

nitrogen (BUN, mg/dL), creatinine (Cr, mg/dL), and glucose (mg/dL), as the predictor

variables.

In the train data of hospital A and B, we made a train dataset each time an ECG was taken

during the hospital stay of the patient, as shown in Fig 2. If the value of other variables was

missing during ECG, we used the most recent values of the demographic information and vital

signs, and echocardiography and laboratory findings, as shown in Fig 2. Hence, several train

datasets were generated from one patient. Using this method, we amplified and created a data-

set sufficient for developing machine- and deep-learning methods.

In the test data of KorAHF, only initial value of the demographic information, vital sign,

ECG, echocardiography, and laboratory data at the time of admission were used. If the value

of variable was missing during admission, the first result during hospital stay was used.

Because the purpose of test dataset was to assess the accuracy of each prediction model, and

the goal of each model was to predict the patient’s prognosis at the time of admission, we gen-

erated only one test dataset from one patient.

Endpoints

The difference of accuracy to predict in-hospital mortality and 12- and 36-month mortality in

each prediction model was evaluated. The primary endpoint, in-hospital mortality, was

defined as in-hospital death occurring during hospitalization. Readmission within 24 h was

considered as the same hospital period. The secondary endpoints, 12- and 36-month mortality,

were defined as death within 12 and 36 months, respectively, among patients who survived to

discharge, as shown in Fig 1.

Development of deep- and machine-learning prediction models

We developed the DAHF by using only the train dataset. The DAHF was developed by using

deep neural network (DNN), a method of deep-learning with 3 hidden layers, 33 nodes, batch

normalization, and dropout layers.[14,15] We used TensorFlow (the Google Brain Team,

Mountain View, United States) as the backend.[16] In this DNN, we used a rectified linear

unit (ReLU) and back propagation as the activation function and method of training, respec-

tively. We developed DAHF by ensembling a DNN model fitted to in-hospital death and a

DNN model fitted to 12-month death, as shown in Fig 2. We provided a detailed description,

reference, and figure of the DNN as S1 File.

We also developed four machine-learning models, random forest (RF), logistic regression

(LR), supportive vector machine (SVM), and Bayesian network (BN), for the performance

comparison with DAHF.[17] In the previous studies, these machine-learning models were the
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most typically used methods and showed better performance than traditional methods in sev-

eral medical domains.[18,19] We used randomForest, glmulti, e1071, and bnlearn packages in

R (R Development Core Team, Vienna, Austria) for the development of RF, LR, SVM, and BN

models, respectively. Moreover, we also provided the detailed description, references, and fig-

ures as S1 File. We analyzed the variable importance of LR, RF, SVM, BN, and DNN by using

deviance difference, mean decrease Gini, sensitivity analysis, deviance difference, and AUC

difference, respectively.

Test of prediction model performance

After we developed the DAHF and machine-learning models, we compared the performance

of these models with the conventional prediction scoring. We compared the performance for

predicting in-hospital mortality with the GWTG-HF scores and compared the performance

for predicting 12- and 36-months mortality with the MAGGIC scores.[4,5] We compared the

performance of the models by using only the test data not used for the model development.

GWTG-HF and MAGGIC scores were well validated and used globally. We used the area

under the receiver operating characteristic curve (AUC) as the comparative measure. The

AUC is a frequently used metric, and the receiver operating characteristic curve shows the sen-

sitivity against 1-specificity.[20] We evaluated the 95% confidence interval using bootstrapping

(10,000 times resampling with replacement).[21] We used ROCR package in R (R Develop-

ment Core Team, Vienna, Austria) for these analyses.

We divided the patients of the test data into the high- and low-risk groups based on the

DAHF. In this analysis, we used the data of patients who survived to discharge. The optimal

cutoff point of the DAHF score was determined when the Youden J statistics was at maxi-

mum.[22] After dividing the patients into risk groups, we estimated the 36-month mortality

by risk groups by using the Kaplan–Meier method. We used the pROC and survival packages

in R (R Development Core Team, Vienna, Austria) in this analysis.

Results

We included 8094 patients with AHF (hospitals A and B: 2469; KorAHF: 5625) in the present

study (Fig 1). We excluded 1170 patients because of missing values and endpoints. The study

subjects comprised 6724 patients, wherein 194 were in-hospital mortalities. The DNN predic-

tion model, DAHF, was developed using 12,654 train datasets from 2165 patients of hospitals

A and B. The performance test was performed using 4759 test datasets from 4759 patients of

KorAHF (Fig 2). Table 1 shows the baseline characteristics, and a significant difference was

found between the characteristics of the train and test data.

