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Coronary artery calcium (CAC), which can be measured in various types of computed

tomography (CT) examinations, is a hallmark of coronary artery atherosclerosis. However,

despite the clinical value of CAC scores in predicting cardiovascular events, routine

measurement of CAC scores is limited due to high cost, radiation exposure, and lack of

widespread availability. It would be of great clinical significance if CAC could be predicted

by electrocardiograms (ECGs), which are cost-effective and routinely performed during

various medical checkups. We aimed to develop binary classification artificial intelligence

(AI) models that predict CAC using only ECGs as input. Moreover, we aimed to

address the generalizability of our model in different environments by externally validating

our model on a dataset from a different institution. Among adult patients, standard

12-lead ECGs were extracted if measured within 60 days before or after the CAC scores,

and labeled with the corresponding CAC scores. We constructed deep convolutional

neural network models based on residual networks using only the raw waveforms of

the ECGs as input, predicting CAC at different levels, namely CAC score ≥100, ≥400

and ≥1,000. Our AI models performed well in predicting CAC in the training and internal

validation dataset [area under the receiver operating characteristics curve (AUROC) 0.753

± 0.009, 0.802± 0.027, and 0.835± 0.024 for the CAC score≥100,≥400, and≥1,000

model, respectively]. Our models also performed well in the external validation dataset

(AUROC 0.718, 0.777 and 0.803 for the CAC score ≥100, ≥400, and ≥1,000 model,

respectively), indicating that ourmodel can generalize well to different but plausibly related

populations. Model performance in terms of AUROC increased in the order of CAC score

≥100, ≥400, and ≥1,000 model, indicating that higher CAC scores might be associated

with more prominent structural changes of the heart detected by the model. With our AI

models, a substantial proportion of previously unrecognized CAC can be afforded with

a risk stratification of CAC, enabling initiation of prophylactic therapy, and reducing the

adverse consequences related to ischemic heart disease.
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INTRODUCTION

Atherosclerosis is a vascular disease in which cholesterol, fats,
and other substances build up on the arterial wall, causing
one’s arteries to narrow and harden. When the lumen of a
coronary artery is narrowed or obstructed due to atherosclerosis
(with or without thrombosis), blood flow to the myocardium
is impaired, leading to serious complications—namely, ischemic
heart diseases (IHDs), such as angina pectoris and myocardial
infarction (MI). The total number of people aged 20 and above in
the United States who are affected by IHD is estimated to be 18.2
million (1). About 605,000 Americans have their first MI each
year, with more than 200,000 experiencing a subsequent event
(2). To prevent adverse clinical events, it is important to evaluate
the cardiovascular risks of individual patients as early as possible,
and actively manage major risk factors (e.g., high blood pressure,
diabetes, dyslipidemia, and smoking) (3).

Coronary artery calcium (CAC) is used as a hallmark for
coronary artery atherosclerosis due to its close correlation
with atherosclerotic plaque formation (4). CAC score (also
known as Agatston score) can be measured in diverse types
of computed tomography (CT) examinations (5). CAC score
results can be classified into several groups: no atherosclerosis
(0 Agatston units), mild (1–99 Agatston units), moderate (100–
399 Agatston units), severe (400–999 Agatston units) and very
severe (1,000 or higher Agatston units) (6, 7). Its predictive
value for cardiovascular events has been well-validated (8–13);
in particular, compared to patients with a CAC score of zero,
the hazard ratios for a coronary event were 3.61 for a CAC
score of 1–100 (p < 0.001), and 7.73 or higher for a CAC
score > 100 (p < 0.001) (9). Studies have shown that CAC
progression can be observed in more than 20% of individuals
with an initial CAC score of zero during a follow-up period of 3–
6 years, and when CAC is detected, prophylactic treatments such
as lifestyle modification, antihyperlipidemic drugs, or antiplatelet
drugs, or additional tests such as exercise stress tests or coronary
angiograms, can be performed to prevent disease progression
(14–17). A well-known clinical indication for measuring CAC
scores is intermediate risk based on the Framingham risk score—
a sex-specific tool developed to estimate the risk of cardiovascular
disease within the next 10 years (18). However, despite the clinical
value of CAC scores in predicting cardiovascular events, their
routine measurement is limited due to the high cost of taking a
CT scan, radiation exposure, and a lack of widespread availability.