Fig 3 shows that the AUC of the DAHF was 0.880 (95% confidence interval, 0.876–0.884])

during the performance test for predicting in-hospital mortality, and this result significantly

outperformed the GWTG-HF score (0.728 [0.720–0.737]) and other machine-learning predic-

tion models. Fig 4 shows that the AUCs of the DAHF were 0.782 [0.779–0.785] and 0.813

[0.810–0.816], respectively, during the performance test for predicting 12- and 36-month mor-

tality. Moreover, these performances significantly outperformed the MAGGIC score (0.718

[0.714–0.723] and 0.729 [0.726–0.733]) and other machine-learning prediction models.

Fig 2. Train and validation of deep-learning prediction model. DAHF denotes deep-learning-based artificial

intelligence algorithm for predicting mortality of patients with acute heart failure. Abbreviations: DBP, diastolic blood

pressure; DNN, deep neural network; ECHO, echocardiography; ECG, electrocardiography; Hb, hemoglobin; LAD,

left atrium dimension; LVDd, left ventricle end-diastolic dimension; QRS, QRS duration; QTc, corrected QT duration.

https://doi.org/10.1371/journal.pone.0219302.g002
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In the train dataset, the optimal cut-off scores of the DAHF risk groups were 0.472. Among

4577 survival-to-discharge patients in the test dataset, the DAHF classified 2668 and 1909

patients as high and low risk, respectively. The cumulative hazard plot of Fig 5. shows that the

high-risk group of the DAHF shows a significantly higher hazard than the low-risk group. The

high-risk group, defined by the DAHF, has a significantly higher mortality rate than the low-

risk group (p<0.001).

The characteristics and variable importance of each prediction model is shown in S2 File.

The variable importance is different for each prediction model. In the conventional machine-

learning models, the EF and QRS duration variables are less important for prediction.

Table 1. Baseline characteristics†.

train data

(Hospitals A and B, n = 2165)

Test data

(KorAHF, n = 4759)

p-value‡

Survivors

(n = 2083)

In-hospital death (n = 82) p-value� Survivors

(n = 4577)