An electrocardiogram (ECG) is a highly sensitive, cost-
effective, non-invasive, contrast-free, and radiation-free
screening tool that is frequently measured during various
health checkups. With recent advances in remote health
and wearable technologies, portable ECG devices, such as
smartwatches, are also becoming more widespread. These
devices enable continuous monitoring of the ECG in everyday
life. Furthermore, there is growing evidence that advanced
artificial intelligence (AI) techniques with deep convolutional
neural networks are capable of detecting subtle signals and
patterns from ECGs that do not fit traditional knowledge and
are unrecognizable by the human eye, enabling prediction of
diseases that were previously unpredictable with ECGs (19). In a

similar vein to these new findings, if CAC can be predicted using
the application of AI technology to ECGs, patients measuring
ECGs at various health checkups or other examinations can be
afforded with an opportunistic risk stratification of a potentially
existing CAC.

Thus, this study aimed to develop binary classification AI
models based on deep convolutional neural networks that predict
CAC at various levels (i.e., CAC scores of 100, 400, or 1,000)
using only ECGs as input and then compare the performances
of our AI models with that of logistic regression models built
with traditional ECG features. Moreover, we aimed to address
the generalizability of our models in different environments
by externally validating our models on a dataset from a
different institution.

METHODS

Data Sources and Labeling
For model training and internal validation, the raw waveforms
of the ECGs and CAC scores were extracted from the Ajou
University Medical Center (AUMC) database (Figure 1). The
standard 12-lead ECG database of AUMC extracted from the
General Electric Healthcare MUSETM system from June 1994 to
May 2020 stored about 1.72million units of ECG data from about
740,000 patients. The database consists of the raw waveforms;
measurement data such as heart rate, PR interval, QRS duration,
and QT interval; personal information, such as age, sex, height,
and weight; and automatic ECG interpretations provided by
built-in software. The length of each ECG is 10 s and the sampling
rate is either 500 or 250Hz. For CT readings containing CAC
scores stored in the electronic medical records (EMR) database
of AUMC between August 2003 (the time point when the first
CT reading containing a CAC score was stored at the AUMC
EMR database) and August 2018 (the last time point we were
authorized to access the AUMC EMR database), we used a wide
range of search terms including “agatston,” “calcium score,” “CAC
score,” and “CACS” to thoroughly extract all the CAC scores
stored in the database. Examples of CT readings containing
CAC scores from the EMR database of AUMC are shown in
Supplementary Table 1.

Among adult patients (18 years and older), the standard 12-
lead ECGs were extracted if measured within 60 days before or
after the CAC scores, and labeled with the corresponding CAC
scores. The rationale for the time window of 60 days is that
CAC is a slowly progressing disease; thus, it would be reasonable
to assume that not much change can be observed in a period
of a few months (15, 20). A longer time window would yield
more samples to be included in our study. However, as the time
window gets longer, there is a greater chance of significant change
in the CAC score. Thus, we chose a time window of 60 days to
balance between these trade-offs. If multiple CAC scores were
measured within 60 days before or after an ECG, we labeled the
ECGwith the nearest measured CAC score. ECGs with automatic
interpretations including one or more of the following phrases
were excluded: “lead reversal,” indicating that the leads might
have been misplaced; “poor quality,” indicating that the ECG
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FIGURE 1 | Patient flow diagram of the training and internal validation dataset from AUMC. From the AUMC ECG database, after applying the exclusion criteria, the

number of ECGs measured within 60 days before or after the CT readings containing CAC scores was 8,178 ECGs from 5,765 adult patients.

contained artifacts; and “pacemaker,” indicating that an artificial
pacemaker may have been present.

The external validation dataset was extracted from the Yongin
Severance Hospital (YSH) database (Figure 2). The standard 12-
lead ECG database of YSH extracted from the GE Healthcare
MUSETM system from March 2020 to March 2021 stored about
65,000 units of ECG data from about 30,000 patients. For CT
readings containing CAC scores stored in the EMR database
of YSH between March 2020 and March 2021, we used the
same search terms applied to the AUMC database. Standard 12-
lead ECGs were extracted if measured within 60 days before
or after the CAC scores from adult patients, and labeled with
the corresponding CAC scores. The length of the ECG was
10 s and the sampling rate was 500Hz. ECGs with automatic
interpretations indicating misplaced leads, poor quality, and the
presence of pacemakers were excluded.