In-hospital death (n = 182) p-value� 0.995

Demographics <0.001

Age (years) 65.1±14.2 74.5±12.3 <0.001 68.2±14.5 70.8±14.5 0.020 <0.001

Male (%) 1246 (59.8) 46 (56.1) 0.576 2411 (52.7) 103 (56.6) 0.336 <0.001

BMI (kg/m2) 24.5±11.2 21.9±3.3 0.031 23.4±3.9 22.6±3.6 0.007 <0.001

Vital signs at admission

SBP (mmHg) 120.1±19.9 113.4±22.0 0.003 132.1±30.2 116.8±27.0 <0.001 <0.001

DBP (mmHg) 72.1±13.3 67.7±13.4 0.004 79.2±18.7 70.2±19.3 <0.001 <0.001

HR (bpm) 80.0±21.7 97.6±28.8 <0.001 92.5±25.7 94.6±26.3 0.274 <0.001

Electrocardiography

AF (%) 497 (23.9) 31 (37.8) 0.006 1882 (41.1) 63 (34.6) 0.094 <0.001

QRS duration (ms) 101.9±23.8 107.5±26.3 0.037 106.0±28.2 113.2±30.1 0.001 <0.001

QTc (ms) 462.7±42.0 470.8±43.8 0.087 475.0±46.0 474.7±48.0 0.937 <0.001

Echocardiography

LAD (mm) 44.2±9.6 46.0±14.3 0.095 48.2±9.8 45.9±11.1 0.001 <0.001

LVDd (mm) 51.6±8.1 49.8±9.7 0.056 57.5±10.1 56.6±10.9 0.233 <0.001

LVDs (mm) 36.7±10.3 36.7±11.0 0.962 45.2±12.4 45.6±12.4 0.714 <0.001

EF (%) 44.7±14.0 37.8±14.8 <0.001 37.9±15.5 33.3±15.9 <0.001 <0.001

Laboratory test

WBC (/mL) 7954.7

±2997.2

13864.1

±7580.7

<0.001 8494.2

±3714.4

10639.6

±5317.2

<0.001 <0.001

Hb (g/dL) 12.5±2.2 10.2±1.9 <0.001 12.5±2.3 11.9±2.3 0.001 0.203

Platelets (/mL) 242,838.69

±91,419.2

161,573.2

±101,270.7

<0.001 211,782.8

±86,736.6

197,033.0

±146,965.7

0.030 <0.001

Alb(g/dL) 4.0±0.6 2.9±0.7 <0.001 3.7±0.5 3.5±0.5 <0.001 <0.001

Sodium (mmol/L) 138.7±3.6 139.9±7.9 0.006 137.6±4.7 135.1±6.3 <0.001 <0.001

Potassium (mmol/L) 4.2±0.5 4.2±0.7 0.775 4.4±0.7 4.6±0.9 <0.001 <0.001

BUN (mg/dL) 20.7±13.5 38.5±24.2 <0.001 25.6±15.8 36.4±24.8 <0.001 <0.001

Cr (mg/dL) 1.3±1.4 1.8±1.3 0.001 1.4±1.4 1.9±1.7 <0.001 <0.001

Glucose (mg/dL) 130.9±52.8 175.0±94.6 <0.001 153.0±74.8 166.5±83.0 0.018 <0.001

† AF, atrial fibrillation; Alb, albumin; BMI, body mass index; BUN, blood urea nitrogen; Cr, creatinine; DBP, diastolic blood pressure; EF, ejection fraction; Hb,

hemoglobin; HR, heart rate; KorAHF, Korean Acute Heart Failure registry; LAD, left atrial dimension; LVDd, left ventricular dimension end-diastole; LVDs, left

ventricular dimension end-systole; QTc, corrected QT interval; SBP, systolic blood pressure; WBC, white blood cell.

‡ Alternative hypothesis for this p-value: a difference is found between the train and test data groups.

� Alternative hypothesis for this p-value: a difference is found between the survivor and in-hospital mortality groups.

https://doi.org/10.1371/journal.pone.0219302.t001
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Fig 3. Receiver operating characteristic curve for predicting in-hospital mortality. AUC, area under the receiver operating characteristic curve; CI,

confidence interval; GWTG-HF, Get with the Guideline–Heart Failure.

https://doi.org/10.1371/journal.pone.0219302.g003
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However, for the DAHF, these variables are important for prediction (S2 File). The BMI and

LAD variables are less important for prediction in DAHF than other conventional machine-

learning prediction models.

Discussion

In this study, we developed a deep-learning-based artificial intelligence algorithm, DAHF, for

predicting the mortality of patients with AHF using two hospital datasets and validated DAHF

using separated AHF registry data. This study revealed that the accuracy of performance of the

deep-learning-based artificial intelligence model was excellent for predicting the mortalities

and is better than the conventional risk score model. In addition, the deep-learning model out-

performed other machine-learning prediction models to predict endpoints. To the best of our

knowledge, this study is the first to predict AHF patient endpoints using deep-learning-based

artificial intelligence prediction models.

The GWTG-HF and MAGGIC scores are well validated conventional models for risk strati-

fication of AHF patients.[23–26] The previous validation studies have reported that the AUC

of the GWTG-HF scores for predicting in-hospital mortality of patients with AHF was 0.71–

Fig 4. Receiver operating characteristic curves for predicting long-term mortalities. AUC, area under the receiver operating characteristic curve; CI, confidence

interval; MAGGIC, Meta-Analysis Global Group in Chronic Heart Failure.

https://doi.org/10.1371/journal.pone.0219302.g004
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0.76.[24,25] Furthermore, the AUC of the MAGGIC score for predicting 1–3-year mortality of

patients with AHF in previous studies was 0.73–0.74, implying moderate accuracy for predict-

ing the mortality of patients with AHF.[24,26] These results were similar with those of this

study.

However, the GWTG-HF and MAGGIC scores have several limitations. First, these models

were developed and validated on specific situations. The GWTG-HF was developed to predict

in-hospital mortality, and MAGGIC score was developed and validated to predict long-term

endpoints.[4,5] Moreover, these prediction scoring methods had no satisfactory performance

and were not actively used to decide the treatment of the patient. Because these scoring models

were developed by the conventional statistical approach using the logistic regression model

that has limitations, including the fixed assumptions on data behavior, and the necessity to

preselect variables in the development phase, thus leading to potential information loss. [6–8]

Unlike the conventional statistical approach, deep-learning does not require the preselec-

tion of important variables, and the less important variables are naturally ignored in the model

fitting process.[12,14,15] Furthermore, deep-learning does not limit the number of input pre-

dictive factors and can use all available information without potential loss. Subsequently, the