We aimed at constructing AI models predicting CAC at
various levels, namely moderate CAC (score ≥ 100), severe CAC
(score≥ 400) and very severe CAC (score≥ 1,000). Moreover, as
a supplemental analysis, we constructed an AI model predicting
CAC score > 0.

Data Preprocessing and Augmentation
As the ECGs from AUMC were a mixture of 250 and 500Hz,
ECGs with a sampling rate of 250Hz were upsampled to 500Hz
through linear interpolation. Thus, all ECGs were set to 500Hz.
We scaled the data points of each waveform to mean = 0 and
standard deviation = 1 (z-score normalization). The formula
for the z-score normalization would be y

′

i =
yi−µ

σ
, in which

µ denotes the mean and σ denotes the standard deviation of
the data point values of the original waveform. For the six limb
leads (leads I, II, III, aVR, aVL, and aVF), according to the
Einthoven law andGoldberger equation, the remaining four leads
can be calculated if only two leads are available (21, 22). Thus,
the inclusion of any two limb leads reflects no more and no less
information than what can be gained from the six limb leads.
Accordingly, we utilized eight leads (leads I, II, V1, V2, V3, V4,
V5, and V6) from the 12 leads as input. The same preprocessing
methods were applied to the external validation dataset.

We augmented our data in the training process as follows:
an indiscrete 2.5 s of the 10-s ECG were randomly selected

in each training epoch. Thus, a different 2.5-s interval of the
ECG was selected for each training epoch. In the internal and
external validation datasets, 10-s ECGs were divided into four
non-overlapping segments of 2.5 s, and all segments were tested
for consistency.

Neural Network Architecture and Model
Training
We constructed a deep neural network based on residual
networks using only the raw waveforms of the ECGs as input
(23). Supplementary Figure 1 shows the architecture of the
neural network used in this study. The neural network was
made up of six residual blocks. The input sequence length
corresponding to 2.5 s of 500Hz is 1,250. The number of channels
for the first input was eight (number of leads used). First, the
sequence length was adjusted to 1,280 by adding 15 zero paddings
to each side of each channel of the input. After passing the first
convolution layer with a kernel size of 15, the number of channels
increased to 64, and the sequence length decreased to 640. It
then passed through a batch normalization layer, rectified linear
unit layer, dropout layer, and a total of six residual blocks. In
each residual block, the sequence length was reduced by half. For
every two residual blocks, the number of channels increased by
64, a dropout of p = 0.2 was applied, and the kernel size of the
convolution layer decreased by 2 starting from 9. After passing
through six residual blocks, the sequence length became 10 and
the number of channels became 256. Then, this was flattened,
passing through a fully connected layer and a softmax layer to
derive the final output.

For training and internal validation, 5-fold cross-validation
was performed and the average performance of each fold was
derived. All cross-validation experiments (models predicting
CAC score at different levels) used the same folds to
enable comparison. Patients were not shared between training
and validation sets. The dataset used in this study was a
class imbalanced dataset and it has been established that
class imbalance can have detrimental effects on classification
performance, and the most widely used robust method for
dealing with class imbalance is the oversampling of the minority
class (24). Thus, we oversampled the minority class in the
training set by simple duplication to balance each class’s
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FIGURE 2 | Patient flow diagram of external validation dataset from YSH. From the YSH ECG database, after applying the exclusion criteria, the number of ECGs

measured within 60 days before or after the CT readings containing CAC scores was 1,745 ECGs from 877 adult patients.

sample distribution as equally as possible. For example, when
applied with the aforementioned data augmentation technique,
if the number of samples in the majority class was about 10
times greater than that in the minority class, in each training
epoch, an indiscrete 2.5 s of the 10-s ECG was randomly
selected for the majority class samples, and indiscrete 2.5 s
of the 10-s ECG was randomly selected 10 times for the
minority class samples. The hyperparameters were tuned via
extensive empirical experiments, and a learning rate of 0.001,
Adam optimizer, and specific architecture of the network were
chosen (Supplementary Figure 1). To prevent over-fitting we
incorporated several techniques including early stopping of
training based on observed validation loss, weight decay of 0.001,
data augmentation (as mentioned before), and dropout layers (as
mentioned before).