Fig 5. Cumulative hazard of 36-month mortality by deep-learning-based algorithm risk group.

https://doi.org/10.1371/journal.pone.0219302.g005
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old models cannot reflect the relationship between variables. This is because the risk is mea-

sured only by the sum of the variables. Meanwhile, deep-learning obtains the relationship

between the variables, as shown in S1 File, unlike conventional methods.[12,14,15]

The previous studies have attempted to predict prognosis, such as readmission and mortali-

ties of AHF, by using conventional machine-learning prediction models.[18,19] In the present

study, we confirmed that DNN outperformed other conventional machine-learning prediction

models, such as RF, LR, SVM, and BN. The machine-learning prediction model required care-

ful engineering to design a feature extractor for selecting important variables.[17] This process

requires a lot of manpower, and loss of important information is possible. Deep-learning,

DNN, including feature-learning process, which is a set of methods that allow a model to be

fed with raw data and to automatically identify the feature needed for conducting a task.

[12,14,15] Deep-learning comprises multiple processing layers of feature as shown in S1 File,

obtained by composing simple but non-linear modules, each of which transforms the feature

at one level (starting with the raw input) into a feature at a higher and more abstract level.

Because this process is conducted automatically, it is good at discovering the intricate struc-

tures in high-dimensional data without information loss and it requires only very little engi-

neering by human.[12,14,15] Therefore, deep-learning can be quickly applied to tasks with

ease and outperform other conventional machine-learning models.

Deep- and machine-learning models are used to obtain the relationship between the predic-

tor and outcome variables, rather than creating a rule based on medical knowledge. Hence, the

performance of machine- and deep-learning models is not guaranteed in other situations.

Wolpert explains the no-free-lunch theorem; if optimized in one situation, a model cannot

produce good results in other situations.[27] Because deep- and machine-learning models can

over-fit with the characteristics of hospitals in train data, we conducted a performance test

using complete separated test data, which were not used for the model development.

In the present study, we amplified the train dataset from the data of the train group patients

by using the methods of collecting multiple datasets from a patient data. Using these methods,

we collected a sufficient amount of dataset for developing deep- and machine-learning models.

Deep- and machine-learning models require an abundant amount of data for its development.

Because the available data are limited, and the outcomes to be predicted are highly diverse in

the medical field, this method is promising to future studies in medical domains and will

inspire many researchers.

Deep- and other machine-learning predicted models predicted endpoints using different

structures as shown in S1 File. The patients for which each model correctly predicted the end-

points also differed. Furthermore, the variable importance of DAHF is different from that of

RF, LF, SVM, and BN, as shown in S2 File. Therefore, different algorithms can complement

the other weaknesses of the algorithms. We used the combination of two deep-learning algo-

rithm, DNNs, for predicting both in-hospital and long-term mortality simultaneously, and

this method was called ensemble.[28] Many researchers attempted to improve the accuracy by

combining diverse predictive algorithms. This method is also called an ensemble algorithm.

Our study has several limitations. First, the deep-learning model is known as a “black box.”

Although we can fit and develop the deep-learning based artificial intelligence model, we can-

not interpret the model in terms of the approach to the decision of risk score. For example, if

the DAHF predicts a high risk of mortality for a patient, the reason for that decision cannot be

ascertained. Recently, an interpretable deep-learning model has been studied and will be our

next area of study.[29,30] Second, this prediction model was developed with limited variables

that could be collected from the KorAHF registry. As shown in previous studies of Cacciatore,

functional parameters such as the 6-minute walking test is a good prognostic factor of cardiac

diseases.[31] We plan to use more information of HF patients that can enhance the
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performance of the AI algorithm with more valuable variables. Third, this study was conducted

with retrospective big data. Thus, we could not extract accurate past medical histories such as

respiratory diseases and malignancies that could also affect long-term mortality. We plan to

conduct a prospective study for validating the AI algorithm and confirm the correlation

between medical history and HF in our next research.

Conclusions

In conclusion, we developed and validated a new mortality prediction artificial intelligence

model of AHF based on the deep-learning approach. The deep-learning algorithm, DAHF,

predicted the in-hospital, 12- and 36-month mortality of patients with AHF more accurately

than the existing risk scores and other machine-learning methods. This study showed the feasi-

bility and effectiveness of the deep-learning-based artificial intelligence algorithm model for

cardiology, which can be a useful tool for precise decision making in daily practice.
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