To address the accuracy and generalizability of a model
evaluating patients from a different, but plausibly related
population (25), we then performed external validation on the
dataset from YSH: CAC score ≥ 100, 400, and 1,000 in the
YSH dataset were validated with the corresponding models
trained with all the samples in the AUMC dataset (not divided
into training and internal validation datasets) with the same
oversampling method and the same hyperparameters chosen in
the 5-fold cross validation.

For performance comparison, we constructed logistic
regression models that use traditional ECG features (Ventricular
rate, PR interval, QRS duration, QT interval, QT interval
corrected, P axis, R axis, T axis) provided by a built-in software
from the General Electric Healthcare MUSETM system as
independent variables and CAC score ≥ 100, ≥ 400, or ≥ 1,000
as dependent variables. In the AUMC dataset, the same 5-fold
cross-validation approach (using the same folds) was used, and
the average performance of each fold was derived. For variables
with missing values, a dummy variable was created (coded 1 if
the value was missing and 0 if the value was not missing). In the
AUMC dataset, 3.8% of “PR interval” and 3.4% of “P axis” had
missing values, and the rest had no missing values. In the YSH
dataset, 8.0% of “PR interval” and 9.2% of “P axis” had missing
values, and the rest had no missing values.

The average receiver operating characteristics (ROC) curve
and the precision-recall (PR) curve was created for each fold

of the internal validation set during 5-fold cross-validation, and
the average area under the ROC curve (AUROC) and the area
under the PR curve (AUPRC) of our AI model was assessed. We
calculated the average accuracy, specificity, positive predictive
value (PPV), negative predictive value (NPV), and F1 score
at the optimal cutoff point when the Youden J statistics was
at maximum for each fold (Youden J statistic = sensitivity +

specificity – 1) (26). For the external validation, the ROC curves
PR curves were also created and the accuracies, sensitivities,
specificities, PPVs, NPVs and F1 scores were calculated at
the optimal cutoff point when the Youden J statistics was at
maximum based on the model trained with all the samples in the
AUMC dataset.

Statistical Analyses
The normality of continuous data was assessed with the
Shapiro-Wilk test: as none of the continuous data of both
institutions (AUMC and YSH) were normally distributed, they
were compared by the Mann-Whitney U-test (two-sided).
Categorical data was compared by the chi-square test. AUROCs
were compared with the Delong test (27). P-value < 0.05 was
considered as significant in all tests.

RESULTS

Dataset Characteristics
Figure 1 shows the patient flow diagram of the training and
internal validation dataset from AUMC. There were 1,722,168
ECGs from 744,510 patients in the source AUMC standard 12-
lead ECG database from June 1994 to May 2020. The total
number of CT readings with CAC scores extracted between
August 2003 and August 2018 was 13,750 readings from 11,679
patients. Figure 2 shows the patient flow diagram of the external
validation dataset from YSH. There were 65,456 ECGs from
30,483 patients from the source YSH standard 12-lead ECG
database from March 2020 to March 2021. The total number of
CT readings with CAC scores extracted between March 2020 and
March 2021 was 940 readings from 936 patients.

Dataset characteristics are shown in Table 1. The AUMC
dataset included 8,178 ECGs from 5,765 adult patients. The
YSH external validation dataset included 1,745 ECGs from 877
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TABLE 1 | Dataset characteristics.

Characteristics AUMC dataset

(n = 8,178)

YSH dataset

(n = 1,745)

p-value

Number of

patients

5,765 877

Age (year) 57.17 ± 11.80 62.06 ± 13.77 <0.001

Sex

Male 4,696 (57.42%) 985 (56.45%) 0.471

Female 3,482 (42.58%) 760 (43.55%)

Average CAC

score

187.82 ±

545.91

490.15 ±

1,121.55

<0.001

CAC score ≥

100

1,836 (22.45%) 795 (45.56%) <0.001

CAC score ≥

400

976 (11.93%) 458 (26.25%) <0.001

CAC score ≥

1,000

492 (6.02%) 165 (9.46%) <0.001

patients. The AUMC dataset had significantly higher age, CAC
score, and proportion of ECGs with CAC score≥ 100, CAC score
≥ 400, and CAC score ≥ 1,000 than the YSH dataset.

Model Performance
Figure 3 shows the average ROC and PR curves of the 5-fold
cross validation. The AUROCs and the AUPRCs for each fold are
specified in Supplementary Tables 2, 3. The average AUROCs
and AUPRCs for the CAC score ≥ 100 model, CAC score ≥ 400
model and CAC score ≥ 1,000 model were 0.753 ± 0.009, 0.802
± 0.027 and 0.835± 0.024, respectively and 0.477± 0.042, 0.364
± 0.060 and 0.339 ± 0.092, respectively. Model performance
in terms of average AUROC increased in the order of CAC
score ≥ 100 model, CAC score ≥ 400 model and CAC score ≥
1,000 model. However, model performance in terms of average
AUPRC decreased in the order of CAC score ≥ 100 model, CAC
score ≥ 400 model and CAC score ≥ 1,000 model, and this is
due to decreasing PPV (also referred to as precision) caused by
increasing class imbalance in the respective cases.

Figure 4 shows the ROC and PR curves for the external
validation. The AUROCs and AUPRCs for the CAC score ≥ 100
model, CAC score ≥ 400 model and CAC score ≥ 1,000 model
were 0.718, 0.777 and 0.803, respectively and 0.664, 0.528 , and
0.324, respectively. Ourmodels’ good performance in the external
validation dataset indicate they can generalize well to external
environments.

Table 2 shows the performances of the models at the optimal
cutoff point when the Youden J statistics was at maximum. The
Youden J statistics also increased in the order of CAC score≥ 100
model, CAC score≥ 400 model and CAC score≥ 1,000 model in
both the cross validation and the external validation. However,
the F1 score decreased in the order of CAC score ≥ 100 model,
CAC score ≥ 400 model and CAC score ≥ 1,000 model; this is
also due to decreasing PPV caused by increasing class imbalance
in the respective cases.

We report the results of the supplemental AI model
predicting CAC score > 0 in Supplementary Figure 2 and

Supplementary Table 4. The number of ECGs with CAC score>

0 was 3,706 (45.32%) in the AUMC dataset and 1,183 (67.79%) in
the YSH dataset. In the 5-fold cross validation (AUMC dataset),
the average AUROC and AUPRCwere 0.696± 0.010 and 0.649±
0.024, respectively, and in the external validation (YSH dataset),
the AUROC and AUPRC were 0.683 and 0.779, respectively.

Supplementary Figure 3 shows the performances of the
logistic regression models. All the comparisons of the AUROCs
between the ROC curves of the logistic regression models and
the deep neural network models (the inference outputs of the
four non-overlapping segments of 2.5 s from the 10-s ECGs
were averaged to enable paired sample comparison) in each fold
of the 5-fold cross validation and the external validation were
statistically significant according to the Delong test, indicating
that the deep neural network models using the raw ECG
waveforms outperform the logistic regression models that use the
traditional ECG features.

Inference outputs of all the deep neural network
models are provided in Supplementary Tables 5–10.
Supplementary Tables 5–9 shows the inference outputs of
the deep neural network models in the validation set during the
5-fold cross validation, whereas Supplementary Table 10 shows
the inference outputs of the deep neural network models in the
external validation. Note that the inference outputs were derived
from all the four non-overlapping segments of 2.5 s from the
10-s ECGs.

DISCUSSION

In this study, we developed binary classification AI models that
predict CAC at various levels, using only ECGs as input. We
found that our AI models performed well in predicting CAC
in the training and internal validation dataset (AUROC 0.753
± 0.009, 0.802 ± 0.027 and 0.835 ± 0.024, AURPC 0.477 ±

0.042, 0.364 ± 0.060 and 0.339 ± 0.092 for the CAC score
≥ 100 model, CAC score ≥ 400 model and CAC score ≥

1,000 model, respectively). Our models also performed well
in the external validation dataset (AUROC 0.718, 0.777 and
0.803, AUPRC 0.664, 0.528 and 0.324 for the CAC score ≥ 100
model, CAC score ≥ 400 model and CAC score ≥ 1,000 model,
respectively), indicating that our model can generalize well to
different but plausibly related populations. The deep neural
network models using the raw ECGwaveforms outperformed the
logistic regression models using the traditional ECG features in
all comparisons.

High NPV was observed when the Youden J statistics was at
the maximum (NPV 0.887± 0.013, 0.955± 0.006, 0.981± 0.005
for the CAC score ≥ 100 model, CAC score ≥ 400 model and
CAC score ≥ 1,000 model, respectively); this implies that our
model can be a useful indicator of CAC score < 100, CAC score
< 400 or CAC score < 1,000. Although the AUROC and the
Youden J statistics increased in the order of CAC score ≥ 100
model, CAC score ≥ 400 model and CAC score ≥ 1,000 model,
the AUPRC and F1 score decreased, and this is due to decreasing
PPV caused by increasing class imbalance in the respective cases.
Thus, there is a tradeoff among performance measures (AUROC,
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FIGURE 3 | Average ROC and PR curves of the 5-fold cross validation. The solid lines depict the average ROC and PR curves and the shaded areas depict ± 1

standard deviations of the curves.

FIGURE 4 | ROC and PR curves of the external validation (YSH dataset).

Youden J statistics vs. AUPRC, F1 score) in ourmodels predicting
CAC score at different thresholds; further discussion would be
needed to find the most appropriate compromise.

The ECG is a ubiquitous and standardized tool in clinical
medicine that reflects physiological and structural condition of
the heart and also give valuable diagnostic clues for systemic
conditions (19). Recent AI techniques have been applied to ECGs

for the automatic classification or diagnosis of various cardiac
diseases, such as arrhythmia and ischemia (28–31). Moreover,
there is growing evidence that advanced AI techniques with
deep convolutional neural networks are capable of detecting
subtle signals and patterns from ECGs that do not fit traditional
knowledge and are unrecognizable by the human eye (19); for
example, an AI-enabled ECG algorithm has been shown to be
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TABLE 2 | Performance of the models when the Youden J statistics was at the maximum.

Cross validation External validation

CAC score ≥ 100 CAC score ≥ 400 CAC score ≥ 1,000 CAC score ≥ 100 CAC score ≥ 400 CAC score ≥ 1,000

Accuracy 0.676 ± 0.031 0.744 ± 0.026 0.759 ± 0.042 0.652 0.659 0.641

Sensitivity 0.704 ± 0.046 0.732 ± 0.067 0.768 ± 0.045 0.778 0.800 0.823

Specificity 0.669 ± 0.052 0.745 ± 0.035 0.759 ± 0.047 0.546 0.609 0.622

PPV 0.384 ± 0.033 0.282 ± 0.033 0.174 ± 0.042 0.589 0.422 0.185

NPV 0.887 ± 0.013 0.955 ± 0.006 0.981 ± 0.005 0.746 0.895 0.971

F1 score 0.494 ± 0.020 0.406 ± 0.041 0.280 ± 0.055 0.671 0.552 0.302

Youden J statistics 0.373 ± 0.011 0.477 ± 0.048 0.528 ± 0.035 0.324 0.409 0.445

capable of identifying patients with atrial fibrillation during
normal sinus rhythm, which has important implications for
atrial fibrillation screening and the management of patients with
unexplained stroke (28); another AI-enabled ECG algorithm has
been shown to be capable of predicting 1-year all-cause mortality
even within a subset of patients with ECGs interpreted as normal
by a physician (32).

While it has been well-validated that CAC is a strong predictor
of future cardiovascular events (8–13), recent studies have shown
that it is associated with adverse cardiac remodeling (higher
left ventricular mass and higher aortic root diameter) (33, 34).
These studies show that higher CAC scores are associated with
structural changes of the heart. These changes in the structure
of the heart may appear as subtle changes in the ECG that were
previously unrecognizable to the human eye, but can now be
detected with the application of AI techniques. The fact that
model performance in terms of AUROC increased in the order of
CAC score≥ 100 model, CAC score≥ 400 model and CAC score
≥ 1,000 model in our results indicate that higher CAC scores
might be associated with more prominent structural changes of
the heart than the model could detect.

In a recent study by Farjo et al. (35), a logistic regression
machine learning model for the prediction of CAC scores
of 400 or higher using ECG features from the continuous
wavelet transform and many other clinical features was built
(35). To the best of our knowledge, this was the first study
to develop a machine learning model predicting CAC scores.
The model had an AUC of 0.868. However, none of the
ECG features were included in the top three features with
the highest feature importance. Instead, the top three features
were coronary artery disease, age, and sex—indicating that
in this study, clinical features were more important than the
ECG in predicting CAC scores of 400 or higher. Although
the performances of our AI model was inferior to the model
constructed by Farjo et al. (35), in all aspects (for the CAC
score ≥ 400 model, AUROC 0.802 ± 0.027 vs. 0.87, accuracy
0.744 ± 0.026 vs. 0.81, F1 score 0.406 ± 0.041 vs. 0.80 PPV
0.282 ± 0.033 vs. 0.79 sensitivity 0.732 ± 0.067 vs. 0.81), our
study showed that CAC scores can be predicted only with
ECGs, suggesting that ECGs contain enough information for
this task, and that more advanced AI techniques with deep

convolutional neural networks can extract complex features
needed for this task.

Coronary artery atherosclerosis or calcification is a slowly
progressive disease that is difficult to recognize until its
symptoms develop. When the symptoms occur, there may
already be serious blockages in the coronary arteries. In addition,
the development of atherosclerotic plaques is a self-perpetuating
cycle of oxidative stress and inflammation (36). Therefore,
advanced atherosclerotic lesions are highly likely to become
irreversible, and it is extremely important to detect the disease
before advanced lesions appear and initiate prophylactic therapy
(37). In this context, the fact that our model can predict CAC
only with ECGs has important medical implications. Routine
measurement of CAC scores with CT scans is limited due to
high cost and concerns of radiation exposure, despite the well-
established predictive value of CAC scores for cardiovascular
events (8–13). In contrast, the standard 12-lead ECG is a widely
used, cost-effective tool that is frequently administered during
various health checkups. From the AUMCdatabase, we found out
that the total number of CAC scores measured between August
2003 (the time point when the first CAC score was stored at the
AUMC EMR database) and August 2018 (the last time point we
were authorized to access the AUMC EMR database) was 13,750,
whereas the total number of standard 12-lead ECGs measured
in the same period was 1,146,084, highly exceeding the former.
Therefore, a substantial proportion of previously unrecognized
CAC can be afforded with a risk stratification of CAC with our
model applied on ECGs. These previously unrecognized patients,
after the final diagnosis with confirmatory test, such as coronary
CT scans, coronary angiographies and exercise stress tests, would
be able to receive prophylactic therapy that they would not have
received without our model.

Our study has numerous strengths. First, our model uses
only ECGs as input and does not require additional clinical
data, thus greatly enhancing real-world applicability. Second,
we did not exclude ECGs based on abnormalities relating to
medical conditions such as arrhythmia or ischemia. The only
ECGs excluded were those with lead misplacements, unwanted
artifacts, and artificial pacemakers. This means that our model is
applicable regardless of cardiac conditions aside from pacemaker
placement, thereby greatly enhancing the generalizability to
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real-world settings. Third, our model showed good external
validation performances indicating that it can generalize well to
foreign environments.

Our study also has some limitations. First, our model cannot
be considered a confirmatory test. However, our model can
help physicians recommend patients for further confirmatory
testing. Physicians can incorporate the outputs of our model with
other medical conditions of patients in their decision-making.
Second, at present, it is difficult to explain the predictions of
our model. Due to the “black box” nature of deep learning, it is
currently difficult to accurately interpret which part of the ECG
our model looks at to derive predictions; it may be subtle or
complex ECG changes that cannot be read by the human eye.
Identifying ways to overcome this “black box” nature of deep
learning to enhance explainability is an ongoing area of research.
Third, our model is unable to localize the branch of the coronary
artery where the calcification exists. We were unable to train the
model to consider the CAC score for each branch as only the
“total” CAC score was recorded in the CT readings. Fourth, the
performance of our AI model when applied to a truly unselected
population is not known. The fact that the study population used
for model training and validation in our study were prescribed
CAC measurement via CTs in the first place skews them away
from an unselected, general population: Some kind of clinical
suspicion of a coronary artery disease might have been present
before taking the CT for a considerable proportion of the study
population. Our AI model would need to be trained or validated
on a broader, unselected population to be potentially utilized as a
true screening test. Fifth, constructing a multi-class classification
model that directly predicts four classes of CAC scores (<100, ≥
100 and < 400, ≥ 400 and < 1,000, and ≥ 1,000) could not be
achieved due to the large increase in class imbalance when the
dataset was assigned into those four classes. Future studies with
much larger datasets would be required to accomplish this task.

CONCLUSION

In conclusion, using only ECGs as input, we developed binary
classification AI models that predict CAC at three different
levels. Our models had good external validation performance,
indicating that they can be generalized well to external
environments. With our models, a substantial proportion of
previously unrecognized CAC can be afforded with a risk
stratification of CAC, enabling initiation of prophylactic therapy,
and reducing the adverse consequences related to IHD.
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